Influence of uneven thickness of bonding layer on the bonding performance of CFRP-steel interface
-
摘要: CFRP-钢界面的粘结性能决定CFRP材料的加固效果,其中粘结层厚度不均匀是影响粘结性能的重要因素。为揭示粘结层厚度不均匀情况下CFRP加固钢板的力学破坏机制,先开展16个粘结层厚度均匀的双剪试验,由试验结果得出粘结层厚度为0.5mm时的承载力最优。再围绕0.5mm开展粘结层厚度沿纵向和横向不均匀的18个双剪试验,研究粘结层厚度不均匀情况下的力学性能和破坏机理。结果表明粘结层厚度不均匀对承载力影响较大,随着粘结层厚度不均匀程度的增加,承载力呈递减趋势,纵向不均匀的承载力降低6.45%~36.55%,横向不均匀的承载力降低9.57%~47.38%。不均匀程度相同时,横向不均匀的承载力平均比纵向不均匀的承载力低9.8kN, 横向不均匀的承载力降低幅度平均比纵向不均匀大6.65%,横向不均匀的不利影响大于纵向不均匀。粘结层厚度纵向、横向不均匀的应变及剪应力变化规律与厚度均匀的试件相比存在较大差异。结合试验得到的粘结滑移关系建立粘聚力数值模型,通过分析数值模拟结果和试验结果,表明粘聚力模型可以很好的模拟粘结层厚度不均匀对粘结界面的非线性力学行为。Abstract: The bond performance at the CFRP-steel interface determines the reinforcement effectiveness of CFRP materials, with the uneven thickness of the adhesive layer being a critical factor affecting the bonding performance. To reveal the mechanical failure mechanism of CFRP-reinforced steel plates under conditions of uneven adhesive layer thickness, 16 double-shear tests with uniform adhesive layer thicknesses were conducted first. The test results showed that a thickness of 0.5 mm yielded the optimal bearing capacity. Then, 18 additional double-shear tests were performed with the adhesive layer thickness varied both longitudinally and transversely around 0.5 mm to study the mechanical performance and failure mechanisms under uneven adhesive layer thicknesses. The results indicated that the uneven thickness of the adhesive layer significantly impacts the bearing capacity. As the degree of unevenness increased, the bearing capacity showed a decreasing trend. Longitudinal unevenness reduced the bearing capacity by 6.45% to 36.55%, while transverse unevenness reduced it by 9.57% to 47.38%. When the degree of unevenness was the same, the bearing capacity for transverse unevenness was, on average, 9.8 kN lower than that of longitudinal unevenness. The reduction in bearing capacity for transverse unevenness was, on average, 6.65% greater than for longitudinal unevenness, indicating that transverse unevenness has a more detrimental effect than longitudinal unevenness. The strain and shear stress variation patterns of specimens with longitudinal and transverse unevenness also showed significant differences compared to those with uniform thickness. A cohesive numerical model was established based on the bond-slip relationship obtained from the experiments. By analyzing the results of the numerical simulation and the experimental data, it was shown that the cohesive model can effectively simulate the nonlinear mechanical behavior of the bond interface under uneven adhesive layer thickness conditions.
-
Key words:
- thickness /
- uniformity deviation /
- shear test /
- numerical simulation /
- adhesive property
-
表 1 CFRP板、钢板及粘结剂材料参数
Table 1. Material parameters of CFRP plate, steel plate and adhesives
Material parameter CFP-Ⅰ-14 CFRP-A/B Q345 qC Elasticity modulus/GPa 165 5.3 206 Tensile strength/MPa 2400 38 514 Shear strength/MPa 55 — 79000 Shear strength for
steel-to-steel joint/MPa— 41.6 — Poisson’s ratio 0.28 0.35 0.30 Elongation at break/% 1.6 1.13 21% 表 2 CFRP-钢双剪试件拉伸试验结果
Table 2. Tensile test results of CFRP-steel double-shear specimens
Grouping Specimen number DV Ultimate load/kN Limit displacement/mm Failure
modePmax Average ABAQUS Relative
errorDmax Average ABAQUS Relative
errorA JY-0.1-1 0 36.59 33.42 35. 26 5.5% 3.06 2.95 2.89 2.1% a JY-0.1-2 30.25 2.84 a JY-0.2-1 54.01 49.67 50.19 1.0% 4.27 4.1 4.13 0.7% a+b JY-0.2-2 45.33 3.92 a JY-0.3-1 60.50 59.7 62.34 4.4% 6.30 6.26 6.15 1.8% a+b JY-0.3-2 58.90 6.21 a JY-0.4-1 78.26 74.48 74.25 0.3% 8.16 7.9 7.76 1.80% a+b JY-0.4-2 70.70 7.64 a+b JY-0.5-1 99.05 98.7 101.24 2.6% 8.57 8.67 8.71 0.5% a+b+c JY-0.5-2 98.35 8.76 a+b+c JY-0.6-1 84.59 82.43 82.75 0.4% 7.28 7.16 7.21 0.7% a+b+c JY-0.6-2 80.27 7.03 a+b JY-0.8-1 77.80 75.78 74.15 2.2% 6.88 6.71 6.68 0.5% a+b+c JY-0.8-2 73.76 6.53 a+b+c JY-1.0-1 57.32 54.46 56.30 3.4% 6.11 5.84 5.72 2.1% a+b+c JY-1.0-2 51.60 5.56 a+b+c B ZX-0.4-0.6-1 0.1 91.3 92.33 96.50 4.5% 7.94 8.05 8.12 0.9% a+b+d ZX-0.4-0.6-2 95.35 8.16 a+b+c ZX-0.3-0.7-1 0.2 80.16 81.95 84.37 3.0% 6.50 6.54 6.46 1.2% a+b ZX-0.3-0.7-2 83.73 6.58 a+b+c ZX-0.2-0.8-1 0.3 74.64 76.5 78.8 3.0% 5.93 5.86 5.80 1.0% a+b+c ZX-0.2-0.8-2 78.36 5.79 a+b ZX-0.1-0.9-1 0.4 62.14 62.63 62.22 0.7% 5.28 5.26 5.18 1.5% a+b+c ZX-0.1-0.9-2 63.11 5.23 b+c C HX-0.5-1 0 95.6 94.25 101.24 7.4% 8.01 8.14 8.71 7.0% a+b+c HX-0.5-2 92.89 8.26 a+b+c HX-0.4-0.6-1 0.1 86.95 85.23 87.86 3.1% 6.83 6.53 6.62 1.4% a+b+c HX-0.4-0.6-2 83.5 6.22 a+b+c HX-0.3-0.7-1 0.2 75.56 77.92 78.26 0.4% 6.01 6.27 6.36 1.4% a+b+c+d HX-0.3-0.7-2 80.27 6.52 a+b+c HX-0.2-0.8-1 0.3 62.43 61.46 62.87 2.3% 4.93 4.85 4.91 1.2% a+b+c+d HX-0.2-0.8-2 60.49 4.76 a+b+c+d HX-0.1-0.9-1 0.4 46.88 49.59 50.23 1.3% 4.39 4.64 4.71 1.5% a+b+c+d HX-0.1-0.9-2 52.3 4.89 a+b+c Notes: Dmax−Limit displacement; Pmax−Ultimate load; ABAQUS−Numerical analysis results; DV−Maximum deviation between the thickness of the bond layer and the average thickness; Failure mode: a−CFRP and adhesive debonding failure; b−Steel and adhesive debonding failures; c−Adhesive shatter; d−CFRP tearing; JY-0.1-1−Thickness of the adhesive layer is uniform, and the thickness of the adhesive layer is 0.1 mm; ZX-0.4-0.6-1−Thickness of the adhesive layer is not uniform in the longitudinal direction, and the thickness of the adhesive layer increases from 0.4 mm to 0.6 mm for the first specimen; HX-0.4-0.6-1−Thickness of the adhesive layer is not uniform transversely, and the thickness of the adhesive layer increases from 0.4 mm to 0.6 mm for the first specimen. 表 3 CFRP-钢界面粘结-滑移本构参数
Table 3. Bond-slip constitutive parameters of CFRP-steel interface
Parameter τf/MPa K/MPa·mm−1 δf/mm Gf/MPa·mm JY-0.1 5.45 21.80 0.25 0.68 JY-0.2 11.25 43.27 0.26 1.46 JY-0.3 9.59 39.96 0.24 1.15 JY-0.4 15.51 43.08 0.36 2.79 JY-0.5 22.15 33.56 0.66 7.31 JY-0.6 18.48 42.98 0.43 3.97 JY-0.8 15.04 47.00 0.32 2.41 JY-1.0 11.58 29.69 0.39 2.26 ZX-0.4-0.6 18.74 26.39 0.71 6.65 ZX-0.3-0.7 12.73 22.73 0.56 3.56 ZX-0.2-0.8 13.77 28.69 0.48 3.30 ZX-0.1-0.9 15.28 36.38 0.42 3.21 HX-0.5 15.03 19.52 0.77 5.79 HX-0.4-0.6 13.7 18.51 0.74 5.07 HX-0.3-0.7 13.06 19.21 0.68 4.44 HX-0.2-0.8 11.78 19.00 0.62 3.65 HX-0.1-0.9 8.86 18.46 0.48 2.13 Notes: τf−Maximum shear stress; K−Interfacial stiffness; δf−Limit slip of failure; Gf−Interfacial fracture energy. -
[1] 王春生, 翟慕赛, HOUANKPO T N O, 等. 正交异性钢桥面板冷维护技术及评价方法[J]. 中国公路学报, 2016, 29(8): 50-58. doi: 10.3969/j.issn.1001-7372.2016.08.007Wang Chun-sheng, Zhai Musai, HOUANKPO T N O, et al. Cold maintenance technique and assessment method for orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(8): 50-58(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.08.007 [2] ROZUMEK D, MARCINIAK Z, LESIUK G, et al. Experimental and numerical investigation of mixed mode I + II and I + III fatigue crack growth in S355J0 steel[J]. International Journal of Fatigue, 2018, 113: 160-170. doi: 10.1016/j.ijfatigue.2018.04.005 [3] 李传习, 李游, 陈卓异, 等. 钢箱梁横隔板疲劳开裂原因及补强细节研究[J]. 中国公路学报, 2017, 30(3): 122-131. doi: 10.3969/j.issn.1001-7372.2017.03.013LI Chuanxi, LI You, CHEN Zhuoyi, et al. Fatigue cracking reason and detail dimension of reinforcement about trans verse diaphragm of steel box girder[J]. China Journal of Highway and Transport, 2017, 30(3): 122-131(in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.013 [4] YU Qianqian, WU Yufei. Fatigue retrofitting of cracked steel beams with CFRP laminates[J]. Composite Structures, 2018, 192: 232-244. doi: 10.1016/j.compstruct.2018.02.090 [5] EL-TAWIL S, EKIZ E, GOEL S, et al. Retraining local and global buckling behavior of steel plastic hinges using CFRP[J]. Journal of Constructional Steel Research, 2011, 67(3): 261-269. doi: 10.1016/j.jcsr.2010.11.007 [6] LEPRETRE E, CHATAIGNER S, DIENG L, et al. Fatigue strengthening of cracked steel plates with CFRP laminates in the case of old steel material[J]. Construction and Building Materials, 2018, 174: 421-432. doi: 10.1016/j.conbuildmat.2018.04.063 [7] 吴刚, 刘海洋, 吴智深, 等. 不同纤维增强复合材料加固钢梁疲劳性能试验研究[J]. 土木工程学报, 2012, 45(4): 21-28.Wu Gang, Liu Haiyang, Wu Zhishen, et al. Experimental study of the fatigue performance of steel beams strengthened with different fiber reinforced polymers[J]. China Civil Engineering Journal, 2012, 45(4): 21-28(in Chinese). [8] Jiao H, Mashiri F, Zhao X L. A comparative study on fatigue behaviour of steel beams retrofitted with welding, pultruded CFRP plates and wet layup CFRP sheets[J]. Thin Walled Structures, 2012, 59: 144-152. doi: 10.1016/j.tws.2012.06.002 [9] WANG ZHEN, XIAN GUIJUN. Effects of thermal expansion coefficients discrepancy on the CFRP and steel bonding[J]. Construction and Building Materials, 2020(prepublish). [10] Yu Q Q, Chen T, Gu X L, et al. Fatigue behaviour of CFRP strengthened steel plates with different degrees of damage[J]. Thin-Walled Structures, 2013, 69: 10-17. doi: 10.1016/j.tws.2013.03.012 [11] HE J, XIAN G, Debonding of CFRP-to-steel joints with CFRP delamination[J]. Composite Structures, 2016, 153: 12-20. [12] PANG Y, WU G, WANG H, et al. Bond-slip model of the CFRP-steel interface with the CFRP delamination failure[J]. Composite Structures, 2021, 256: 113015. doi: 10.1016/j.compstruct.2020.113015 [13] 李腾, 宁志华, 吴嘉瑜. CFRP 加固钢板的粘结界面剥离破坏[J]. 复合材料学报, 2021, 38(12): 4090-4105.LI Teng, NING Zhihua, WU Jiayu. Interfacial debonding failure of CFRP-strengthened steel structures[J/OL][J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4090-4105(in Chinese). [14] 杨怡, 黄炽辉 , 吴作栋 . 基于双剪实验的CFRP-钢板界面粘结性能研究[J]. 中山大学学报(自然科学版), 2020.07. 14.2020B082.YANG Yi, HUANG Chihui, WU Wuodong. Study on bonding performance of CFRP-steel plate interface based on double shear test[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020.07. 14.20B082. (in Chinese) [15] HE JUN, XIAN GUIGUN, ZHANG Y. X. Numerical modelling of bond behaviour between steel and CFRP laminates with a ductile adhesive[J]. International Journal of Adhesion and Adhesives, 2021, 104. [16] 李传习, 柯璐, 陈卓异, 等. CFRP-钢界面粘结性能试验与数值模拟[J]. 复合材料学报, 2018, 35(12): 3534-3546.LI Chuanxi, Kelu, CHEN Zhuoyi et al. Experimental study and numerical simulation for bond behavior of interface between CFRP and steel[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3534-3546(in Chinese). [17] 吴超, 余洋喆, 雷昕弋, 等. 钢板屈服对 CFRP-钢界面粘接性能影响的试验研究[J]. 复合材料学报, 2022, 39(11): 5062-5073.WU Chao, YU Yangzhe, LEI Xinyi, et al. Experimental study on the effect of steel yielding on the bond behavior between CFRP and steel plate[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5062-5073 (in Chinese). [18] 陈卓异, 彭岚, 李传习, 等. CFRP 全覆盖胶粘加固含中心裂纹钢板的静力性能[J]. 复合材料学报, 2022, 39(5): 2329-2339.CHEN Zhuoyi, PENG Lan, LI Chuanxi, et al. Static behavior of CFRP full cover adjusted steel plate with center crack[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2329-2339 (in Chinese). [19] 高立, 邓宗才. CFRP修复钢I/II混合型裂纹扩展研究进展及展望[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.07.0519Gao Li, DENG Zongcai. Research progress and prospect of I /II mixed crack propagation of steel repaired with CFRP[J]. Engineering Mechanices. (in Chinese) DOI: 10.6052/j.issn.1000-4750.2023.07.0519 [20] 李安邦, 徐善华, 吴成, 等. 外贴 CFRP 板加固锈蚀钢板疲劳性能试验研究[J]. 土木工程学报, 2021, 54(7): 62-72.LI Anbang, XU Shanhua, WU Cheng, et al. Experimental study on the fatigue performance of corroded steel plate strengthened with externally bonded CFRP plates[J]. China Civil Engineering Journal, 2021, 54(7): 62-72(in Chinese). [21] 李安邦, 徐善华. 锈蚀对钢板表面特性及CFRP板-锈蚀钢板界面黏结性能的影响[J]. 复合材料学报, 2022, 39(2): 746-758.LI Anbang, XU Shanhua. Effect of corrosion on the surface properties of steel plate and interfacial bonding properties between CFRP plate and corroded steel plate[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 746-758(in Chinese). [22] 王海涛, 吴刚, 吴智深. FRP布置方式对含裂纹钢板加固后的疲劳性能影响分析[J]. 土木工程学报, 2015, 48(1): 56-63.Wang Haitao, Wu Gang, Wu Zhishen. Study on the effect of FRP configurations on the fatigue behavior of strengthened steel plate with an initial crack[J]. China Civil Engineering Journal, 2015, 48(1): 56-63(in Chinese). [23] 陈涛, 摇铖. CFRP加固含混合型边裂纹钢板的疲劳性能试验研究[J]. 建筑结构学报, 2021, 42(2): 206-212CHEN Tao, YAO Cheng. Experimental study on fatigue properties of CFRP-repaired steel plates with a mixed mode edge crack[J]. Journal of Building Structures, 2021, 42(2): 206-212(in Chinese). [24] HESHMATI M, HAGHANI R, Al-EMRANI M. Durability of Bonded FRP-to-steel Joints Effects of Moisture, De-icing Salt Solution, Temperature and FRP Type[J]. Composites Part B: Engineering, 2017, 119: 153-167. doi: 10.1016/j.compositesb.2017.03.049 [25] HESHMATI M, HAGHANI R, Al-EMRANI M. Durability of CFRP/steel joints under cyclic wet-dry and freeze-thaw conditions[J]. Composites Part B: Engineering, 2017: 211-226. [26] GRAMMATIKOS S A, JONES R G, EVERNDEN M, et al. Thermal cycling effects on the durability of a pultruded GFRP material for off-shore civil engineering structures[J]. Composite Structures, 2016, 153: 297-310. doi: 10.1016/j.compstruct.2016.05.085 [27] 余倩倩, 赵翊舟, 高瑞鑫. 海洋大气环境对 CFRP-钢界面粘结性能的影响[J]. 复合材料学报, 2022, 39(11): 5148-5157.YU Qianqian, ZHAO Yizhou, GAO Ruixin. Effect of marine atmosphere on the bond behaviour of CFRP-steel interface[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5148-5157(in Chinese). [28] 李传习, 司睹英胡, 高有为. 极端湿热环境对 CFRP/钢界面性能的影响[J]. 建筑材料学报, 2024, 27(8): 757-763.LI Chuanxi, SI Duyinghu, GAO youwei. Influence of extreme Wet-Heat environment on the adhesive bonding performance of CFRP/steel interfaces[J]. Journal of Building Materials, 2024, 27(8): 757-763(in Chinese). [29] 朱德举, 姚明侠, 张怀安, 等. 动态拉伸荷载下温度对CFRP/钢板单搭接剪切接头力学性能的影响[J]. 土木工程学报, 2016, 49(8): 28-35.ZHU Deju, YAO Mingxia, ZHANG Huaian, et al. Temperature effect on the mechanica properties of CFRP/steel single lap shear joints under dynamic tensile loading[J]. China Civil Engineering Journal, 2016, 49(8): 28-35(in Chinese). [30] 李游, 李洪仪, 马小琬, 等. 高温对基于研发胶黏剂的 CFRP 板-钢板搭接界面力学性能的影响[J]. 复合材料学报, 2023, 40(12): 6596-6609.LI You, LI Hongyi, MA Xiaowan, et al. Effect of high temperature on mechanical properties of CFRP plate-steel plate lapping interface based on developed adhesive[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6596-6609(in Chinese). [31] 李游, 李传习, 郑辉, 等. 固化剂混掺对高温下 CFRP 板-钢板界面黏结性能的影响[J]. 复合材料学报, 2021, 38(12): 4073-4089.LI You, LI Chuanxi, ZHENG Hui, et al. Effect of curing agent mixing on interfacial bond behavior of glued CFRP plate-steel plate at elevated temperature[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4073-4089(in Chinese). [32] 陈卓异, 彭彦泽, 李传习, 等. 高温下双搭接钢-CFRP 板胶粘界面力学性能试验[J]. 复合材料学报, 2021, 38(2): 449-460.CHEN Zhuoyi, PENG Yanze, LI Chuanxi, et al. Experimental study for the adhesive interface mechanical properties of double lapped steelCFRP plate at high temperature[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 449-460(in Chinese). [33] American Society for Testing and Materials. Standard test method for strength properties of double lap shear adhesive joints by tension loading: ASTM D3528−96[S]. West Con shohocken: ASTM, 2008 [34] Gao W Y, Dai J G, Teng J. G. eAnalysis of Mode II debonding behavior of fiber reinforced polymer-to-substrate bonded joints subjected to combined thermal and mechanical loading[J]. Engineering Fracture Mechanics, 2015, 136. [35] Al-Mosawe A, Al-Mahaidi R, Zhao X L. Effect of CFRP properties, on the bond characteristics between steel and CFRP laminate under quasi-static loading[J]. Construction and Building Materials, 2015, 98: 489-501. doi: 10.1016/j.conbuildmat.2015.08.130 [36] Peng-Da Li, Yao Zhao , Zhong Tao, Cheng Jiang. Nonuniformity in stress transfer across FRP width of FRP-concrete interface. Engineering Structures, 2024, 312: 118236 [37] 伍希志, 任会礼, 钟懿. 基于粘聚力理论的 CFRP 加固钢板剥离机理研究[J]. 固体力学学报, 2015, 36(3): 197-203.WU Xizhi, REN Huili, ZHONG Yi. Theoretical and experimental study on debonding mechanism of steel plate strengthened with CFRP[J]. Chinese journal of solid mechanices, 2015, 36(3): 197-203(in Chinese). [38] Teng J G, Fernando D, Yu T. Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates[J]. Engineering Structures, 2015, 86: 213-224. doi: 10.1016/j.engstruct.2015.01.003
计量
- 文章访问数: 62
- HTML全文浏览量: 45
- 被引次数: 0