Ca2+ assisted enhancement of CNT/PEEK interfacial bonding and its conductive composites preparation and performance study
-
摘要: 作为特种工程塑料,聚醚醚酮(PEEK)凭借高比强度、耐腐蚀、耐高温性能引起人们的研究兴趣。但PEEK的绝缘性限制了其在传感、防静电及电磁吸收等领域的应用。利用碳纳米管(CNT)作为增强体,同时提高PEEK的导电性能和力学性能已被公认为是一种行之有效的方法。然而由于CNT和PEEK表面均具有较强惰性,且两者适用的分散体系不同,从而严重影响了CNT/PEEK复合材料的性能。基于此,本研究通过乙醇-去离子水二元溶剂提高酸化CNT(aCNT)和PEEK粉体的分散性,并利用金属阳离子:钙离子(Ca2+)作为中间体桥联aCNT与PEEK,制备树脂未改性的aCNT-Ca2+/PEEK复合粉体,进而通过热压工艺得到了高导电、力学性能增强的aCNT-Ca2+/PEEK复合材料。通过FTIR、XPS、Zeta电位等测试深入探究了Ca2+桥联PEEK与aCNT的作用机制。结果表明:加入Ca2+后,aCNT能够均匀地吸附在PEEK表面,形成核壳结构的复合粉体,利用此复合粉体热压后可得到多通道三维导电网络。制得的复合材料导电渗流阈值为1.5 wt%,此时的电导率为9.9×10−4 S/cm,相较于纯PEEK树脂电导率提升了近12个数量级;aCNT含量为5 wt%时,电导率达到最大值3.5×10−2 S/cm。在填料含量为1 wt%时,复合材料拉伸强度达到最大,为92.87 MPa,相比于纯PEEK树脂提升了15.7%。此外,该导电复合材料具有良好的温敏特性,其温度-电导率在不同升温方式、多次升温过程中路径保持一致,表现出稳定的传感特性。因此,本文制备的aCNT-Ca2+/PEEK复合材料在导电、力学性能增强及温度感知等方面有巨大应用潜力。Abstract: Polyether ether ketone (PEEK) is a high-performance engineering polymer that has garnered attention from researchers because of its remarkable specific strength, good corrosion resistance, and high temperature resistance. However, its insulating qualities restrict its use in applications like electromagnetic absorption, anti-static, and sensing applications. CNT reinforcement has been acknowledged as a successful technique for concurrently enhancing the mechanical properties and electrical conductivity of PEEK. Nevertheless, because of the high inertness of the PEEK and CNT surfaces as well as the different dispersing systems, it is difficult to disperse CNT in the PEEK matrix. This has a significant negative effect on the performance of CNT/PEEK composites. Based on this, in this study, ethanol-deionized water binary solvent was used to improve the dispersion of acidified CNT (aCNT) and PEEK powders. Calcium ion (Ca2+) was then used as an intermediate to bridge aCNT and PEEK to prepare aCNT-Ca2+/PEEK composite powders, which were then hot-pressed to produce highly conductive, mechanically enhanced aCNT/PEEK composites. FTIR, XPS, and Zeta potential experiments were used to thoroughly analyze the mechanism of Ca2+ bridging PEEK with aCNT. The findings demonstrate that, with the addition of Ca2+, aCNT can uniformly adsorb on the surface of PEEK, which produces a composite powder with a core-shell structure. By hot pressing this composite powder, a multi-channel three-dimensional conductive network may be produced. The obtained composite exhibits a conductivity of 9.9×10−4 S/cm at the conductive percolation threshold of 1.5 wt%, which is over 12 orders of magnitude higher than the conductivity of pure PEEK resin; the conductivity increased to 3.5 × 10−2 S/cm at a 5 wt% aCNT concentration. The composites reached their maximum tensile strength of 92.87 MPa at a 1 wt% filler, a 15.7% increase over the pure PEEK resin. Furthermore, the conductive composite exhibits good temperature-sensitivity qualities, and its temperature-conductivity paths remain consistent across different heating methods and multiple heating processes, demonstrating stable sensing characteristics. Therefore, the aCNT-Ca2+/PEEK composites show great promise in temperature sensing, mechanical enhancement, and electrical conductivity.
-
Key words:
- CNT /
- Ca2+ /
- PEEK /
- dispersion /
- interface bonding /
- conductive composite materials /
- mechanical properties
-
图 4 (a)、(b):Ca2+/PEEK的FTIR图谱及C=О、C—O—C特征伸缩振动峰放大图;(c) PEEK、Ca2+/PEEK的拉曼光谱中C=О、C—O—C特征峰;(d) CaCl2、Ca2+/PEEK中Ca2+的XPS图谱;(e) PEEK中C1 s的XPS图谱、(f) Ca2+/PEEK中C1 s的XPS图谱;(g) Ca2+/PEEK配合物的形成示意图
Figure 4. (a), (b): FTIR spectra of Ca2+/PEEK and characteristic stretching vibrational peaks of C=О、C—O—C; (c) Raman spectra of PEEK, Ca2+/PEEK characteristic peaks of C=О, C—O—C; (d) XPS patterns of Ca2+ in CaCl2, Ca2+/PEEK; (e) XPS patterns of C1 s in PEEK; (f) XPS patterns of C1 s in Ca2+/PEEK; (g) Formation process of Ca2+/PEEK complexes
图 7 不同Ca2+含量下:(a)混合粉体沉降状态数码照片;(b)混合粉体溶液在沉降前的紫外-可见光谱图;(c) 混合粉体干燥后的SEM图;(d)复合材料的电导率;(e)~(f) Ca2+加入前后aCNT的分散状况TEM图
Figure 7. Different Ca2+ contents:(a) Digital photographs of the settling state of the mixed powders; (b) UV spectra of the mixed powder solution before settling; (c) SEM images of the mixed powders after drying; (d) electrical conductivity of the composites; (e)~(f) TEM images of the dispersion state of aCNT before and after Ca2+ addition
表 1 不同CNT/PEEK复合材料的导电性能
Table 1. Conductive properties of different CNT/PEEK composite materials
Name Experimental Methods φc/wt% Maximum filler content/wt%) Maximum conductivity/(S·cm−1) PEEK/MWCNT[39] Melt blending 3.6 10 10−5 PEEK/CNT[6] Solution mixing 3 5 2.0× 10−5 AgGNT/PEEK[40] Molecular mixing - 6 10−3 PEEK/Wh-CNT[7] Melt blending - 10 9.12×10−2 This work Solution mixing 1.5 5 3.5×10−2 Notes: MWCNT is multi-walled carbon nanotubes; AgGNT is the Ag nanoparticles decorated GO-CNT (GNT) nanostructures; Wh‐CNTs is whisker CNTs -
[1] THIRUCHITRAMBALAM M, KUMAR D B, SHANMUGAM D, et al. A review on PEEK composites–manufacturing methods, properties and applications[J]. Materials Today: Proceedings, 2020, 33: 1085-1092. doi: 10.1016/j.matpr.2020.07.124 [2] 方良超, 陈奇海, 霍绍新, 等. 聚醚醚酮(PEEK)的改性及其应用[J]. 合成材料老化与应用, 2019, 48(2): 4.FANG Liangchao, CHEN Qihai, HUO Shaoxin, et al. Modification of poly ether ether ketone and its application[J]. Synthetic Materials Aging and Application, 2019, 48(2): 4(in Chinese). [3] 薛成龙, 王守仁, 王高琦, 等. 碳纤维增强聚醚醚酮复合材料骨诱导修复植入体制备及微动摩擦学性能[J]. 复合材料学报, 2022, 39(7): 3212-3223.XUE Chenglong, WANG Shouren, WANG Gaoqi, et al. Preparation and fretting tribological properties of carbon fiber reinforced polyetheretherketone composite osteoinductive repair implants[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3212-3223(in Chinese) [4] MOKHTARI M, ARCHER E, BLOOMFIELD N, et al. A review of electrically conductive Poly (ether ether ketone) materials[J]. Polymer International, 2021, 70: 1016-1025. doi: 10.1002/pi.6176 [5] COLBERT D T. Single-wall nanotubes: a new option for conductive plastics and engineering polymers[J]. Plastics Additives and Compounding, 2003, 5(1): 18-25. doi: 10.1016/S1464-391X(03)80069-7 [6] 陈北明. 聚醚醚酮/碳纳米管复合材料的制备及其导电性的研究[D]. 天津: 天津大学, 2007.CHEN Beiming. Preparation and electrical conductivity of polyether ether ketone/carbon nanotube composite[D]. Tianjin: Tianjin University, 2007(in Chinese). [7] LI S, WEN F, SUN C, et al. A comparative study on the influences of whisker and conventional carbon nanotubes on the electrical and thermal conductivity of polyether ether ketone composites[J]. Journal of Applied Polymer Science, 2021, 138: 50720. doi: 10.1002/app.50720 [8] CHOI Y J, NACPIL E J C, HAN J, et al. Recent advances in dispersant technology for carbon nanotubes toward energy device applications[J]. Advanced Energy and Sustainability Research, 2024: 2300219. [9] WEN F, LI S, CHEN R, et al. Improved thermal and electromagnetic shielding of PEEK composites by hydroxylating PEK-C grafted MWCNTs[J]. Polymers, 2022, 14(7): 1328. doi: 10.3390/polym14071328 [10] HASSAN E A M, ELAGIB T H H, MEMON H, et al. Surface modification of carbon fibers by grafting PEEK-NH2 for improving interfacial adhesion with poly ether ether ketone[J]. Materials, 2019, 12(5): 778. doi: 10.3390/ma12050778 [11] YAN T, YAN F, LI S, et al. Interfacial enhancement of CF/PEEK composites by modifying water-based PEEK-NH2 sizing agent[J]. Composites Part B: Engineering, 2020, 199: 108258. doi: 10.1016/j.compositesb.2020.108258 [12] LIU H, MEI Q, DING G, et al. Preparation of PEEK-NH2/graphene network structured nanocomposites with high electrical conductivity[J]. E-Polymers, 2022, 22(1): 763-774. doi: 10.1515/epoly-2022-0067 [13] 陈俊俊, 费昌恩, 段金汤, 等. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028.CHEN Junjun, FEI Changen, DUAN Jintang, et al. Progress of chemical modification of highly bioactive polyether ether ketone[J]. Advances in Chemical Engineering, 2023, 42(8): 4015-4028. [14] LAGE-RIVERA S, ARES-PERNAS A, BECERRA Permuy J C, et al. Enhancement of 3D printability by FDM and electrical conductivity of PLA/MWCNT filaments using lignin as Bio-dispersant[J]. Polymers, 2023, 15(4): 999. doi: 10.3390/polym15040999 [15] YU H, HERMANN S, SCHULZ S E, et al. Optimizing sonication parameters for dispersion of single-walled carbon nanotubes[C]//Principles and Practice of Constraint Programming. North-Holland, 2012, 408: 11-1. [16] 中华人民共和国国家质量监督检验检疫总局. 塑料拉伸性能试验方法: GB/T1040—1992[S]. 北京: 中国标准出版社, 1992.General Administration of Quality Supervision, Inspection and quarantine of the people’s republic of China. Plastics: Determination of tensile properties: GB/T1040—1992[S]. Beijing: China Standards Press, 1992. [17] PENG X, JIA J, GONG X, et al. Aqueous stability of oxidized carbon nanotubes and the precipitation by salts[J]. Journal of Hazardous Materials, 2009, 165: 1239-1242. doi: 10.1016/j.jhazmat.2008.10.049 [18] KOZAK N, MATZUI b L, VOVCHENKO L. Influence of coordination complexes of transition metals on EMI-shielding properties and permeability of polymer blend/carbon nanotube/nickel composites[J]. Composites Science and Technology, 2020, 200: 108420. doi: 10.1016/j.compscitech.2020.108420 [19] 李传斌, 陈巍, 程德康等. 聚酰胺66聚集态结构转变的研究[J]. 塑料工业, 2018, 46(6): 23-27. doi: 10.3969/j.issn.1005-5770.2018.06.006LI Chuanbin, CHEN Wei, CHENG Dekang, et al. Study on the aggregation structure transition of polyamide 66[J]. China Plastics Industry, 2018, 46(6): 23-27(in Chinese). doi: 10.3969/j.issn.1005-5770.2018.06.006 [20] 孙仪刚. 基于N, O配位的过渡金属配合物的合成、晶体结构与理论计算研究[D]. 兰州: 兰州交通大学, 2023.SUN Yigang. Synthesis, crystal structure, and theoretical calculation of transition metal complexes based on N, O coordination[D]. Lanzhou: Lanzhou Jiaotong University, 2023(in Chinese). [21] 吕圣晨. 对氢氧化铁胶体制备要求的检验[J]. 职业, 2016, (20): 142.LV Shengchen. Examination of the requirements for the preparation of ferric hydroxide colloids[J]. Careers, 2016, (20): 142(in Chinese). [22] 北京大学化学学院物理化学实验教学组. 物理化学实验[M]. 4版. 北京: 北京大学出版社, 2002.Physical Chemistry Experimental Teaching Group, School of Chemistry, Peking University. Physical chemistry experiments[M]. 4 editions. Beijing: Peking University Press, 2022(in Chinese). [23] RAJENDRAN S, ARULANTHAM X, PITCHAI P, et al. Metal (II) complexes with derived from 3-hydroxy-2-(3-nitrophenyl)-4H-chromen-4-one; synthesis and photocatalytic activity[J]. Journal of Materials Science Materials in Electronics, 2019, 30: 6669-6679. doi: 10.1007/s10854-019-00976-z [24] MAO J, WANG J, TANG G, et al. A zipped-up tunable metal coordinated cationic polymer for nanomedicine[J]. Journal of Materials Chemistry B, 2020, 8(7): 1350-1358. doi: 10.1039/C9TB02965F [25] WANG Y, CHEN A A, BALTO K P, et al. Curvature-selective nanocrystal surface ligation using sterically-encumbered metal-coordinating ligands[J]. ACS NANO, 2022, 16(8): 12747-12754. doi: 10.1021/acsnano.2c04595 [26] CHEN Q, LIU Y, LI Z, et al. Unfolding the extraction and coordination behaviors of trivalent lanthanides by two novel cyclohexyl o-oxydiamides ligands[J]. Separation and Purification Technology, 2023, 318: 123876. doi: 10.1016/j.seppur.2023.123876 [27] ZHANG X, LI X, ZHOU Y, et al. Calcium chloride hexahydrate/diatomite/paraffin as composite shape-stabilized phase-change material for thermal energy storage[J]. Energy & Fuels, 2017, 32(1): 916-921. [28] 杨金梅, 张海明, 王旭, 等. 红外光谱和拉曼光谱的联系和区别[J]. 物理与工程, 2014, 24(4): 26-29+32.YANG Jinmei, ZHANG Haiming, WANG Xu, et al. Connection and difference between infrared spectroscopy and Raman spectroscopy[J]. Physics and Engineering, 2014, 24(4): 26-29+32. [29] DELBÉ K, CHABERT F. Raman spectroscopy investigation on amorphous polyetherketoneketone (PEKK)[J]. Vibrational Spectroscopy, 2023, 129: 103620. doi: 10.1016/j.vibspec.2023.103620 [30] JIANG N, LI Y, ZHOU N, et al. A two-step strategy to graft CNTs onto titanium/CFRP interface for interfacial enhancement[J]. Thin-Walled Structures, 2024, 197: 111629. doi: 10.1016/j.tws.2024.111629 [31] 尚敬诏. 聚醚酮酮共聚物热分解及结晶熔融行为研究[D]. 大连: 大连理工大学, 2022.SHANG Jingxuan. Thermal decomposition and crystallization melting behavior of Poly (ether ketone ketone) copolymers[D]. Dalian: Dalian University of Technology, 2022(in Chinese). [32] JIANG L, GAO L, SUN J. Production of aqueous colloidal dispersions of carbon nanotubes[J]. J Colloid Interface, 2003, 260(1): 89-94. doi: 10.1016/S0021-9797(02)00176-5 [33] DING G, JIAO W, WANG R, et al. An underwater, self-sensing, conductive composite coating with controllable wettability and adhesion behavior[J]. Journal of Materials Chemistry A, 2019, 7(19): 12333-42. doi: 10.1039/C9TA02691F [34] MOHIUDDIN M, HOA S V. Temperature dependent electrical conductivity of CNT–PEEK composites[J]. Composites Science & Technology, 2012, 72(1): 21-27. [35] 赵中国, 薛嵘, 王筹萱, 等. 石墨烯-碳纳米管-聚乳酸/聚乙二醇相变储能复合材料的制备与温敏响应行为[J]. 复合材料学报, 2024, 41(1): 250-260.ZHAO Zhongguo, XUE Rong, WANG Chouxuan, et al. Preparation and temperature-sensitive response behavior of graphene-carbon nanotubes-polylactic acid/polyethylene glycol phase change energy storage composites[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 250-260(in Chinese). [36] 刘柏谦, 吕太. 逾渗理论应用导论[M]. 北京: 科学出版社, 1997.LIU Boqian, LV Tai. An introduction to the application of the theory of hypertonicity[M]. Beijing: Science Publishing House, 1997(in Chinese). [37] 万帮伟, 杨洋, 赵艳芳. 双碳结构增强硅橡胶智能复合材料的力电响应[J]. 复合材料学报, 2024, 41(4): 1853-1862.WAN bangyang, YANG Yang, ZHAO Yanfang. Mechanical and electrical response of silicon rubber intelligent composite materials reinforced by dual carbon structure[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1853-1862(in Chinese) [38] 刘畅. MWNTs/PI复合薄膜介电性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2014.LIU Chang. Studies on dielectric performance of MWNTs/PI Composite Films[D]. Harbin: Harbin University of Science and Technology, 2014(in Chinese). [39] LIN Y J, QIN S, HAN B, et al. Preparation of poly (ether ether ketone)-based composite with high electrical conductivity, good mechanical properties and thermal stability[J]. High Performance Polymers, 2016, 7(28): 139-150. [40] HU C, LIU T, NEATE N, et al. Enhanced thermal and electrical properties by Ag nanoparticles decorated GO-CNT nanostructures in PEEK composites[J]. Composites science and technology, 2022, 218: 109201. doi: 10.1016/j.compscitech.2021.109201 [41] DAS N C, CHAKI T K, KHASTGIR D. Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites[J]. Carbon, 2002, 40(6): 807-816. doi: 10.1016/S0008-6223(01)00229-9 [42] 叶军红. MEMS传感器在汽车行业的应用现状综述[J]. 汽车电器, 2021, (7): 46-48+51. doi: 10.3969/j.issn.1003-8639.2021.07.021YE Junhong. Review of existing application of MEMS sensor in automotive industry[J]. Auto Electric Parts, 2021, (7): 46-48+51(in Chinese). doi: 10.3969/j.issn.1003-8639.2021.07.021 [43] 杨景铄, 彭慧玲. 基于PDMS/MWCNTs的柔性温度传感器[J]. 传感器与微系统, 2023, 42(10): 91-94.YANG Jingshuo, PENG Huiling. Flexible temperature sensors based on PDMS/MWCNTs[J]. Sensors and Microsystems, 2023, 42(10): 91-94(in Chinese). [44] PICKERING S J, YIP H, KENNERLEY J R, et al. The recycling of carbon fibre composites using a fluidised bed process[M]//FRC 2000–Composites for the Millennium. Woodhead Publishing, 2000: 565-572. [45] 董润峰, 梁宏斌, 王黎明等. CNT对5052铝合金体能训练器材组织和力学性能的影响[J]. 合成纤维, 2023, 52(11): 87-90.DONG Runfeng, LIANG Hongbin, WANG Liming, et al. Influence of the content of hybrid fiber and fly ash on the mechanical properties of concrete[J]. Synthetic Fiber in China, 2023, 52(11): 87-90(in Chinese). [46] 白家设, 张超, 沈燕等. 碳纤维-碳纳米管增强相的构筑及其三相复合材料力学性能[J]. 材料工程, 2023, 51(10): 178-187. doi: 10.11868/j.issn.1001-4381.2020.000749BAI Jiashe, ZHANG Chao, SHEN Yan, et al. Construction of carbon fiber-carbon nanotube reinforcing phase and mechanical properties of its three-phase composites[J]. Journal of Materials Engineering, 2023, 51(10): 178-187(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000749 [47] 瞿明城, 张礼颖, 周剑锋, 等. 碳纳米管改性 CF/PEEK 复合材料的力学与电磁屏蔽性能[J]. 复合材料学报, 2022, 39(7): 3251-3261.QU Mingcheng, ZHANG Liying, ZHOU Jianfeng, et al. Effect of carbon nanotube reinforcement on the mechanical and EMI shielding properties of CF/PEEK composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3251-3261(in Chinese).
计量
- 文章访问数: 144
- HTML全文浏览量: 83
- 被引次数: 0