Uniaxial tensile central tearing behaviors of ethylene tetrafluoroethylene foils
-
摘要: 针对乙烯-四氟乙烯(ETFE)薄膜结构膜面存在因初始缺陷、飞致物刺穿等引发膜材撕裂而导致结构承载力衰减和破坏的安全性问题,结合数字图像相关(DIC)技术对ETFE薄膜进行了系列单轴中心撕裂试验,深入分析了切缝长度、切缝角度和切口样式对薄膜撕裂力学行为的影响。结果表明:ETFE薄膜的典型撕裂过程呈现出4个特征状态;局部缺陷会显著影响薄膜的面外屈曲和破坏形态;典型撕裂抗力-位移曲线可分为撕裂前段、撕裂抗力上升阶段和撕裂后段3个阶段;薄膜的极限撕裂强度随切缝长度的增大而减小,随切缝角度的增大而增大;切口样式使薄膜在完全破坏时表现出类脆性或类延性破坏特征;“一”形切缝和直角边缘切口易引发应力集中,导致薄膜承载性能的显著衰减。所得结论可为ETFE薄膜的撕裂力学性能研究和ETFE膜结构的安全性评估提供有益参考。Abstract: Aiming at the safety of ethylene tetrafluoroethylene (ETFE) foil structural membrane surface, which is caused by initial defects and puncture of flying objects, leading to the attenuation of structural bearing capacity and damage, a series of uniaxial central tearing tests were carried out on ETFE foils combined with the digital image correlation (DIC) technology, and the effects of slit length, slit angle and notch shape on the tearing mechanical behaviors of the foils were analyzed in depth. The results show that the typical tearing propagation process of ETFE foils exhibits four characteristic states. Local defects can significantly affect the locations of the out-of-plane warping and the failure modes of the foils. The typical tearing strength-displacement curve can be divided into three characteristic phases: the pre-tearing phase, the tearing resistance rising phase, and the post-tearing phase. The ultimate tearing strength of the foils decreases with the increase of slit length and increases with the increase of slit angle. The notch shapes cause the foils to exhibit brittle-like or ductile-like damage characteristics upon complete damage. The “one” shaped slit and the right-angle edge notch tend to cause stress concentration, leading to significant degradation of the foil's load-bearing properties. The conclusions obtained can provide useful references for the study of the tearing mechanical properties of ETFE foils and the safety assessment of ETFE membrane structures.
-
Key words:
- ETFE foils /
- central tearing /
- strength /
- failure mode /
- digital image correlation technology
-
-
[1] KARADI D T, HEGYI D. An extensive review on the viscoelastic-plastic and fractural mechanical behaviour of ETFE membranes[J]. Periodica Polytechnica Architecture, 2021, 52(2): 121-134. doi: 10.3311/PPar.18403 [2] 严慧, 吕子正, 韦国岐. 膜结构的风损事故及防范[J]. 建筑结构, 2008, 38(7): 113-116.YAN Hui, LV Zizheng, WEI Guoqi. Wind damage accidents of membrane structures and countermeasures[J]. Building Structure, 2008, 38(7): 113-116(in Chinese). [3] 吴明儿, 慕仝, 刘建明. ETFE薄膜循环拉伸试验及徐变试验[J]. 建筑材料学报, 2008, 11(6): 690-694. doi: 10.3969/j.issn.1007-9629.2008.06.012WU Minger, MU Tong, LIU Jianming. Cycle loading and creep tests of ETFE foil[J]. Journal of Building Materials, 2008, 11(6): 690-694(in Chinese). doi: 10.3969/j.issn.1007-9629.2008.06.012 [4] 吴明儿, 赏莹莹, 李殷堂. ETFE薄膜材料参数设计值研究[J]. 建筑结构学报, 2014, 35(5): 114-119.WU Minger, SHANG Yingying, LI Yintang. Study on design values of material parameters of ETFE foil[J]. Journal of Building Structures, 2014, 35(5): 114-119(in Chinese). [5] 吴明儿, 赏莹莹, 李殷堂. 双轴拉伸下ETFE薄膜材料力学性能[J]. 建筑材料学报, 2014, 17(4): 623-626. doi: 10.3969/j.issn.1007-9629.2014.04.011WU Minger, SHANG Yingying, LI Yintang. Biaxial tensile mechanical properties of ETFE foil[J]. Journal of Building Materials, 2014, 17(4): 623-626(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.04.011 [6] 崔家春, 杨联萍, 吴明儿. ETFE薄膜低温单向拉伸性能[J]. 建筑材料学报, 2013, 16(4): 725-729. doi: 10.3969/j.issn.1007-9629.2013.04.031CUI Jiachun, YANG Lianping, WU Minger. Uniaxial tensile properties of ETFE film at low-temperature condition[J]. Journal of Building Materials, 2013, 16(4): 725-729(in Chinese). doi: 10.3969/j.issn.1007-9629.2013.04.031 [7] 崔家春, 吴明儿, 杨联萍. ETFE薄膜双向力学性能试验研究[J]. 建筑材料学报, 2016, 19(5): 866-870. doi: 10.3969/j.issn.1007-9629.2016.05.014CUI Jiachun, WU Minger, YANG Lianping. Experimental study on biaxial mechanical properties of ETFE film[J]. Journal of Building Materials, 2016, 19(5): 866-870(in Chinese). doi: 10.3969/j.issn.1007-9629.2016.05.014 [8] 胡建辉, 陈务军, 孙瑞, 等. ETFE薄膜单轴循环拉伸力学性能[J]. 建筑材料学报, 2015, 18(1): 69-75. doi: 10.3969/j.issn.1007-9629.2015.01.013HU Jianhui, CHEN Wujun, SUN Rui, et al. Mechanical properties of ETFE foils under uniaxial cyclic tensile loading[J]. Journal of Building Materials, 2015, 18(1): 69-75(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.01.013 [9] ZHANG M Y, ZHANG Y Y, ZHOU G C, et al. Essential design strength and unified strength condition of ETFE membrane material[J]. Polymers, 2022, 14(23): 5166. doi: 10.3390/polym14235166 [10] SURHOLT F, RUNGE D, UHLEMANN J, et al. Mechanical-technological behaviour of ETFE foils and their welded connections[J]. Stahlbau, 2022, 91(8): 513-523. doi: 10.1002/stab.202200039 [11] ZHAO B, HU J H, CHEN W J, et al. Simultaneous uniaxial creep testing of time-dependent membrane materials with optical devices[J]. Materials Today Communications, 2019, 21: 100655. doi: 10.1016/j.mtcomm.2019.100655 [12] ZHAO B, HU J H, CHEN W J, et al. Uniaxial tensile creep properties of ETFE foils at a wide range of loading stresses subjected to long-term loading[J]. Construction and Building Materials, 2020, 253: 119112. doi: 10.1016/j.conbuildmat.2020.119112 [13] ZHAO B, CHEN W J. Experimental study and constitutive modeling on viscoelastic-plastic mechanical properties of ETFE foils subjected to uniaxial monotonic tension at various strain rates[J]. Construction and Building Materials, 2020, 263: 120060. doi: 10.1016/j.conbuildmat.2020.120060 [14] CHEN J W, CHEN W J, ZHAO B, et al. Mechanical responses and damage morphology of laminated fabrics with a central slit under uniaxial tension: A comparison between analytical and experimental results[J]. Construction and Building Materials, 2015, 101: 488-502. doi: 10.1016/j.conbuildmat.2015.10.134 [15] CHEN J W, CHEN W J, ZHOU H, et al. Central tearing characteristics of laminated fabrics: Effect of slit parameter, off-axis angle, and loading speed[J]. Journal of Reinforced Plastics and Composites, 2017, 36(13): 921-941. doi: 10.1177/0731684417695460 [16] CHEN J W, CHEN W J. Central crack tearing testing of laminated fabric Uretek3216LV under uniaxial and biaxial static tensile loads[J]. American Society of Civil Engineers, 2016, 28(7): 4016028. [17] 陈建稳, 马俊杰, 赵兵, 等. 双轴经编织物膜梯形撕裂扩展机制及其拉剪耦合行为[J]. 复合材料学报, 2023, 40(12): 6922-6933.CHEN Jianwen, MA Junjie, ZHAO Bing, et al. Trapezoidal tearing propagation mechanisms of biaxial-warp-knitted fabric composites and tensile-shear coupling behaviors involved[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6922-6933(in Chinese). [18] SUN X Y, HE R J, WU Y, et al. Uniaxial tearing properties and the tearing residual strength models of PTFE coated fabric[J]. Structures, 2021, 33: 1354-1364. doi: 10.1016/j.istruc.2021.05.019 [19] SUN X Y, HE R J, WU Y. A novel tearing residual strength model for architectural coated fabrics with central crack[J]. Construction and Building Materials, 2020, 263: 120133. doi: 10.1016/j.conbuildmat.2020.120133 [20] ZHANG Y Y, XU J H, ZHOU Y, et al. Central tearing behaviors of PVC coated fabrics with initial notch[J]. Composite Structures, 2019, 208: 618-633. doi: 10.1016/j.compstruct.2018.09.104 [21] 牛瀚仪, 陈波, 袁志颖. 基于声发射-数字图像相关技术的泡沫混凝土冻融破坏特征及损伤演化规律[J]. 复合材料学报, 2024, 42: 1-11.NIU Hanyi, CHEN Bo, YUAN Zhiying. Freeze-thaw damage characteristics and evolution law of foam concrete based on acoustic emission-digital image correlation technique[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-11(in Chinese). [22] 杨露, 校金友, 文立华, 等. PBO纤维增强环氧树脂复合材料层间I型断裂韧性的DIC技术测量[J]. 复合材料学报, 2023, 40(1): 72-82.YANG Lu, XIAO Jinyou, WEN Lihua, et al. Mode I interlaminar fracture toughness measurement of PBO fiber reinforced epoxy composites by DIC technology[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 72-82(in Chinese). [23] 黄鲛, 陈婧旖, 罗磊, 等. 基于数字图像技术的C/SiC复合材料拉伸行为与失效机制[J]. 复合材料学报, 2022, 39(5): 2387-2397.HUANG Jiao, CHEN Jingyi, LUO Lei, et al. Tensile behavior and failure mechanism of C/SiC composite based on digital image technology[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2387-2397(in Chinese). [24] 吴明儿. ETFE薄膜材料[J]. 世界建筑, 2009, (10): 104-105.WU Minger. ETFE film materials[J]. World Architecture, 2009, (10): 104-105(in Chinese). [25] GB/T 1040.3-2006, 塑料 拉伸性能的测定 第3部分: 薄膜和薄片的试验条件[S].GB/T 1040.3-2006, Plastics-Determination of tensile properties-Part 3: Test conditions for foils and sheets[S] (in Chinese). [26] WANG K, TAO Q, WANG C G. Tensile–tearing analysis of rectangular thin film with central defect[J]. AIAA Journal, 2021, 59(9): 3781-3786. doi: 10.2514/1.J060446 [27] 刘岩, 刘俨震. Kapton薄膜单轴拉伸中心撕裂性能研究[J]. 武汉大学学报(理学版), 2022, 68(3): 262-270.LIU Yan, LIU Yanzhen. Experimental research on uniaxial tensile center tearing behaviors of Kapton foils[J]. Journal of Wuhan University(Natural Science Edition), 2022, 68(3): 262-270(in Chinese).
点击查看大图
计量
- 文章访问数: 26
- HTML全文浏览量: 15
- 被引次数: 0