Loading [MathJax]/jax/output/SVG/jax.js

磁性生物炭复合材料活化过硫酸盐降解抗生素的研究进展

王桂华, 李健, 顾迎春, 阎斌

王桂华, 李健, 顾迎春, 等. 磁性生物炭复合材料活化过硫酸盐降解抗生素的研究进展[J]. 复合材料学报, 2025, 42(1): 21-36. DOI: 10.13801/j.cnki.fhclxb.20240521.001
引用本文: 王桂华, 李健, 顾迎春, 等. 磁性生物炭复合材料活化过硫酸盐降解抗生素的研究进展[J]. 复合材料学报, 2025, 42(1): 21-36. DOI: 10.13801/j.cnki.fhclxb.20240521.001
WANG Guihua, LI Jian, GU Yingchun, et al. Research progress on activated persulfate degradation of antibiotics by magnetic biochar composites[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 21-36. DOI: 10.13801/j.cnki.fhclxb.20240521.001
Citation: WANG Guihua, LI Jian, GU Yingchun, et al. Research progress on activated persulfate degradation of antibiotics by magnetic biochar composites[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 21-36. DOI: 10.13801/j.cnki.fhclxb.20240521.001

磁性生物炭复合材料活化过硫酸盐降解抗生素的研究进展

基金项目: 国家自然科学基金(21876119)
详细信息
    通讯作者:

    阎斌,博士,研究员,硕士生/博士生导师,研究方向为生物基高分子材料及表界面功能材料 E-mail: yanbinscu@126.com

  • 中图分类号: X703;TB332

Research progress on activated persulfate degradation of antibiotics by magnetic biochar composites

Funds: National Natural Science Foundation of China (21876119)
  • 摘要:

    抗生素具有高水溶性、高化学稳定性、潜在致癌性、明显的生态毒性和难以生物降解等特点,对水环境的可持续性和人类健康构成了严重威胁。因此,建立有效去除水中的抗生素污染物的方法至关重要。磁性生物炭复合材料因其优异的过硫酸盐活化催化能力和可回收性,在抗生素污染物的氧化降解方面受到广泛关注。本文综述了磁性生物炭复合材料活化过硫酸盐降解抗生素的研究进展。首先,总结了不同生物质来源的磁性生物炭复合材料及其常用制备方法。然后,探讨了磁性生物炭复合材料活化过硫酸盐降解抗生素类污染物的机制及其对不同类型抗生素的降解行为。最后,针对目前抗生素污染引起的其他问题,提出了未来研究的挑战和展望。

     

    Abstract:

    Antibiotics, which have high water solubility, high chemical stability, potential carcinogenicity, obvious ecotoxicity, and difficult biodegradation, pose a serious threat to the sustainability of the aquatic environment and human health. Therefore, it is crucial to establish effective methods to remove antibiotic contaminants from water. Magnetic biochar composites have attracted much attention in the oxidative degradation of antibiotic contaminants due to their excellent catalytic capacity for activation of persulfate and recyclability. In this review, we aim to summarize the research progress of magnetic biochar composites activated persulfate degradation of antibiotics. First, we summarize magnetic biochar composites from different biomass sources and their commonly prepared methods. Then, the mechanism of activated persulfate degradation of antibiotic pollutants by magnetic biochar composites and their degradation behaviors for different types of antibiotics were explored. Finally, the challenges and prospects for future research are proposed in response to other current issues arising from antibiotic contamination.

     

  • 碳纤维增强聚合物复合材料(CFRP)具有轻质高强、耐久和抗疲劳性能好、可设计性强等优点,近年来CFRP已被广泛应用于工程结构的加固中[1-5],相比于混凝土结构加固,采用CFRP加固钢结构的研究和应用虽起步较晚但近年来也正在受到关注。利用粘结剂将CFRP外贴于待加固构件表面是目前较普遍的加固方法,Yousefi等[6]进行了外贴CFRP板加固钢梁的抗弯试验,发现普通外贴加固容易发生CFRP板的剥离失效。如果考虑二次受力等原因,普通外贴CFRP板的加固效果将非常有限,CFRP板的高强度特性不能充分发挥[7-8]。Galal等[9]通过对比带端部锚固与无端部锚固的CFRP加固损伤钢梁,发现端部锚固在一定程度上可以抑制CFRP的剥离。为了更好地解决外贴CFRP板的剥离和加固效果不明显的问题,国内外学者开展了预应力CFRP板加固钢梁抗弯性能的相关研究[10-14],发现预应力CFRP板能更明显地提高钢梁的承载力和刚度,预应力CFRP板的端部锚固也可以很好地改善CFRP板的端部剥离问题。

    现有的预应力CFRP板加固钢梁抗弯性能研究主要集中在有粘结预应力CFRP板加固技术上,加固时由于需要粘结剂,一方面会延长施工周期,另一方由于构件端部机械式锚具(如夹片式锚具)的存在,导致粘结剂厚度比外贴加固大很多,增加加固成本。无粘结预应力CFRP板加固技术则可以很好地避免以上问题,但CFRP板与钢梁的共同工作完全依靠端部锚具,因此采用该技术加固后的构件力学性能和加固效果需要研究。Ghafoori等[15]和Hosseini等[16]设计了张弦式和平板式预应力CFRP板张拉锚固装置,并利用该装置进行了无粘结预应力CFRP板加固钢梁在弹性阶段的抗弯性能试验,结果表明加固后钢梁的承载力显著提高,设计的锚固装置可靠。叶华文等[17]开展了无粘结预应力CFRP板加固损伤钢梁的疲劳试验,发现施加预应力能够降低裂纹扩展速率和受损钢梁残余挠度超过40%,当CFRP板的有效预应力达到900 MPa时,钢梁的疲劳寿命可提高8倍以上。整体上看,目前国内外仅有极少数针对该技术的研究,在工程应用前仍需对该技术进行更多的研究和验证。

    采用CFRP板加固钢梁时,基于是否使用粘结剂及施加预应力可分为不同的加固方法,为了对比不同方法的加固效果,本文对不同预应力水平下的有粘结和无粘结CFRP板加固损伤钢梁的抗弯性能进行试验和有限元分析,通过对比特征荷载、荷载-位移曲线、CFRP板应变及其强度利用率等,评估粘结层和预应力对CFRP板加固效果的影响,为CFRP板在钢梁抗弯加固中的研究和应用提供参考。

    钢梁的钢材等级为Q235 B,根据GB/T 228.1—2010[18]实测的钢梁受拉翼缘主要力学指标如表1所示。CFRP板的截面尺寸为50 mm×2 mm,对于有粘结CFRP板加固试件,采用两组份环氧粘结剂将CFRP板粘贴在钢梁受拉翼缘下表面,粘结剂的A和B组份按质量比2∶1混合,根据GB/T 3354—2014[19]实测的CFRP板主要力学指标及厂家提供的粘结剂主要力学指标见表1

    表  1  材料的主要力学性能
    Table  1.  Main mechanical properties of materials
    Material typeElasticity modulus/GPaYielding stress/MPaTensile strength/MPaElongation/%
    Q235 B steel 207.0 271 429.0 15.78
    CFRP plate 163.0 - 2516.0 1.54
    Adhesive 4.5 - 49.2 1.64
    Note: CFRP—Carbon fiber reinforced polymer.
    下载: 导出CSV 
    | 显示表格

    试验采用热轧H型钢梁制作试件,钢梁的截面尺寸为200 mm×200 mm×8 mm×12 mm,长度为3400 mm,净跨为3000 mm,在支座、加载点及支座与加载点的中点处焊接加劲肋,加劲肋厚度为8 mm。为了模拟初始损伤,在钢梁跨中下翼缘两侧对称切割两条长度为40 mm、宽度为2 mm的缺口,其中缺口端部的尖端长度为5 mm。共设计5根损伤钢梁试件,包括1根未加固钢梁和4根加固钢梁,分别采用有粘结和无粘结方式进行加固,每种加固方式设计了非预应力和预应力2种预应力水平,加固试件的CFRP板长度均为2600 mm,试件的设计参数如表2所示。表中,试件B-0为未加固钢梁;试件B-BR为有粘结无预应力CFRP板加固钢梁,为了避免CFRP板的端部剥离,根据YB/T 4558—2016[20]的构造要求,在CFRP板端部正、负45°方向各粘贴3层碳纤维布,其中碳纤维布宽度为200 mm,单层厚度为0.167 mm,碳纤维布覆盖钢梁受拉翼缘端部下表面并延伸包裹至受拉翼缘上表面;试件B-UR为无粘结无预应力CFRP板加固钢梁,为了保证无粘结CFRP板加固系统的工作,采用楔形夹片式锚具进行锚固(见1.3节);试件B-PBR和B-PUR分别为有粘结预应力和无粘结预应力CFRP板加固钢梁,设计预应力均为850 MPa,采用研发的反向张拉锚固系统进行预应力张拉和CFRP板锚固(见1.3节)。

    表  2  CFRP板加固损伤钢梁试件的加固参数
    Table  2.  Strengthening parameters of damaged steel beam strengthened with the CFRP plate specimens
    SpecimenSectional area of CFRP plate/mm×mmStrengthening methodDesigned prestress/MPa
    B-0-Unstrengthening -
    B-BR50×2Bonded strengthening 0
    B-UR50×2Unbonded strengthening 0
    B-PBR50×2Bonded strengthening850
    B-PUR50×2Unbonded strengthening850
    Notes: In the specimen, the first letter B represents the beam; The number 0 represents the unstrengthening, the letters BR, UR, PBR and PUR represent bonded CFRP plate strengthening, unbonded CFRP plate strengthening, prestressed bonded CFRP plate strengthening, and prestressed unbonded CFRP plate strengthening, respectively.
    下载: 导出CSV 
    | 显示表格

    反向张拉锚固系统主要由固定端锚具、固定端支座、张拉端锚具和张拉端支座组成,如图1所示,其中张拉端锚具和固定端锚具均为楔形夹片式锚具,张拉端支座和固定端支座分别通过6个高强螺栓连接到钢梁下翼缘。通过反向张拉工艺进行预应力张拉,即将千斤顶放置在张拉端锚具内侧通过顶推锚具实现预应力张拉,如图1所示。相比于常用的正向张拉工艺,反向张拉工艺所需的端部操作空间大幅降低,即使端部空间受限也能实施张拉,具有更广的工程适用性。施加预应力时,通过监测粘贴在CFRP板表面的应变片数据来控制张拉应力的大小。正式张拉前先取CFRP板张拉控制应力的10%进行预张拉,以确保仪器和张拉系统能正常工作;正式张拉阶段采用分级张拉形式,每级张拉至CFRP板张拉控制应力的20%,达到张拉控制应力后进行5%的超张拉。

    图  1  CFRP板预应力张拉系统
    Figure  1.  Prestress tensioning system of the CFRP plate

    试验在量程为2000 kN的液压伺服加载系统上进行,如图2所示,采用四点弯曲加载,两个加载点之间的距离为500 mm。采用位移控制模式,钢梁屈服前的加载速率为0.2 mm/min,屈服后的加载速率为0.5 mm/min,在试件的跨中挠度达到30 mm时停止加载,此时试件已远超正常使用极限状态和翼缘屈服状态。为了测量试件的挠度和应变,在跨中、加载点和支座对应位置处布置位移计;为了研究应变沿CFRP板-钢梁复合截面的分布,在钢梁跨中沿竖向以40 mm间隔布置应变片,在CFRP板跨中位置也布置应变片;为了研究CFRP板应变沿长度的分布,在CFRP板表面从跨中向两端以250 mm间隔布置应变片。

    图  2  试验加载装置
    Figure  2.  Test setup of the experiment

    在加载过程中,所有试件均经历了弹性和弹塑性两个受力阶段,失效模式均为典型的受弯破坏,如图3(a)所示。在钢梁下翼缘屈服前,荷载随挠度呈线性增加;在下翼缘开始屈服后,未加固试件荷载随着挠度的增大而缓慢增加,而各加固试件由于CFRP板的加固作用,荷载的增加速度比未加固试件的大。对于有粘结加固试件B-BR和B-PBR,当下翼缘屈服范围达到一定程度后,CFRP板在钢梁跨中周围出现了界面剥离现象,如图3(b)所示;界面剥离由下翼缘屈服引起,这是由于随着下翼缘的不断屈服,下翼缘与CFRP板之间的界面相对滑移将逐渐增大,当相对滑移超过最大允许滑移后就会导致剥离[21]。对于无粘结CFRP板加固试件B-UR和B-PUR,由于没有粘结层,钢梁下翼缘与CFRP板之间的距离随加载而不断减小,最终紧密贴合,如图3(c)所示。在整个加载过程中,所有试件均未发生CFRP板端部剥离破坏,验证了试验采用的锚固系统的有效性。

    图  3  典型试验现象照片
    Figure  3.  Photos of typical test phenomena

    以试件B-PBR和B-PUR为例,分析采用有粘结和无粘结CFRP板加固的CFRP板-钢梁复合截面是否满足平截面假定,图4显示了2个试件的跨中截面应变沿竖向的分布。可知,有粘结CFRP板加固试件的复合截面在界面剥离前基本满足平截面假定。然而,无粘结CFRP板加固试件的复合截面无论在弹性阶段还是弹塑性阶段均不满足平截面假定,在加载过程中CFRP板的应变小于钢梁下翼缘应变,且随着荷载的增加两者的应变差越来越大;这主要是由于无粘结CFRP板加固试件的钢梁与CFRP板之间只能依靠两端的锚具传递荷载,导致CFRP板应变增量被“平均”到整个CFRP板长度上,使跨中截面的CFRP板应变明显滞后于钢梁下翼缘的应变。这说明粘结层的存在能够保证CFRP板与钢梁的变形协调,而无粘结CFRP板与钢梁之间不能满足变形协调条件,同时有粘结CFRP板可以更有效地限制钢梁下翼缘的应变发展。

    图  4  CFRP板加固损伤钢梁跨中截面的典型应变分布
    Figure  4.  Typical strain distributions at mid-span section of damaged steel beams strengthened with CFRP plates

    为了定量对比不同加固方式的加固效果,选取特征荷载进行分析。根据GB/T 50017—2017[22]的规定,主梁的挠度容许值为l/400(l为钢梁跨度),针对本试验即为7.5 mm,将该挠度对应的荷载记为P7.5,代表着正常使用极限状态下的荷载,将下翼缘屈服时对应的荷载作为屈服荷载,记为Py,代表着承载能力极限状态下的荷载。本节以P7.5Py作为特征荷载进行分析,表3列出了各试件的特征荷载及相对于未加固试件的提高程度,即α7.5αy。可以看出,与未加固试件相比,各加固试件的特征荷载均有提高,整体上屈服荷载Py的提高幅度远大于正常使用极限状态荷载P7.5的提高幅度,说明CFRP板在钢梁屈服后的加固效果远大于在正常使用阶段的加固效果。当预应力水平相同时,有粘结与无粘结CFRP板加固试件的特征荷载非常接近,相差不超过2%,说明在其他条件相同时,有粘结和无粘结CFRP板具有几乎相同的加固效果。试验还发现,无论采用有粘结还是无粘结CFRP板加固方式,非预应力CFRP板的加固效果均非常有限,尤其是在正常使用阶段的改善效果非常微弱,且屈服荷载的提高幅度也低于20%;相比较而言,施加预应力可以明显提高试件的特征荷载,预应力CFRP板加固试件的特征荷载P7.5Py比未加固试件分别提高了28.7%~30.2%和49.2%~49.8%,比非预应力CFRP板加固试件分别提高了26.1%~29.1%和25.3%~26.7%。

    表  3  CFRP板加固损伤钢梁特征荷载比较
    Table  3.  Comparisons of characteristic loads of damaged steel beams strengthened with CFRP plates
    SpecimenP7.5/kNα7.5/%Py/kNαy/%
    B-0102.5-105.8-
    B-BR104.6 2.0124.617.8
    B-UR103.4 0.9126.519.6
    B-PBR131.928.7157.949.2
    B-PUR133.530.2158.549.8
    Notes: P7.5—Load when the mid-span deflection is 7.5 mm; Py—Yielding load; α7.5 and αy—Ratios between the P7.5 and Py of the strengthened beams and those of the unstrengthened beam, respectively.
    下载: 导出CSV 
    | 显示表格

    试件的荷载-挠度曲线如图5所示,图中预应力CFRP板加固试件考虑了预应力产生的初始反拱。可以看出,当预应力水平相同时,有粘结与无粘结CFRP板加固试件的荷载-挠度曲线在弹性阶段基本重合,试件的承载力及抗弯刚度相近。在弹塑性阶段,随着荷载的不断增加,有粘结CFRP板加固试件出现了CFRP板跨中剥离后,荷载发生突然降低,而无粘结CFRP板加固试件没有这个现象。此外,在弹性阶段非预应力CFRP板对钢梁抗弯刚度的影响很小,而只有在达到弹塑性阶段后,CFRP板对钢梁抗弯刚度的提高才逐渐明显。与非预应力CFRP板相比,预应力CFRP板对钢梁抗弯刚度的提高更明显,而且由于初始反拱的引入,相同荷载下对挠度的降低也更明显。可见采用预应力有粘结和无粘结CFRP板加固方法对钢梁抗弯性能的提升更有效,加固效果更显著。

    图  5  CFRP板加固损伤钢梁荷载-挠度曲线
    Figure  5.  Load-deflection curves of damaged steel beams strengthened with CFRP plates

    典型试件CFRP板应变沿长度方向的分布如图6(a)所示。可以看出,有粘结CFRP板加固试件的CFRP板应变由跨中向两侧逐渐降低,而无粘结CFRP板加固试件的CFRP板应变沿长度基本保持不变,而且应变值明显小于相同荷载下有粘结CFRP板在纯弯段的最大应变。这主要是由于有粘结CFRP板加固试件中粘结剂充当钢梁与CFRP板之间的传力介质,CFRP板与下翼缘界面之间的剪应力传递使CFRP板与钢梁的协同工作性能较好,因此CFRP板与下翼缘的应变分布规律接近;而无粘结CFRP板加固试件缺少粘结层,CFRP板与下翼缘界面之间不存在剪应力的传递,因此CFRP板应变沿长度分布均匀,不存在应变梯度。图6(b)为加固试件的CFRP板跨中应变随荷载的变化曲线。可以看出,在钢梁屈服前,CFRP板应变随荷载基本线性增大,当钢梁开始屈服后,CFRP板应变增速开始变快,而且有粘结CFRP板加固试件的CFRP板跨中应变随荷载的增长速率明显大于无粘结CFRP板加固试件。此外,由于预应力CFRP板加固试件存在初始应变,在相同荷载下,其CFRP板应变明显大于非预应力CFRP板加固试件。

    图  6  CFRP板的应变分布
    Figure  6.  Strain distributions of CFRP plates

    CFRP板具有高强优势,在加固时CFRP板强度能发挥多少值得关注。为了说明在不同加载阶段的CFRP板强度利用率,表4列出了各加固试件的CFRP板初始张拉应变(ε0,取千斤顶卸下时的CFRP板应变)、两个特征荷载对应的CFRP板应变(εp7.5εpy)及其与极限应变(εu,数值见表1)的比值。可知,采用非预应力加固时,在正常使用阶段CFRP板的应变很低,其高强度特性远不能发挥,有粘结和无粘结方式的CFRP板强度利用率仅为5.6%和3.8%,即使达到屈服荷载,其强度利用率也仅为8.4%和4.7%。相比较而言,对CFRP板施加预应力是提高其强度利用率的有效方法,有粘结和无粘结方式在正常使用阶段的CFRP板强度分别发挥了44.7%和40.9%,在屈服阶段分别达到47.2%和42.1%。另一方面,通过比较有粘结和无粘结方式可以发现,有粘结方式的CFRP板强度利用率大于无粘结方式,不过在相同的预应力水平下,无粘结和有粘结方式的CFRP板强度利用率相差不大。

    表  4  CFRP板应变及强度利用率比较
    Table  4.  Comparisons of CFRP plate strain and strength utilization
    Specimenε0/10−6εp7.5/10−6εp7.5/εu/%εpy/10−6εpy/εu/%
    B-BR 0 855 5.6 1287 8.4
    B-UR 0 581 3.8 723 4.7
    B-PBR 5605 6877 44.7 7276 47.2
    B-PUR 5542 6300 40.9 6485 42.1
    Notes: ε0—Initial tensioning strain of the CFRP plate; εp7.5—Strain of the CFRP plate at P7.5; εpy—Strain of the CFRP plate at Py; εu—Ultimate strain of the CFRP plate.
    下载: 导出CSV 
    | 显示表格

    对试验试件进行有限元模拟,以预测钢梁的抗弯性能。采用ABAQUS软件建立三维有限元分析模型,其中钢梁、CFRP板及锚具均采用8节点的三维应力减缩积分单元C3D8R进行模拟。对于有粘结CFRP板加固试件B-BR和B-PBR,试验发现在钢梁下翼缘屈服后界面发生了跨中剥离,为了反映界面跨中剥离对抗弯性能的影响,在模型中采用三维粘聚力单元COH3 D8模拟胶层,将钢梁、胶层和CFRP板之间通过绑定相互连接。界面本构关系采用简化的双线性粘结-滑移关系[23],模拟中采用的界面本构关系及参数如图7所示。采用二次名义应力准则作为界面的损伤起始判据,即当界面各个方向的名义应力比的平方和等于1时,界面开始出现损伤,如下式所示:

    {tnt0n}2+{tst0s}2+{ttt0t}2=1 (1)

    式中:tntstt分别为界面在3个方向上的应力;t0nt0st0t分别为界面在3个方向上破坏时的最大名义应力;下标nst分别表示垂直和平行于界面的3个方向。当损伤发生后,界面将进入损伤演化阶段,采用基于能量的线性准则定义界面的损伤演化过程,如下式所示:

    GIGIc+GIIGIIc+GIIIGIIIc=1 (2)

    式中:GIGIIGIII分别是界面在混合模式下I型(张开型)、II型(滑开型)和III型(撕开型)开裂的能量释放率;GIcGIIcGIIIc分别为界面发生纯I型、II型和III型开裂时的临界能量释放率。

    图  7  CFRP板加固损伤钢梁的界面粘结-滑移关系
    Figure  7.  Interfacial bond-slip relationship of damaged steel beams strengthened with CFRP plates

    考虑到锚固系统在整个加载过程中没有发生滑移和锚固失效,为了简化建模过程,在模拟时忽略张拉端和固定端支座,直接将锚具通过绑定与钢梁的下翼缘连接,同时将CFRP板、夹片和锚杯也分别通过绑定进行连接。典型的有限元网格划分如图8所示。在有限元模型中,钢梁按各项同性材料进行定义,采用弹塑性本构模型,使用Von Mises准则作为屈服准则。对于CFRP板,不考虑垂直碳纤维丝方向的材料性能,仅考虑CFRP板沿纤维方向的材料性能,其应力-应变关系为理想的线弹性关系。钢材和CFRP板的材料性能均按表1取值。对于预应力CFRP板加固试件B-PBR和B-PUR,采用降温法对CFRP板施加预应力。试件的边界条件设置为简支,与试验保持一致。在计算时,对有限元模型施加位移荷载,进行非线性分析。

    图  8  CFRP板加固损伤钢梁有限元模型
    Figure  8.  Finite element model of damaged steel beams strengthened with CFRP plates

    有限元得到的荷载-挠度曲线与试验结果的对比如图9所示。可以看出,无论对于无粘结还是有粘结CFRP板加固试件,有限元计算结果与试验结果均符合较好。对于有粘结CFRP板加固试件,有限元也可以模拟出由下翼缘屈服引起的界面跨中剥离。总体上看,建立的有限元模型可以较好地预测不同预应力水平下有粘结和无粘结CFRP板加固损伤钢梁的全过程受力性能。

    表5列出了有限元得到的特征荷载与试验结果的对比。发现两者符合较好,误差在5%以内,说明本文建立的有限元模型可以较好地预测不同预应力水平下有粘结和无粘结CFRP板加固损伤钢梁的特征荷载。

    表  5  CFRP板加固损伤钢梁有限元与试验结果的对比
    Table  5.  Comparisons of finite element and test results of damaged steel beams strengthened with CFRP plates
    SpecimenP7.5Py
    Test/kNFinite element/kNRatioTest/kNFinite element/kNRatio
    B-0102.5104.41.02105.8106.11.00
    B-BR104.6107.41.03124.6131.11.05
    B-UR103.4104.21.01126.5127.81.01
    B-PBR131.9138.31.05157.9164.51.04
    B-PUR133.5137.61.03158.5163.41.03
    下载: 导出CSV 
    | 显示表格
    图  9  CFRP板加固损伤钢梁荷载-挠度曲线对比
    Figure  9.  Comparisons of load-deflection curves of damaged steel beams strengthened with CFRP plates

    图10为有限元得到的试件B-PUR的位移云图和应力云图。可以看出,有限元得到的钢梁竖向位移沿跨中对称分布,CFRP板与钢梁下翼缘贴合,与试验观察到的现象一致。钢梁的应力分布呈现由跨中向两端减小的趋势,应力最大值出现在下翼缘的缺口尖端,可以看出在缺口尖端处表现出明显的应力集中现象。

    图  10  试件B-PUR的位移和应力分布
    Figure  10.  Displacement and stress distributions of the specimen B-PUR

    前述研究发现有粘结和无粘结CFRP板具有相近的加固效果,因此本节以无粘结CFRP板加固钢梁为对象进行参数分析。

    选取CFRP板预应力分别为600 MPa、850 MPa和1100 MPa进行模拟,CFRP板的厚度均保持为2 mm,得到的荷载-挠度曲线如图11所示。可以看出,CFRP板的预应力越大,钢梁的反拱越大,在相同荷载下的挠度越小,同时正常使用极限状态特征荷载和屈服荷载也随着预应力的增大而逐渐增大。总体上看,钢梁的抗弯加固效果随着预应力的增大而提高。

    图  11  CFRP板预应力对CFRP板加固损伤钢梁荷载-挠度曲线的影响
    Figure  11.  Effect of the CFRP plate prestress on the load-deflection curves of damaged steel beams strengthened with CFRP plates

    选取CFRP板厚度分别为1.4 mm、2.0 mm和3.0 mm建立有限元模型,CFRP板预应力均保持为850 MPa,得到的荷载-挠度曲线如图12所示。由于在相同的预应力下,CFRP板的预拉力随着CFRP板厚度的增加而增大,因此随着CFRP板厚度的增加,钢梁的反拱逐渐增大,在相同荷载下的挠度逐渐降低,特征荷载也逐渐提高。因此,钢梁的抗弯加固效果随着CFRP板厚度的增加逐渐增大。

    图  12  CFRP板厚度对CFRP板加固损伤钢梁荷载-挠度曲线的影响
    Figure  12.  Effect of the CFRP plate thickness on the load-deflection curves of damaged steel beams strengthened with CFRP plates

    选取CFRP板弹性模量分别为160 GPa、300 GPa和450 GPa进行分析,CFRP板厚度均为2 mm,预应力均为850 MPa,得到的荷载-挠度曲线如图13所示。可以看出,随着CFRP板弹性模量的增加,钢梁的弹性抗弯刚度变化很小,只有进入弹塑性阶段后抗弯刚度的提高才逐渐明显。由于模型中不同弹性模量CFRP板的截面面积和预应力相同,即CFRP板的预拉力相同,因此弹性模量的增加对反拱没有影响,对正常使用极限状态特征荷载的影响也很小,对屈服荷载的提高也不明显。因此,当CFRP板的预拉力不变时,仅增加CFRP板的弹性模量虽然可以提高抗弯加固效果,但效果并不明显。

    图  13  CFRP板弹性模量对CFRP板加固损伤钢梁荷载-挠度曲线的影响
    Figure  13.  Effect of the CFRP plate elastic modulus on the load-deflection curves of damaged steel beams strengthened with CFRP plates

    以上研究发现,无粘结预应力CFRP板加固技术在钢梁抗弯加固方面显示出良好的性能。该技术的主要特点有:

    (1) 在施工方面,工序少、速度快。一方面该技术在使用时无需对钢梁表面进行打磨或喷砂处理,也不需要填充粘结剂;另一方面在预应力张拉完成后,无需进行粘结层养护即可投入使用。这在灾后等条件下需要快速抢险加固以恢复结构功能时尤其有利;

    (2) 在受力方面,无粘结预应力CFRP板具有与有粘结预应力CFRP板几乎相同的加固效果,显著高于外贴非预应力CFRP板的加固效果,而且在受力过程中CFRP板应变分布更加均匀,避免了界面剥离的不利影响;

    尽管如此,无粘结预应力CFRP板加固技术由于不使用粘结剂,结构与CFRP板之间的传力完全依靠两端的锚具,若锚具失效就意味着加固效果随即丧失。因此,锚具需要有更高的可靠性,设计时应该设定更高的可靠指标。

    (1) 粘结层对钢梁特征荷载和抗弯刚度几乎没有影响,有粘结和无粘结碳纤维增强聚合物复合材料(CFRP)板具有几乎相同的抗弯加固效果。

    (2) 对CFRP板施加预应力可以显著提高钢梁的抗弯加固效果,预应力CFRP板加固试件的屈服荷载相比未加固试件提高了约50%,正常使用极限状态下的荷载提高了约30%,而在正常使用阶段非预应力CFRP板的加固效果非常小。

    (3) 有粘结CFRP板-钢梁复合截面在跨中剥离前基本满足平截面假定,CFRP板沿长度具有明显的应变梯度;而无粘结CFRP板-钢梁复合截面不满足平截面假定,CFRP板应变沿长度保持不变并小于有粘结CFRP板的最大应变值。

    (4) 非预应力CFRP板的高强度特性远不能发挥,对CFRP板施加预应力是提高CFRP板在正常使用阶段和屈服阶段强度利用率的有效方法。有粘结CFRP板的强度利用率略大于无粘结CFRP板。

    (5) 采用ABAQUS软件建立的三维有限元模型可以较好地预测不同预应力水平下有粘结和无粘结CFRP板加固损伤钢梁的抗弯性能。增加CFRP板的预应力、厚度和弹性模量均可以提高损伤钢梁的抗弯加固效果。

  • 图  1   磁性生物炭复合材料活化过硫酸盐(PS)降解抗生素的研究进展

    Figure  1.   Research progress on activated persulfate (PS) degradation of antibiotics by magnetic biochar composites

    AOPs—Advanced oxidation process

    图  2   磁性生物炭复合材料活化PS降解抗生素的机制

    Figure  2.   Mechanism of magnetic biochar composite activated persulfate to degrade antibiotics

    图  3   (a) 竹子制备的锰掺杂磁性生物炭(MMBC)用于四环素(TC)的降解;(b) MMBC活化PS的电子自旋共振(ESR)谱; (c) TC的降解过程;(d) PS在MMBC上活化降解TC的主要催化机制[40]

    Figure  3.   (a) Mn doped magnetic biochar (MMBC) prepared from bamboo for TC degradation; (b) Electron spin resonance (ESR) spectra of PS activation by MMBC; (c) Proposed degradation process of TC; (d) Main catalytic mechanism of PS activation on MMBC for TC degradation[40]

    DMPO—5, 5-dimethyl-1-pyrroline N-oxide

    图  4   (a) 丝瓜络生物炭(LBC)、Fe2O3和Fe2O3@LBC对头孢氨苄(CEX)的去除;(b) Fe2O3@LBC/PS体系中的电子顺磁共振(EPR)谱;(c) Fe2O3@LBC活化PS降解CEX的可能机制;(d)降解CEX的反应途径[35]

    Figure  4.   (a) Removal of CEX by loofah biochar (LBC), Fe2O3 and Fe2O3@LBC; (b) Electron paramagnetic resonance (EPR) spectra in the Fe2O3@LBC/PS system; (c) Possible mechanism of PS activation by Fe2O3@LBC for CEX degradation; (d) Proposed reaction pathway for the degradation of CEX[35]

    C—Concentration of the reactant at a certain time; C0—Initial concentration of the reactant

    图  5   (a) 生物炭负载磁性MIL-53(Fe)衍生物作为过硫酸氢盐活化降解抗生素的有效催化剂;(b) 诺氟沙星(NOR)的降解转化途径;(c) 生物炭负载的MIL-53(Fe)衍生物(1.0-BC@FexC/PDS)同时去除NOR的可能反应机制[41]

    Figure  5.   (a) Biochar supported magnetic MIL-53(Fe) derivatives as an efficient catalyst for peroxydisulfate activation towards antibiotics degradation; (b) Proposed transformation pathways of NOR degradation; (c) Possible reaction mechanism for the simultaneous removals of NOR by the biochar-loaded MIL-53(Fe) derivatives (1.0-BC@FexC/PDS) process[41]

    H2BDC—1, 4-terephthalic acid; DMF—N, N-dimethyl formamide

    图  6   (a) CoFe2O4/BC/PMS/SMX体系可能的催化降解机制;SO4和 HO• (b)、 1O2 (c)在不同体系中的EPR谱;(d) SMX在CoFe2O4/BC/PMS体系中可能的降解途径[27]

    Figure  6.   (a) Possible catalytic degradation mechanism over CoFe2O4/BC/PMS/SMX system; EPR spectra of SO4 and HO• (b), 1O2 (c) in different systems; (d) Possible degradation pathways of SMX in the CoFe2O4/BC/PMS system[27]

    表  1   不同生物质来源制备的磁性生物炭复合材料的催化性能

    Table  1   Catalytic properties of magnetic biochar materials prepared from different biomass sources

    Magnetic biochar Source Magnetic
    substance
    Preparation method PS Antibiotic Active
    substance
    Removal efficiency/% Ref.
    Magnetic rape straw biochar Rape straw Fe3O4 Pyrolysis PDS TC SO4, HO•, O2 and 1O2 99.0 [26]
    CoFe2O4/biochar Rape straw CoFe2O4 Solvothermal PMS SMX SO4, HO•, O2 and 1O2 93.0 [27]
    Magnetic biochar Rice straw Fe3C
    Fe4N
    Pyrolysis PDS TC SO4, HO•, O2 and 1O2 90.5 [28]
    Coral reef-like FeS2/biochar Corn stalks FeS2 Solvothermal PMS TC SO4, HO•, O2 and 1O2 100.0 [29]
    Modified red mud biochar Corn straw Fe3O4 Pyrolysis PDS LFX SO4 and HO• 88.6 [30]
    Fe3O4 supported by N-doped biochar Corncob Fe3O4
    ZnFe2O4
    Coprecipitation PDS TC SO4, HO•, O2 and 1O2 91.6 [31]
    Nitrogen-doped magnetic carbon nanotubes-bridged biochar Rice husk Fe3O4 Impregnation-
    pyrolysis
    PMS SMX SO4, HO• and 1O2 98.2 [32]
    Magnetic iron-char
    composites
    Peanut shells Fe3O4 Impregnation-
    pyrolysis
    PDS SMX SO4, HO•, O2 and 1O2 99.4 [33]
    FeS@biochar Peanut shells FeS Pyrolysis PDS SMT SO4, HO• and 1O2 96.4 [34]
    Magnetic loofah biochar Loofah Fe2O3 Impregnation-
    pyrolysis
    PDS CEX SO4 and HO• 73.9 [35]
    Cobalt and iron coloaded pomelo peel biochar composite Pomelo peels CoFe2O4 Impregnation and
    coprecipitation
    PMS TC SO4, HO•, O2 and 1O2 86.2 [36]
    MgFe2O4/biochar Pomelo peels MgFe2O4 Coprecipitation PDS LFX O2 and 1O2 87.9 [37]
    MnFe2O4/biochar Banana
    pseudo-stem
    MnFe2O4 Sol-gel pyrolysis PDS TC SO4, HO•, O2 and 1O2 94.7 [38]
    Lanthanum-doped
    magnetic biochar
    Bagasse Fe3O4 Impregnation-
    pyrolysis
    PDS FLO SO4, HO•, O2 and 1O2 99.5 [39]
    Mn doped magnetic biochar Bamboo Fe3O4, Fe3C,
    MnFe2O4
    Impregnation-
    pyrolysis
    PDS TC SO4 and HO• 93.0 [40]
    Biochar-loaded MIL-53(Fe) derivatives Bamboo Fe3O4, Fe0,
    α-Fe2O3
    Pyrolysis PDS NOR SO4, HO• and 1O2 91.2 [41]
    FeS@biochar Pine sawdust FeS Ball milling PDS TC SO4 and HO• 87.4 [42]
    Potassium-doped magnetic
    biochar
    Pine sawdust Fe3O4,
    α-Fe2O3
    Impregnation-
    pyrolysis
    PDS MNZ SO4, HO•, O2 and 1O2 98.4 [43]
    Mn-based magnetic biochar Pine sawdust Fe3O4 Impregnation-
    pyrolysis
    PDS MNZ SO4, HO•, O2 and 1O2 95.6 [44]
    Nitrogen-rich magnetic
    biochar
    Pine sawdust Fe3O4,
    α-Fe2O3
    Impregnation-
    pyrolysis
    PDS MNZ SO4, HO•, O2 and 1O2 99.6 [45]
    CoFe2O4/biochar Sludge/pine
    needle
    CoFe2O4 Hydrothermal PMS TC SO4 and HO• 99.8 [46]
    Magnetic N-doped iron
    sludge based biochar
    Sycamore leaves and sludge Fe3O4 Pyrolysis PDS TC SO4, HO• and 1O2 86.6 [47]
    MnFe2O4/biochar Eichhornia crassipes MnFe2O4 Coprecipitation PMS TC,
    SMX
    SO4, HO• and 1O2 90.1
    96.5
    [48]
    Co/N co-doped biochar Kelp Co Pyrolysis PMS TC SO4, HO• and 1O2 99.0 [49]
    Copper doping in magnetic
    biochar
    Cow dung Fe3O4 Impregnation-
    pyrolysis
    PMS SMX,
    CIP
    SO4, HO•, O2 and 1O2 91.7
    97.3
    [21]
    Magnetic biochar Piggery sludge Fe3O4
    α-Fe2O3
    Coprecipitation PMS TC SO4, HO•, O2 and 1O2 77.2 [50]
    Fe/Mn bimetal co-functionalized sludge biochar Sludge Fe3O4 Impregnation-
    pyrolysis
    PDS SMX 1O2 98.8 [51]
    Magnetic nitrogen-doped
    sludge-derived biochar
    Sludge γ-Fe2O3 Pyrolysis PDS TC SO4 and HO• 82.2 [52]
    N-functionalized sewage sludge-red mud complex biochar Sludge Fe3O4 Pyrolysis PMS SMX SO4, HO•, O2 and 1O2 97.5 [53]
    Co-Fe/SiO2 Iron sludge Co-Fe-LBH Solvothermal PMS CIP SO4 and HO• 98.0 [54]
    Iron-loaded biochar Fermentation dreg Fe3O4 Coprecipitation PDS TC SO4, HO•, O2 and 1O2 85.1 [55]
    Notes: LBH—Layered double hydroxide; PS—Persulfate; PMS—Peroxymonosulfate; PDS—Peroxysulphate; TC—Tetracycline; SMX—Sulfamethoxazole; SMT—Sulfamethazine; CEX—Cephalexin; LFX—Levofloxacin; FLO—Florfenicol; NOR—Norfloxacin; MNZ—Metronidazole; CIP—Ciprofloxacin.
    下载: 导出CSV

    表  2   磁性生物炭复合材料不同制备方法的优点和缺点

    Table  2   Advantages and disadvantages of different preparation methods of magnetic biochar composites

    Preparation method Advantage Disadvantage Ref.
    Impregnation-pyrolysis Magnetization and pyrolysis at the same time,
    simple operation
    Gas pollutants are easy to cause secondary pollution, high temperature energy-consuming crystallinity, size and porosity are difficult to control. [25, 57-59]
    Coprecipitation Simple operation, controlled reaction The introduction of alkaline reagents is required, and the usable surface area of the prepared material is small. [60-61]
    Hydrothermal Low temperatures (100-300℃), mild reaction conditions, no need for bases or strong reducing agents, no need for energy-intensive pre-drying processes Higher dependence on production equipment. [18, 22, 62-63]
    Chemical reduction Convenient operation, controllable reaction,
    high product purity
    Reducing agents added are toxic and need to be stored and used properly. [64]
    下载: 导出CSV
  • [1]

    VAN BOECKEL T P, BROWER C, GILBERT M, et al. Global trends in antimicrobial use in food animals[J]. Proceedings of the National Academy of Sciences, 2015, 112(18): 5649-5654. DOI: 10.1073/pnas.1503141112

    [2]

    GHANBARI F, AHMADI M, GOHARI F. Heterogeneous activation of peroxymonosulfate via nanocomposite CeO2-Fe3O4 for organic pollutants removal: The effect of UV and US irradiation and application for real wastewater[J]. Separation and Purification Technology, 2019, 228: 115732. DOI: 10.1016/j.seppur.2019.115732

    [3]

    JJEMBA P K. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment[J]. Ecotoxicology and Environmental Safety, 2006, 63(1): 113-130. DOI: 10.1016/j.ecoenv.2004.11.011

    [4]

    KÜMMERER K. Drugs in the environment emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources a review[J]. Chemosphere, 2001, 45: 957-969. DOI: 10.1016/S0045-6535(01)00144-8

    [5]

    LI N, YE J, DAI H, et al. A critical review on correlating active sites, oxidative species and degradation routes with persulfate-based antibiotics oxidation[J]. Water Research, 2023, 235: 119926. DOI: 10.1016/j.watres.2023.119926

    [6]

    TANG R, GONG D, DENG Y, et al. π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2022, 423: 126944. DOI: 10.1016/j.jhazmat.2021.126944

    [7]

    LIN K Y A, ZHANG Z Y. Degradation of bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 313: 1320-1327. DOI: 10.1016/j.cej.2016.11.025

    [8]

    AHN Y Y, BAE H, KIM H I, et al. Surface-loaded metal nanoparticles for peroxymonosulfate activation: Efficiency and mechanism reconnaissance[J]. Applied Catalysis B: Environmental, 2019, 241: 561-569. DOI: 10.1016/j.apcatb.2018.09.056

    [9]

    ZHOU J, LI X, YUAN J, et al. Efficient degradation and toxicity reduction of tetracycline by recyclable ferroferric oxide doped powdered activated charcoal via peroxymonosulfate (PMS) activation[J]. Chemical Engineering Journal, 2022, 441: 136061. DOI: 10.1016/j.cej.2022.136061

    [10]

    XIE J, ZHANG L, LUO X, et al. Sulfur anchored on N-doped porous carbon as metal-free peroxymonosulfate activator for tetracycline hydrochloride degradation: Nonradical pathway mechanism, performance and biotoxicity[J]. Chemical Engineering Journal, 2023, 457: 141149. DOI: 10.1016/j.cej.2022.141149

    [11]

    PENG Y, XIE G, SHAO P, et al. A comparison of SMX degradation by persulfate activated with different nanocarbons: Kinetics, transformation pathways, and toxicity[J]. Applied Catalysis B: Environmental, 2022, 310: 121345. DOI: 10.1016/j.apcatb.2022.121345

    [12]

    WANG Y, PAN T, YU Y, et al. A novel peroxymonosulfate (PMS)-enhanced iron coagulation process for simultaneous removal of trace organic pollutants in water[J]. Water Research, 2020, 185: 116136. DOI: 10.1016/j.watres.2020.116136

    [13] 张洪涛, 刘涛, 杨宗建, 等. 铁基生物炭活化过硫酸盐处理有机废水的研究进展[J]. 工业水处理, 2023, 43(6): 22-31.

    ZHANG Hongtao, LIU Tao, YANG Zongjian, et al. Research progress in the treatment of organic wastewater by iron-based biochar activated persulfate[J]. Industrial Water Treatmen, 2023, 43(6): 22-31(in Chinese).

    [14] 王俊辉, 张菁玮, 孙静, 等. 铁酸镍负载杉木屑生物炭活化过一硫酸盐降解磷酸氯喹[J]. 复合材料学报, 2024, 41(8): 4310-4323.

    WANG Junhui, ZHANG Jingwei, SUN Jing, et al. Preparation of nickel ferrite loaded fir sawdust biochar to activate peroxymonosulfate for chloroquine phosphate degradation[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4310-4323(in Chinese).

    [15]

    ZHENG X, NIU X, ZHANG D, et al. Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: A review[J]. Chemical Engineering Journal, 2022, 429: 132323. DOI: 10.1016/j.cej.2021.132323

    [16]

    HUANG P, ZHANG P, WANG C, et al. Enhancement of persulfate activation by Fe-biochar composites: Synergism of Fe and N-doped biochar[J]. Applied Catalysis B: Environmental, 2022, 303: 120926. DOI: 10.1016/j.apcatb.2021.120926

    [17]

    GAO Y, WANG Q, JI G, et al. Degradation of antibiotic pollutants by persulfate activated with various carbon materials[J]. Chemical Engineering Journal, 2022, 429: 132387. DOI: 10.1016/j.cej.2021.132387

    [18] 朱浩, 杜春艳, 曹姣, 等. 磁性硅酸盐纳米材料在光催化降解有机污染物中的研究进展[J]. 复合材料学报, 2024, 41(11): 5812-5823.

    ZHU Hao, DU Chunyan, CAO Jiao, et al. Research progress of magnetic silicate nanomaterials for photocatalytic degradation of organic pollutants[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5812-5823(in Chinese).

    [19]

    ZHANG Y, ZHANG B T, TENG Y, et al. Heterogeneous activation of persulfate by carbon nanofiber supported Fe3O4@carbon composites for efficient ibuprofen degradation[J]. Journal of Hazardous Materials, 2021, 401: 123428. DOI: 10.1016/j.jhazmat.2020.123428

    [20]

    LI Q, TANG Y, ZHOU B, et al. Resource utilization of tannery sludge to prepare biochar as persulfate activators for highly efficient degradation of tetracycline[J]. Bioresource Technology, 2022, 358: 127417. DOI: 10.1016/j.biortech.2022.127417

    [21]

    WANG C B, DAI H X, LIANG L, et al. Enhanced mechanism of copper doping in magnetic biochar for peroxymonosulfate activation and sulfamethoxazole degradation[J]. Journal of Hazardous Materials, 2023, 458: 132002.

    [22] 苏浩杰, 吴俊峰, 王召东, 等. 生物炭及其复合材料活化过硫酸盐研究进展[J]. 材料工程, 2023, 51(2): 80-90. DOI: 10.11868/j.issn.1001-4381.2021.001201

    SU Haojie, WU Junfeng, WANG Zhaodong, et al. Research progress in biochar and its composites activated persulfate[J]. Journal of Materials Engineering, 2023, 51(2): 80-90(in Chinese). DOI: 10.11868/j.issn.1001-4381.2021.001201

    [23] 毛懿德, 铁柏清, 叶长城, 等 生物炭对重污染土壤镉形态及油菜吸收镉的影响[J]. 生态与农村环境学报, 2015, 31(4): 579-582.

    MAO Yide, TIE Boqing, YE Changcheng, et al. Effects of biochar on forms and uptake of cadmium by rapeseed in cadmium-polluted soil[J]. Journal of Ecology and Rural Environment, 2015, 31(4): 579-582(in Chinese).

    [24] 梁锦芝, 许伟城, 赖树锋, 等. 磁性生物炭的制备及其活化过一硫酸盐的研究进展[J]. 环境化学, 2021, 40(9): 2901-2911. DOI: 10.7524/j.issn.0254-6108.2021022301

    LIANG Jinzhi, XU Weicheng, LAI Shufeng, et al. Research progress on preparation and peroxymonosulfate activation of magnetic biochar[J]. Environmental Chemistry, 2021, 40(9): 2901-2911(in Chinese). DOI: 10.7524/j.issn.0254-6108.2021022301

    [25] 魏太庆, 王博, 艾丹, 等. 磁性生物炭的制备及其在环境修复中的研究进展[J]. 功能材料, 2021, 52(10): 10039-10047. DOI: 10.3969/j.issn.1001-9731.2021.10.006

    WEI Taiqing, WANG Bo, AI Dan, et al. Preparation of magnetic biochar and its application in environmental remediation[J]. Journal of Functional Materials, 2021, 52(10): 10039-10047(in Chinese). DOI: 10.3969/j.issn.1001-9731.2021.10.006

    [26]

    HUANG H, GUO T, WANG K, et al. Efficient activation of persulfate by a magnetic recyclable rape straw biochar catalyst for the degradation of tetracycline hydrochloride in water[J]. Science of the Total Environment, 2021, 758: 143957. DOI: 10.1016/j.scitotenv.2020.143957

    [27]

    XIONG M, SUN Y, CHAI B, et al. Efficient peroxymonosulfate activation by magnetic CoFe2O4 nanoparticle immobilized on biochar toward sulfamethoxazole degradation: Performance, mechanism and pathway[J]. Applied Surface Science, 2023, 615: 156398. DOI: 10.1016/j.apsusc.2023.156398

    [28]

    ZHUO S N, SUN H, WANG Z Y, et al. A magnetic biochar catalyst with dual active sites of Fe3C and Fe4N derived from floc: The activation mechanism for persulfate on degrading organic pollutant[J]. Chemical Engineering Journal, 2023, 455: 140702. DOI: 10.1016/j.cej.2022.140702

    [29]

    HUANG Y, CHEN Y, LI X, et al. One-step solvothermal construction of coral reef-like FeS2/biochar to activate peroxymonosulfate for efficient organic pollutant removal[J]. Separation and Purification Technology, 2023, 308: 122976. DOI: 10.1016/j.seppur.2022.122976

    [30]

    YANG Z, AN Q, DENG S, et al. Efficient activation of peroxydisulfate by modified red mud biochar derived from waste corn straw for levofloxacin degradation: Efficiencies and mechanisms[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111609. DOI: 10.1016/j.jece.2023.111609

    [31]

    GUO P, ZHOU Y, ZHANG Y, et al. Insights into the well-dispersed nano-Fe3O4 catalyst supported by N-doped biochar prepared from steel pickling waste liquor for activating peroxydisulfate to degrade tetracycline[J]. Chemical Engineering Journal, 2023, 464: 142548. DOI: 10.1016/j.cej.2023.142548

    [32]

    LIU T, WANG Q, LI C, et al. Synthesizing and characterizing Fe3O4 embedded in N-doped carbon nanotubes-bridged biochar as a persulfate activator for sulfamethoxazole degradation[J]. Journal of Cleaner Production, 2022, 353: 131669. DOI: 10.1016/j.jclepro.2022.131669

    [33]

    LIANG J, DUAN X, XU X, et al. Persulfate oxidation of sulfamethoxazole by magnetic iron-char composites via nonradical pathways: Fe(IV) versus surface-mediated electron transfer[J]. Environmental Science & Technology, 2021, 55(14): 10077-10086.

    [34]

    JIN Z, LI Y, DONG H, et al. A comparative study on the activation of persulfate by mackinawite@biochar and pyrite@biochar for sulfamethazine degradation: The role of different natural iron-sulfur minerals doping[J]. Chemical Engineering Journal, 2022, 448: 13760.

    [35]

    SONG H, LI Q, YE Y, et al. Degradation of cephalexin by persulfate activated with magnetic loofah biochar: Performance and mechanism[J]. Separation and Purification Technology, 2021, 272: 118971. DOI: 10.1016/j.seppur.2021.118971

    [36]

    HAN S, XIAO P. Catalytic degradation of tetracycline using peroxymonosulfate activated by cobalt and iron co-loaded pomelo peel biochar nanocomposite: Characterization, performance and reaction mechanism[J]. Separation and Purification Technology, 2022, 287: 120533. DOI: 10.1016/j.seppur.2022.120533

    [37]

    YAO B, LUO Z, DU S, et al. Magnetic MgFe2O4/biochar derived from pomelo peel as a persulfate activator for levofloxacin degradation: Effects and mechanistic consideration[J]. Bioresource Technology, 2022, 346: 126547. DOI: 10.1016/j.biortech.2021.126547

    [38]

    WANG L, LU X, CHEN G, et al. Synergy between MgFe2O4 and biochar derived from banana pseudo-stem promotes persulfate activation for efficient tetracycline degradation[J]. Chemical Engineering Journal, 2023, 468: 143773. DOI: 10.1016/j.cej.2023.143773

    [39]

    PENG Y, XUE C, LUO J, et al. Lanthanum-doped magnetic biochar activating persulfate in the degradation of florfenicol[J]. Science of the Total Environment, 2024, 916: 170312. DOI: 10.1016/j.scitotenv.2024.170312

    [40]

    HUANG D, ZHANG Q, ZHANG C, et al. Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline[J]. Chemical Engineering Journal, 2020, 391: 123532. DOI: 10.1016/j.cej.2019.123532

    [41]

    TONG J, CHEN L, CAO J, et al. Biochar supported magnetic MIL-53-Fe derivatives as an efficient catalyst for peroxydisulfate activation towards antibiotics degradation[J]. Separation and Purification Technology, 2022, 294: 121064. DOI: 10.1016/j.seppur.2022.121064

    [42]

    HE J, TANG J, ZHANG Z, et al. Magnetic ball-milled FeS@biochar as persulfate activator for degradation of tetracycline[J]. Chemical Engineering Journal, 2021, 404: 126997. DOI: 10.1016/j.cej.2020.126997

    [43]

    LUO J, YI Y, ZHOU L, et al. Impacts of anions on activated persulfate oxidation of Fe(II)-rich potassium doped magnetic biochar[J]. Chemosphere, 2023, 310: 136693. DOI: 10.1016/j.chemosphere.2022.136693

    [44]

    LUO J, YI Y, FANG Z. Effect of Mn-based magnetic biochar/PS reaction system on oxidation of metronidazole[J]. Chemosphere, 2023, 332: 138747. DOI: 10.1016/j.chemosphere.2023.138747

    [45]

    LUO J, YI Y, FANG Z. Nitrogen-rich magnetic biochar prepared by urea was used as an efficient catalyst to activate persulfate to degrade organic pollutants[J]. Chemosphere, 2023, 339: 139614. DOI: 10.1016/j.chemosphere.2023.139614

    [46]

    HUANG N, WANG T, WU Y, et al. Preparation of magnetically recyclable hierarchical porous sludge-pine needle derived biochar loaded CoFe2O4 nanoparticles for rapid degradation of tetracycline by activated PMS[J]. Materials Today Communications, 2023, 35: 106313. DOI: 10.1016/j.mtcomm.2023.106313

    [47]

    ZENG H, LI J, XU J, et al. Preparation of magnetic N-doped iron sludge based biochar and its potential for persulfate activation and tetracycline degradation[J]. Journal of Cleaner Production, 2022, 378: 134519. DOI: 10.1016/j.jclepro.2022.134519

    [48]

    CHEN X L, LI H, LAI L, et al. Peroxymonosulfate activation using MnFe2O4 modified biochar for organic pollutants degradation: Performance and mechanisms[J]. Separation and Purification Technology, 2023, 308: 122886. DOI: 10.1016/j.seppur.2022.122886

    [49]

    ZHU H, GUO A, WANG S, et al. Efficient tetracycline degradation via peroxymonosulfate activation by magnetic Co/N co-doped biochar: Emphasizing the important role of biochar graphitization[J]. Chemical Engineering Journal, 2022, 450: 138428. DOI: 10.1016/j.cej.2022.138428

    [50]

    LUO X, SHEN M, LIU J, et al. Resource utilization of piggery sludge to prepare recyclable magnetic biochar for highly efficient degradation of tetracycline through peroxymonosulfate activation[J]. Journal of Cleaner Production, 2021, 294: 126372. DOI: 10.1016/j.jclepro.2021.126372

    [51]

    MA Y, CHEN X, TANG J, et al. An in-situ electrogenerated persulfate and its activation by functionalized sludge biochar for efficient degradation of sulfamethoxazole[J]. Journal of Cleaner Production, 2023, 423: 138768. DOI: 10.1016/j.jclepro.2023.138768

    [52]

    YU J, TANG L, PANG Y, et al. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism[J]. Chemical Engineering Journal, 2019, 364: 146-159. DOI: 10.1016/j.cej.2019.01.163

    [53]

    LIANG L, CHEN G, LI N, et al. Active sites decoration on sewage sludge-red mud complex biochar for persulfate activation to degrade sulfanilamide[J]. Journal of Colloid and Interface Science, 2022, 608: 1983-1998. DOI: 10.1016/j.jcis.2021.10.150

    [54]

    ZHU S, XU Y, ZHU Z, et al. Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 384: 123298. DOI: 10.1016/j.cej.2019.123298

    [55]

    WANG M, WANG Y, LI Y, et al. Persulfate oxidation of tetracycline, antibiotic resistant bacteria, and resistance genes activated by Fe doped biochar catalysts: Synergy of radical and non-radical processes[J]. Chemical Engineering Journal, 2023, 464: 142558. DOI: 10.1016/j.cej.2023.142558

    [56]

    FENG Z Q, ZHOU B H, YUAN R F, et al. Biochar derived from different crop straws as persulfate activator for the degradation of sulfadiazine: Influence of biomass types and systemic cause analysis[J]. Chemical Engineering Journal, 2022, 440: 135669. DOI: 10.1016/j.cej.2022.135669

    [57]

    YI Y, TU G, ZHAO D, et al. Pyrolysis of different biomass pre-impregnated with steel pickling waste liquor to prepare magnetic biochars and their use for the degradation of metronidazole[J]. Bioresource Technology, 2019, 289: 121613. DOI: 10.1016/j.biortech.2019.121613

    [58]

    MA Y, WANG Q, SUN X, et al. A novel magnetic biochar from spent shiitake substrate: Characterization and analysis of pyrolysis process[J]. Biomass Conversion and Biorefinery, 2014, 5(4): 339-346.

    [59]

    PEIXOTO B S, DE OLIVEIRA MOTA L S, DIAS I M, et al. An alternative synthesis of magnetic biochar from green coconut husks and its application for simultaneous and individual removal of caffeine and salicylic acid from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110835. DOI: 10.1016/j.jece.2023.110835

    [60]

    AN T Y, CHANG Y F, XIE J X, et al. Deciphering physicochemical properties and enhanced microbial electron transfer capacity by magnetic biochar[J]. Bioresource Technology, 2022, 363: 127894. DOI: 10.1016/j.biortech.2022.127894

    [61]

    SHANG J, PI J, ZONG M, et al. Chromium removal using magnetic biochar derived from herb-residue[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68: 289-294. DOI: 10.1016/j.jtice.2016.09.012

    [62]

    YI Y, HUANG Z, LU B, et al. Magnetic biochar for environmental remediation: A review[J]. Bioresource Technology, 2020, 298: 122468. DOI: 10.1016/j.biortech.2019.122468

    [63]

    ÁLVAREZ M L, GASCÓ G, PALACIOS T, et al. Fe oxides-biochar composites produced by hydrothermal carbonization and pyrolysis of biomass waste[J]. Journal of Analytical and Applied Pyrolysis, 2020, 151: 104893. DOI: 10.1016/j.jaap.2020.104893

    [64]

    LI P, LIN K, FANG Z, et al. Enhanced nitrate removal by novel bimetallic Fe/Ni nanoparticles supported on biochar[J]. Journal of Cleaner Production, 2017, 151: 21-33. DOI: 10.1016/j.jclepro.2017.03.042

    [65]

    YANG F, ZHANG S, SUN Y, et al. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal[J]. Bioresource Technology, 2018, 265: 490-497. DOI: 10.1016/j.biortech.2018.06.029

    [66]

    MENG Y, CHEN D, SUN Y, et al. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method[J]. Applied Surface Science, 2015, 324: 745-750. DOI: 10.1016/j.apsusc.2014.11.028

    [67] 李玉梅, 王畅, 张连科, 等. 生物炭/铁酸镧磁性复合材料的制备及对亚甲基蓝的吸附性能[J]. 环境污染与防治, 2020, 42(7): 826-832.

    LI Yumei, WANG Chang, ZHANG Lianke, et al. Preparation of biochar/LaFeO3, magnetic composite material and adsorption properties for methylene blue[J]. Environmental Pollution & Control, 2020, 42(7): 826-832(in Chinese).

    [68]

    TANG L, LIU Y, WANG J, et al. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism[J]. Applied Catalysis B: Environmental, 2018, 231: 1-10. DOI: 10.1016/j.apcatb.2018.02.059

    [69]

    LIU H, XU G, LI G. Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline[J]. Journal of Colloid and Interface Science, 2021, 587: 271-278. DOI: 10.1016/j.jcis.2020.12.014

    [70] 武利园, 郭朋朋, 李海燕, 等. MoS2催化活化单过硫酸盐降解有机污染物研究现状[J]. 复合材料学报, 2021, 38(5): 1348-1357.

    WU Liyuan, GUO Pengpeng, LI Haiyan, et al. MoS2 catalyzed peroxymonosulfate activation for organic pollutants degradation: A review[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1348-1357(in Chinese).

    [71] 荣幸. 磁性生物炭活化过硫酸盐降解水中有机污染物的研究[D]. 济南: 山东大学, 2019.

    RONG Xing. Activation of persulfate by magnetic biochar for organic contaminants degradation in water[D]. Jinan: Shandong University, 2019(in Chinese).

    [72]

    ZHAO C, SHAO B, YAN M, et al. Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: A review[J]. Chemical Engineering Journal, 2021, 416: 128829. DOI: 10.1016/j.cej.2021.128829

    [73]

    SONG T, KANG X, GUO C, et al. Recent advances in persulfate activation by magnetic ferrite-carbon composites for organic contaminants degradation: Role of carbon materials and environmental application[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109087. DOI: 10.1016/j.jece.2022.109087

    [74]

    XIE J L, CHEN L, LUO X, et al. Degradation of tetracycline hydrochloride through efficient peroxymonosulfate activation by B, N co-doped porous carbon materials derived from metal-organic frameworks: Nonradical pathway mechanism[J]. Separation and Purification Technology, 2022, 281: 119887. DOI: 10.1016/j.seppur.2021.119887

    [75]

    ZHONG J, FENG Y, YANG B, et al. Accelerated degradation of sulfadiazine by nitrogen-doped magnetic biochar-activated persulfate: Role of oxygen vacancy[J]. Separation and Purification Technology, 2022, 289: 120735. DOI: 10.1016/j.seppur.2022.120735

    [76]

    LEE J, VON GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081.

    [77]

    YIN R, GUO W, WANG H, et al. Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: Direct oxidation and nonradical mechanisms[J]. Chemical Engineering Journal, 2018, 334: 2539-2546. DOI: 10.1016/j.cej.2017.11.174

    [78]

    CHEN J, FANG C, XIA W, et al. Selective transformation of β-lactam antibiotics by peroxymonosulfate: Reaction kinetics and nonradical mechanism[J]. Environmental Science & Technology, 2018, 52(3): 1461-1470.

    [79] 王宇航, 俞伟, 赵思钰, 等. 改性生物炭对水环境中抗生素类药物的吸附研究进展[J]. 环境工程, 2021, 39(12): 91-99, 134.

    WANG Yuhang, YU Wei, ZHAO Siyu, et al. Adsorption of antibiotic drugs in water environment by modified biochar: A review[J]. Environmental Engineering, 2021, 39(12): 91-99, 134(in Chinese).

    [80]

    YANG Y, JI W, LI X, et al. Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe0[J]. Journal of Hazardous Materials, 2022, 424: 127640. DOI: 10.1016/j.jhazmat.2021.127640

    [81]

    ZHANG X, WEI J, WANG C, et al. Recent advance of Fe-based bimetallic persulfate activation catalysts for antibiotics removal: Performance, mechanism, contribution of the key ROSs and degradation pathways[J]. Chemical Engineering Journal, 2024, 487: 150514. DOI: 10.1016/j.cej.2024.150514

    [82]

    TIAN N, TIAN X, NIE Y, et al. Biogenic manganese oxide: An efficient peroxymonosulfate activation catalyst for tetracycline and phenol degradation in water[J]. Chemical Engineering Journal, 2018, 352: 469-476. DOI: 10.1016/j.cej.2018.07.061

    [83]

    LIMA L M, SILVA B N M D, BARBOSA G, et al. β-lactam antibiotics: An overview from a medicinal chemistry perspective[J]. European Journal of Medicinal Chemistry, 2020, 208: 112829. DOI: 10.1016/j.ejmech.2020.112829

    [84]

    LEI J, DUAN P, LIU W, et al. Degradation of aqueous cefotaxime in electro-oxidation—electro-Fenton—persulfate system with Ti/CNT/SnO2-Sb-Er anode and Ni@NCNT cathode[J]. Chemosphere, 2020, 250: 126163. DOI: 10.1016/j.chemosphere.2020.126163

    [85]

    DUAN P, LIU W, LEI J, et al. Electrochemical mineralization of antibiotic ceftazidime with SnO2-Al2O3/CNT anode: Enhanced performance by peroxydisulfate/Fenton activation and degradation pathway[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103812. DOI: 10.1016/j.jece.2020.103812

    [86]

    DUAN P, CHEN D, HU X. Tin dioxide decorated on Ni-encapsulated nitrogen-doped carbon nanotubes for anodic electrolysis and persulfate activation to degrade cephalexin: Mineralization and degradation pathway[J]. Chemosphere, 2021, 269: 128740. DOI: 10.1016/j.chemosphere.2020.128740

  • 目的 

    抗生素具有高水溶性、高化学稳定性、潜在致癌性、明显的生态毒性和难以生物降解等特点,对水环境的可持续性和人类健康构成了严重威胁。因此,建立有效的去除水中的抗生素污染物的方法至关重要。近期,磁性生物炭复合材料因其优异的过硫酸盐活化催化能力和可回收性,在抗生素污染物的氧化降解方面受到广泛关注。因此,汇总最新基于磁性生物炭复合材料活化过硫酸盐降解抗生素的研究进展是有必要的。

    方法 

    本文以磁性生物炭复合材料为研究对象,系统地归纳了不同生物质来源的磁性生物炭复合材料及其常用的制备方法。总结了磁性生物炭复合材料活化过硫酸盐降解抗生素的机理;对不同种类的抗生物污染物的降解行为进行了讨论;并针对当前抗生素污染引发的其他问题,提出了未来研究的挑战和展望。

    结果 

    通过归纳总结可以发现:1. 可用于磁性生物炭合成的生物质来源丰富,主要分为植物、动物和其它(污泥)。不同类型生物质来源对其磁性生物炭的催化性能有很大的影响,这是由于其中的持久自由基、含氧官能团、溶解有机物和碳构型不同造成的。其中,碳构型的差异是导致催化活性差异的主要原因。不同生物炭石墨化的差异导致其催化能力存在巨大差距。生物炭石墨化程度越高,催化活性越高。2. 目前常用的制备磁性生物炭复合材料有以下四种方法,即浸渍-热解法、共沉淀法、水热法以及化学还原法。可以根据不同的原料和性能要求选择合适的制备方法。3. 磁性生物炭活化过硫酸盐降解抗生素污染物的机理包括:吸附、自由基途径和非自由基途径。另外,吸附是整个降解过程的限速步骤。自由基途径一般具有较高的氧化性能,可以将抗生素污染物进一步转化为二氧化碳和水。非自由基途径的氧化能力较弱,可能导致对抗生素污染物降解不彻底,但其持久性和适应能力较强。这些机理相互作用并协同促进抗生素污染物的有效去除。4. 根据化学结构特点,可将抗生素分为四环素类、β-内酰胺类、喹诺酮类和磺胺类等。不同抗生素的种类对磁性生物炭复合材料活化过硫酸盐降解途径有很大的影响。实际上的抗生素降解途径是非常复杂的,涉及到很多方面。产生的自由基类型可能影响中间产物的形成,从而影响降解途径。此外,由于不同磁性生物炭材料的结构和组成不同,即使是同种类型的抗生素,在不同的磁性生物炭材料/过硫酸盐催化体系中的降解机理和降解途径也不同。

    结论 

    目前,利用磁性生物炭复合材料活化过硫酸盐降解抗生素的研究已经取得了显著的进展。但是磁性生物炭复合材料在处理抗生素废水方面的应用需要更多针对实际工业废水和复杂环境条件的研究,同时还需进一步评估其对人类、动物和微生物等方面可能产生的潜在风险,并探索改良催化剂性能和寻找低成本合成方法。此外,需要加强对抗生素耐药菌和抗生素耐药基因清除方法与技术策略的研究。

图(6)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 修回日期:  2024-05-06
  • 录用日期:  2024-05-12
  • 网络出版日期:  2024-05-21
  • 发布日期:  2024-05-21
  • 刊出日期:  2025-01-14

目录

/

返回文章
返回