留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粘结层厚度不均匀对CFRP-钢界面粘结性能的影响

李晓虎 李晓章 李田

李晓虎, 李晓章, 李田. 粘结层厚度不均匀对CFRP-钢界面粘结性能的影响[J]. 复合材料学报, 2024, 42(0): 1-17.
引用本文: 李晓虎, 李晓章, 李田. 粘结层厚度不均匀对CFRP-钢界面粘结性能的影响[J]. 复合材料学报, 2024, 42(0): 1-17.
LI Xiaohu, LI Xiaozhang, LI Tian. Influence of uneven thickness of bonding layer on the bonding performance of CFRP-steel interface[J]. Acta Materiae Compositae Sinica.
Citation: LI Xiaohu, LI Xiaozhang, LI Tian. Influence of uneven thickness of bonding layer on the bonding performance of CFRP-steel interface[J]. Acta Materiae Compositae Sinica.

粘结层厚度不均匀对CFRP-钢界面粘结性能的影响

基金项目: 国家自然科学基金 (52308537);云南省基础研究计划面上项目(202301AT070394)
详细信息
    通讯作者:

    李晓章,博士,讲师,硕士生导师,研究方向为桥梁结构加固 E-mail: 20150087@kust.edu.cn

  • 中图分类号: TB332

Influence of uneven thickness of bonding layer on the bonding performance of CFRP-steel interface

Funds: National Natural Science Foundation of China (52308537); Yunnan Provincial Basic Research Program General Project (202301AT070394)
  • 摘要: CFRP-钢界面的粘结性能决定CFRP材料的加固效果,其中粘结层厚度不均匀是影响粘结性能的重要因素。为揭示粘结层厚度不均匀情况下CFRP加固钢板的力学破坏机制,先开展16个粘结层厚度均匀的双剪试验,由试验结果得出粘结层厚度为0.5mm时的承载力最优。再围绕0.5mm开展粘结层厚度沿纵向和横向不均匀的18个双剪试验,研究粘结层厚度不均匀情况下的力学性能和破坏机理。结果表明粘结层厚度不均匀对承载力影响较大,随着粘结层厚度不均匀程度的增加,承载力呈递减趋势,纵向不均匀的承载力降低6.45%~36.55%,横向不均匀的承载力降低9.57%~47.38%。不均匀程度相同时,横向不均匀的承载力平均比纵向不均匀的承载力低9.8kN, 横向不均匀的承载力降低幅度平均比纵向不均匀大6.65%,横向不均匀的不利影响大于纵向不均匀。粘结层厚度纵向、横向不均匀的应变及剪应力变化规律与厚度均匀的试件相比存在较大差异。结合试验得到的粘结滑移关系建立粘聚力数值模型,通过分析数值模拟结果和试验结果,表明粘聚力模型可以很好的模拟粘结层厚度不均匀对粘结界面的非线性力学行为。

     

  • 图  1  单块钢板试件(单位:mm)

    Figure  1.  Single steel plate specimen (Unit: mm)

    图  2  CFRP-钢试件样品图

    Figure  2.  CFRP-steel specimen sample diagram

    图  3  CFRP-钢双剪试件粘贴示意图(单位:mm)

    Figure  3.  Schematic diagram of CFRP-steel double-cut specimen pasting (Unit: mm)

    图  4  测试加载装置及采集系统

    Figure  4.  Test loading device and acquisition system

    图  5  粘结层厚度变化及应变片布置方式(单位:mm)

    Figure  5.  Variation of adhesive layer thickness and the arrangement of strain gauges (Unit: mm)

    图  6  CFRP-钢双剪试件破坏模式

    Figure  6.  CFRP-steel double-shear specimen failure mode

    图  7  CFRP-钢试件极限承载力与粘结层厚度关系

    Figure  7.  CFRP-Relationship between ultimate bearing capacity and bond layer thickness of steel specimens

    图  8  不同粘结层厚度下CFRP-钢试件的荷载-位移曲线

    Figure  8.  Load-displacement curves of CFRP- steel specimens with different bond thicknesses

    图  9  CFRP-钢双剪试件应变分布

    Figure  9.  Strain distribution of CFRP-steel double-shear specimens

    图  10  CFRP-钢双剪试件界面剪应力分布

    Figure  10.  Interfacial shear stress distribution of CFRP-steel double-shear specimens

    图  11  CFRP-钢-双剪试件的粘结-滑移曲线

    Figure  11.  Bond-slip curves of CFRP-steel-double-shear specimens

    图  12  CFRP-钢双剪试件的有限元模型

    Figure  12.  Finite element model of CFRP-steel double-shear specimens

    图  13  粘结层刚度退化过程

    Figure  13.  Degradation process of the stiffness of the bonding layer

    图  14  粘结层应力图

    Figure  14.  Stress diagram of bonding layer

    图  15  数值模拟与试验应变对比

    Figure  15.  Comparison of numerical simulation and experimental strain

    表  1  CFRP板、钢板及粘结剂材料参数

    Table  1.   Material parameters of CFRP plate, steel plate and adhesives

    Material parameter CFP-Ⅰ-14 CFRP-A/B Q345 qC
    Elasticity modulus/GPa 165 5.3 206
    Tensile strength/MPa 2400 38 514
    Shear strength/MPa 55 79000
    Shear strength for
    steel-to-steel joint/MPa
    41.6
    Poisson’s ratio 0.28 0.35 0.30
    Elongation at break/% 1.6 1.13 21%
    下载: 导出CSV

    表  2  CFRP-钢双剪试件拉伸试验结果

    Table  2.   Tensile test results of CFRP-steel double-shear specimens

    Grouping Specimen number DV Ultimate load/kN Limit displacement/mm Failure
    mode
    Pmax Average ABAQUS Relative
    error
    Dmax Average ABAQUS Relative
    error
    A JY-0.1-1 0 36.59 33.42 35. 26 5.5% 3.06 2.95 2.89 2.1% a
    JY-0.1-2 30.25 2.84 a
    JY-0.2-1 54.01 49.67 50.19 1.0% 4.27 4.1 4.13 0.7% a+b
    JY-0.2-2 45.33 3.92 a
    JY-0.3-1 60.50 59.7 62.34 4.4% 6.30 6.26 6.15 1.8% a+b
    JY-0.3-2 58.90 6.21 a
    JY-0.4-1 78.26 74.48 74.25 0.3% 8.16 7.9 7.76 1.80% a+b
    JY-0.4-2 70.70 7.64 a+b
    JY-0.5-1 99.05 98.7 101.24 2.6% 8.57 8.67 8.71 0.5% a+b+c
    JY-0.5-2 98.35 8.76 a+b+c
    JY-0.6-1 84.59 82.43 82.75 0.4% 7.28 7.16 7.21 0.7% a+b+c
    JY-0.6-2 80.27 7.03 a+b
    JY-0.8-1 77.80 75.78 74.15 2.2% 6.88 6.71 6.68 0.5% a+b+c
    JY-0.8-2 73.76 6.53 a+b+c
    JY-1.0-1 57.32 54.46 56.30 3.4% 6.11 5.84 5.72 2.1% a+b+c
    JY-1.0-2 51.60 5.56 a+b+c
    B ZX-0.4-0.6-1 0.1 91.3 92.33 96.50 4.5% 7.94 8.05 8.12 0.9% a+b+d
    ZX-0.4-0.6-2 95.35 8.16 a+b+c
    ZX-0.3-0.7-1 0.2 80.16 81.95 84.37 3.0% 6.50 6.54 6.46 1.2% a+b
    ZX-0.3-0.7-2 83.73 6.58 a+b+c
    ZX-0.2-0.8-1 0.3 74.64 76.5 78.8 3.0% 5.93 5.86 5.80 1.0% a+b+c
    ZX-0.2-0.8-2 78.36 5.79 a+b
    ZX-0.1-0.9-1 0.4 62.14 62.63 62.22 0.7% 5.28 5.26 5.18 1.5% a+b+c
    ZX-0.1-0.9-2 63.11 5.23 b+c
    C HX-0.5-1 0 95.6 94.25 101.24 7.4% 8.01 8.14 8.71 7.0% a+b+c
    HX-0.5-2 92.89 8.26 a+b+c
    HX-0.4-0.6-1 0.1 86.95 85.23 87.86 3.1% 6.83 6.53 6.62 1.4% a+b+c
    HX-0.4-0.6-2 83.5 6.22 a+b+c
    HX-0.3-0.7-1 0.2 75.56 77.92 78.26 0.4% 6.01 6.27 6.36 1.4% a+b+c+d
    HX-0.3-0.7-2 80.27 6.52 a+b+c
    HX-0.2-0.8-1 0.3 62.43 61.46 62.87 2.3% 4.93 4.85 4.91 1.2% a+b+c+d
    HX-0.2-0.8-2 60.49 4.76 a+b+c+d
    HX-0.1-0.9-1 0.4 46.88 49.59 50.23 1.3% 4.39 4.64 4.71 1.5% a+b+c+d
    HX-0.1-0.9-2 52.3 4.89 a+b+c
    Notes: Dmax−Limit displacement; Pmax−Ultimate load; ABAQUS−Numerical analysis results; DV−Maximum deviation between the thickness of the bond layer and the average thickness; Failure mode: a−CFRP and adhesive debonding failure; b−Steel and adhesive debonding failures; c−Adhesive shatter; d−CFRP tearing; JY-0.1-1−Thickness of the adhesive layer is uniform, and the thickness of the adhesive layer is 0.1 mm; ZX-0.4-0.6-1−Thickness of the adhesive layer is not uniform in the longitudinal direction, and the thickness of the adhesive layer increases from 0.4 mm to 0.6 mm for the first specimen; HX-0.4-0.6-1−Thickness of the adhesive layer is not uniform transversely, and the thickness of the adhesive layer increases from 0.4 mm to 0.6 mm for the first specimen.
    下载: 导出CSV

    表  3  CFRP-钢界面粘结-滑移本构参数

    Table  3.   Bond-slip constitutive parameters of CFRP-steel interface

    Parameter τf/MPa K/MPa·mm−1 δf/mm Gf/MPa·mm
    JY-0.1 5.45 21.80 0.25 0.68
    JY-0.2 11.25 43.27 0.26 1.46
    JY-0.3 9.59 39.96 0.24 1.15
    JY-0.4 15.51 43.08 0.36 2.79
    JY-0.5 22.15 33.56 0.66 7.31
    JY-0.6 18.48 42.98 0.43 3.97
    JY-0.8 15.04 47.00 0.32 2.41
    JY-1.0 11.58 29.69 0.39 2.26
    ZX-0.4-0.6 18.74 26.39 0.71 6.65
    ZX-0.3-0.7 12.73 22.73 0.56 3.56
    ZX-0.2-0.8 13.77 28.69 0.48 3.30
    ZX-0.1-0.9 15.28 36.38 0.42 3.21
    HX-0.5 15.03 19.52 0.77 5.79
    HX-0.4-0.6 13.7 18.51 0.74 5.07
    HX-0.3-0.7 13.06 19.21 0.68 4.44
    HX-0.2-0.8 11.78 19.00 0.62 3.65
    HX-0.1-0.9 8.86 18.46 0.48 2.13
    Notes: τf−Maximum shear stress; K−Interfacial stiffness; δf−Limit slip of failure; Gf−Interfacial fracture energy.
    下载: 导出CSV
  • [1] 王春生, 翟慕赛, HOUANKPO T N O, 等. 正交异性钢桥面板冷维护技术及评价方法[J]. 中国公路学报, 2016, 29(8): 50-58. doi: 10.3969/j.issn.1001-7372.2016.08.007

    Wang Chun-sheng, Zhai Musai, HOUANKPO T N O, et al. Cold maintenance technique and assessment method for orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(8): 50-58(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.08.007
    [2] ROZUMEK D, MARCINIAK Z, LESIUK G, et al. Experimental and numerical investigation of mixed mode I + II and I + III fatigue crack growth in S355J0 steel[J]. International Journal of Fatigue, 2018, 113: 160-170. doi: 10.1016/j.ijfatigue.2018.04.005
    [3] 李传习, 李游, 陈卓异, 等. 钢箱梁横隔板疲劳开裂原因及补强细节研究[J]. 中国公路学报, 2017, 30(3): 122-131. doi: 10.3969/j.issn.1001-7372.2017.03.013

    LI Chuanxi, LI You, CHEN Zhuoyi, et al. Fatigue cracking reason and detail dimension of reinforcement about trans verse diaphragm of steel box girder[J]. China Journal of Highway and Transport, 2017, 30(3): 122-131(in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.013
    [4] YU Qianqian, WU Yufei. Fatigue retrofitting of cracked steel beams with CFRP laminates[J]. Composite Structures, 2018, 192: 232-244. doi: 10.1016/j.compstruct.2018.02.090
    [5] EL-TAWIL S, EKIZ E, GOEL S, et al. Retraining local and global buckling behavior of steel plastic hinges using CFRP[J]. Journal of Constructional Steel Research, 2011, 67(3): 261-269. doi: 10.1016/j.jcsr.2010.11.007
    [6] LEPRETRE E, CHATAIGNER S, DIENG L, et al. Fatigue strengthening of cracked steel plates with CFRP laminates in the case of old steel material[J]. Construction and Building Materials, 2018, 174: 421-432. doi: 10.1016/j.conbuildmat.2018.04.063
    [7] 吴刚, 刘海洋, 吴智深, 等. 不同纤维增强复合材料加固钢梁疲劳性能试验研究[J]. 土木工程学报, 2012, 45(4): 21-28.

    Wu Gang, Liu Haiyang, Wu Zhishen, et al. Experimental study of the fatigue performance of steel beams strengthened with different fiber reinforced polymers[J]. China Civil Engineering Journal, 2012, 45(4): 21-28(in Chinese).
    [8] Jiao H, Mashiri F, Zhao X L. A comparative study on fatigue behaviour of steel beams retrofitted with welding, pultruded CFRP plates and wet layup CFRP sheets[J]. Thin Walled Structures, 2012, 59: 144-152. doi: 10.1016/j.tws.2012.06.002
    [9] WANG ZHEN, XIAN GUIJUN. Effects of thermal expansion coefficients discrepancy on the CFRP and steel bonding[J]. Construction and Building Materials, 2020(prepublish).
    [10] Yu Q Q, Chen T, Gu X L, et al. Fatigue behaviour of CFRP strengthened steel plates with different degrees of damage[J]. Thin-Walled Structures, 2013, 69: 10-17. doi: 10.1016/j.tws.2013.03.012
    [11] HE J, XIAN G, Debonding of CFRP-to-steel joints with CFRP delamination[J]. Composite Structures, 2016, 153: 12-20.
    [12] PANG Y, WU G, WANG H, et al. Bond-slip model of the CFRP-steel interface with the CFRP delamination failure[J]. Composite Structures, 2021, 256: 113015. doi: 10.1016/j.compstruct.2020.113015
    [13] 李腾, 宁志华, 吴嘉瑜. CFRP 加固钢板的粘结界面剥离破坏[J]. 复合材料学报, 2021, 38(12): 4090-4105.

    LI Teng, NING Zhihua, WU Jiayu. Interfacial debonding failure of CFRP-strengthened steel structures[J/OL][J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4090-4105(in Chinese).
    [14] 杨怡, 黄炽辉 , 吴作栋 . 基于双剪实验的CFRP-钢板界面粘结性能研究[J]. 中山大学学报(自然科学版), 2020.07. 14.2020B082.

    YANG Yi, HUANG Chihui, WU Wuodong. Study on bonding performance of CFRP-steel plate interface based on double shear test[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020.07. 14.20B082. (in Chinese)
    [15] HE JUN, XIAN GUIGUN, ZHANG Y. X. Numerical modelling of bond behaviour between steel and CFRP laminates with a ductile adhesive[J]. International Journal of Adhesion and Adhesives, 2021, 104.
    [16] 李传习, 柯璐, 陈卓异, 等. CFRP-钢界面粘结性能试验与数值模拟[J]. 复合材料学报, 2018, 35(12): 3534-3546.

    LI Chuanxi, Kelu, CHEN Zhuoyi et al. Experimental study and numerical simulation for bond behavior of interface between CFRP and steel[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3534-3546(in Chinese).
    [17] 吴超, 余洋喆, 雷昕弋, 等. 钢板屈服对 CFRP-钢界面粘接性能影响的试验研究[J]. 复合材料学报, 2022, 39(11): 5062-5073.

    WU Chao, YU Yangzhe, LEI Xinyi, et al. Experimental study on the effect of steel yielding on the bond behavior between CFRP and steel plate[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5062-5073 (in Chinese).
    [18] 陈卓异, 彭岚, 李传习, 等. CFRP 全覆盖胶粘加固含中心裂纹钢板的静力性能[J]. 复合材料学报, 2022, 39(5): 2329-2339.

    CHEN Zhuoyi, PENG Lan, LI Chuanxi, et al. Static behavior of CFRP full cover adjusted steel plate with center crack[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2329-2339 (in Chinese).
    [19] 高立, 邓宗才. CFRP修复钢I/II混合型裂纹扩展研究进展及展望[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.07.0519

    Gao Li, DENG Zongcai. Research progress and prospect of I /II mixed crack propagation of steel repaired with CFRP[J]. Engineering Mechanices. (in Chinese) DOI: 10.6052/j.issn.1000-4750.2023.07.0519
    [20] 李安邦, 徐善华, 吴成, 等. 外贴 CFRP 板加固锈蚀钢板疲劳性能试验研究[J]. 土木工程学报, 2021, 54(7): 62-72.

    LI Anbang, XU Shanhua, WU Cheng, et al. Experimental study on the fatigue performance of corroded steel plate strengthened with externally bonded CFRP plates[J]. China Civil Engineering Journal, 2021, 54(7): 62-72(in Chinese).
    [21] 李安邦, 徐善华. 锈蚀对钢板表面特性及CFRP板-锈蚀钢板界面黏结性能的影响[J]. 复合材料学报, 2022, 39(2): 746-758.

    LI Anbang, XU Shanhua. Effect of corrosion on the surface properties of steel plate and interfacial bonding properties between CFRP plate and corroded steel plate[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 746-758(in Chinese).
    [22] 王海涛, 吴刚, 吴智深. FRP布置方式对含裂纹钢板加固后的疲劳性能影响分析[J]. 土木工程学报, 2015, 48(1): 56-63.

    Wang Haitao, Wu Gang, Wu Zhishen. Study on the effect of FRP configurations on the fatigue behavior of strengthened steel plate with an initial crack[J]. China Civil Engineering Journal, 2015, 48(1): 56-63(in Chinese).
    [23] 陈涛, 摇铖. CFRP加固含混合型边裂纹钢板的疲劳性能试验研究[J]. 建筑结构学报, 2021, 42(2): 206-212

    CHEN Tao, YAO Cheng. Experimental study on fatigue properties of CFRP-repaired steel plates with a mixed mode edge crack[J]. Journal of Building Structures, 2021, 42(2): 206-212(in Chinese).
    [24] HESHMATI M, HAGHANI R, Al-EMRANI M. Durability of Bonded FRP-to-steel Joints Effects of Moisture, De-icing Salt Solution, Temperature and FRP Type[J]. Composites Part B: Engineering, 2017, 119: 153-167. doi: 10.1016/j.compositesb.2017.03.049
    [25] HESHMATI M, HAGHANI R, Al-EMRANI M. Durability of CFRP/steel joints under cyclic wet-dry and freeze-thaw conditions[J]. Composites Part B: Engineering, 2017: 211-226.
    [26] GRAMMATIKOS S A, JONES R G, EVERNDEN M, et al. Thermal cycling effects on the durability of a pultruded GFRP material for off-shore civil engineering structures[J]. Composite Structures, 2016, 153: 297-310. doi: 10.1016/j.compstruct.2016.05.085
    [27] 余倩倩, 赵翊舟, 高瑞鑫. 海洋大气环境对 CFRP-钢界面粘结性能的影响[J]. 复合材料学报, 2022, 39(11): 5148-5157.

    YU Qianqian, ZHAO Yizhou, GAO Ruixin. Effect of marine atmosphere on the bond behaviour of CFRP-steel interface[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5148-5157(in Chinese).
    [28] 李传习, 司睹英胡, 高有为. 极端湿热环境对 CFRP/钢界面性能的影响[J]. 建筑材料学报, 2024, 27(8): 757-763.

    LI Chuanxi, SI Duyinghu, GAO youwei. Influence of extreme Wet-Heat environment on the adhesive bonding performance of CFRP/steel interfaces[J]. Journal of Building Materials, 2024, 27(8): 757-763(in Chinese).
    [29] 朱德举, 姚明侠, 张怀安, 等. 动态拉伸荷载下温度对CFRP/钢板单搭接剪切接头力学性能的影响[J]. 土木工程学报, 2016, 49(8): 28-35.

    ZHU Deju, YAO Mingxia, ZHANG Huaian, et al. Temperature effect on the mechanica properties of CFRP/steel single lap shear joints under dynamic tensile loading[J]. China Civil Engineering Journal, 2016, 49(8): 28-35(in Chinese).
    [30] 李游, 李洪仪, 马小琬, 等. 高温对基于研发胶黏剂的 CFRP 板-钢板搭接界面力学性能的影响[J]. 复合材料学报, 2023, 40(12): 6596-6609.

    LI You, LI Hongyi, MA Xiaowan, et al. Effect of high temperature on mechanical properties of CFRP plate-steel plate lapping interface based on developed adhesive[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6596-6609(in Chinese).
    [31] 李游, 李传习, 郑辉, 等. 固化剂混掺对高温下 CFRP 板-钢板界面黏结性能的影响[J]. 复合材料学报, 2021, 38(12): 4073-4089.

    LI You, LI Chuanxi, ZHENG Hui, et al. Effect of curing agent mixing on interfacial bond behavior of glued CFRP plate-steel plate at elevated temperature[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4073-4089(in Chinese).
    [32] 陈卓异, 彭彦泽, 李传习, 等. 高温下双搭接钢-CFRP 板胶粘界面力学性能试验[J]. 复合材料学报, 2021, 38(2): 449-460.

    CHEN Zhuoyi, PENG Yanze, LI Chuanxi, et al. Experimental study for the adhesive interface mechanical properties of double lapped steelCFRP plate at high temperature[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 449-460(in Chinese).
    [33] American Society for Testing and Materials. Standard test method for strength properties of double lap shear adhesive joints by tension loading: ASTM D3528−96[S]. West Con shohocken: ASTM, 2008
    [34] Gao W Y, Dai J G, Teng J. G. eAnalysis of Mode II debonding behavior of fiber reinforced polymer-to-substrate bonded joints subjected to combined thermal and mechanical loading[J]. Engineering Fracture Mechanics, 2015, 136.
    [35] Al-Mosawe A, Al-Mahaidi R, Zhao X L. Effect of CFRP properties, on the bond characteristics between steel and CFRP laminate under quasi-static loading[J]. Construction and Building Materials, 2015, 98: 489-501. doi: 10.1016/j.conbuildmat.2015.08.130
    [36] Peng-Da Li, Yao Zhao , Zhong Tao, Cheng Jiang. Nonuniformity in stress transfer across FRP width of FRP-concrete interface. Engineering Structures, 2024, 312: 118236
    [37] 伍希志, 任会礼, 钟懿. 基于粘聚力理论的 CFRP 加固钢板剥离机理研究[J]. 固体力学学报, 2015, 36(3): 197-203.

    WU Xizhi, REN Huili, ZHONG Yi. Theoretical and experimental study on debonding mechanism of steel plate strengthened with CFRP[J]. Chinese journal of solid mechanices, 2015, 36(3): 197-203(in Chinese).
    [38] Teng J G, Fernando D, Yu T. Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates[J]. Engineering Structures, 2015, 86: 213-224. doi: 10.1016/j.engstruct.2015.01.003
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09
  • 修回日期:  2024-08-26
  • 录用日期:  2024-09-08
  • 网络出版日期:  2024-09-25

目录

    /

    返回文章
    返回