Research progress on activated persulfate degradation of antibiotics by magnetic biochar composites
-
摘要: 抗生素具有高水溶性、高化学稳定性、潜在致癌性、明显的生态毒性和难以生物降解等特点,对水环境的可持续性和人类健康构成了严重威胁。因此,建立有效去除水中的抗生素污染物的方法至关重要。磁性生物炭复合材料因其优异的过硫酸盐活化催化能力和可回收性,在抗生素污染物的氧化降解方面受到广泛关注。本文综述了磁性生物炭复合材料活化过硫酸盐降解抗生素的研究进展。首先,我们总结了不同生物质来源的磁性生物炭复合材料及其常用制备方法。然后,探讨了磁性生物炭复合材料活化过硫酸盐降解抗生素类污染物的机制及其对不同类型抗生素的降解行为。最后,针对目前抗生素污染引起的其他问题,提出了未来研究的挑战和展望。Abstract: Antibiotics, which have high water solubility, high chemical stability, potential carcinogenicity, obvious ecotoxicity, and difficult biodegradation, pose a serious threat to the sustainability of the aquatic environment and human health. Therefore, it is crucial to establish effective methods to remove antibiotic contaminants from water. Magnetic biochar composites have attracted much attention in the oxidative degradation of antibiotic contaminants due to their excellent catalytic capacity for activation of persulfate and recyclability. In this review, we aim to summarize the research progress of magnetic biochar composites activated persulfate degradation of antibiotics. First, we summarize magnetic biochar composites from different biomass sources and their commonly prepared methods. Then, the mechanism of activated persulfate degradation of antibiotic pollutants by magnetic biochar composites and their degradation behaviors for different types of antibiotics were explored. Finally, the challenges and prospects for future research are proposed in response to other current issues arising from antibiotic contamination.
-
Key words:
- magnetic biochar /
- antibiotics /
- persulfate /
- preparation method /
- degradation mechanism
-
图 3 (a) 竹子制备的锰掺杂磁性生物炭(MMBC)用于四环素(TC)的降解;(b) MMBC活化PS的电子自旋共振(ESR)谱; (c) TC的降解过程;(d) PS在MMBC上活化降解TC的主要催化机制[40]
Figure 3. (a) Mn doped magnetic biochar (MMBC) prepared from bamboo for TC degradation; (b) Electron spin resonance (ESR) spectra of PS activation by MMBC; (c) Proposed degradation process of TC; (d) Main catalytic mechanism of PS activation on MMBC for TC degradation[40]
DMPO—5, 5-dimethyl-1-pyrroline N-oxide
图 4 (a) 丝瓜络生物炭(LBC)、Fe2O3和Fe2O3@LBC对头孢氨苄(CEX)的去除;(b) Fe2O3@LBC/PS体系中的电子顺磁共振(EPR)谱;(c) Fe2O3@LBC活化PS降解CEX的可能机制;(d)降解CEX的反应途径[35]
Figure 4. (a) Removal of CEX by loofah biochar (LBC), Fe2O3 and Fe2O3@LBC; (b) DMPO spin trapping electron paramagnetic resonance (EPR) spectra in the Fe2O3@LBC/PS system; (c) Possible mechanism of PS activation by Fe2O3@LBC for CEX degradation; (d) Proposed reaction pathway for the degradation of CEX[35]
C/C0—
图 5 (a) 生物炭负载磁性MIL-53(Fe)衍生物作为过硫酸氢盐活化降解抗生素的有效催化剂;(b) 诺氟沙星(NOR)的降解转化途径;(c) 生物炭负载的MIL-53(Fe)衍生物(1.0-BC@FexC/PDS)同时去除NOR的可能反应机制[41]
Figure 5. (a) Biochar supported magnetic MIL-53(Fe) derivatives as an efficient catalyst for peroxydisulfate activation towards antibiotics degradation; (b) Proposed transformation pathways of NOR degradation; (c) Possible reaction mechanism for the simultaneous removals of NOR by the biochar-loaded MIL-53(Fe) derivatives (1.0-BC@FexC/PDS) process[41]
H2BDC—1, 4-terephthalic acid; DMF—N, N-dimethyl formamide
图 6 (a) CoFe2O4/BC/PMS/SMX体系可能的催化降解机制;$\text{SO}_{4}^{-}{\text{•}} $和 HO• (b)、 1O2 (c)在不同体系中的EPR谱;(d) SMX在CoFe2O4/BC/PMS体系中可能的降解途径[27]
Figure 6. (a) Possible catalytic degradation mechanism over CoFe2O4/BC/PMS/SMX system; EPR spectra of $\text{SO}_{4}^{-}{\text{•}} $ and HO• (b), 1O2 (c) in different systems; (d) Possible degradation pathways of SMX in the CoFe2O4/BC/PMS system[27]
表 1 不同生物质来源制备的磁性生物炭复合材料的催化性能
Table 1. Catalytic properties of magnetic biochar materials prepared from different biomass sources
Magnetic biochar Source Magnetic
substancePreparation method PS Antibiotics Active
substanceRemoval efficiency/% Ref. Magnetic rape straw biochar Rape straw Fe3O4 Pyrolysis PDS TC $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 99.0 [26] CoFe2O4/biochar Rape straw CoFe2O4 Solvothermal PMS SMX $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 93.0 [27] Magnetic biochar Rice straw Fe3C
Fe4NPyrolysis PDS TC $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 90.5 [28] Coral reef-like FeS2/biochar Corn stalks FeS2 Solvothermal PMS TC $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 100.0 [29] Modified red mud biochar Corn straw Fe3O4 Pyrolysis PDS LFX $\text{SO}_{4}^{-}{\text{•}} $ and HO• 88.6 [30] Fe3O4 supported by N-doped biochar Corncob Fe3O4
ZnFe2O4Coprecipitation PDS TC $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 91.6 [31] Nitrogen-doped magnetic carbon nanotubes-bridged biochar Rice husk Fe3O4 Impregnation-
pyrolysisPMS SMX $\text{SO}_{4}^{-}{\text{•}} $, HO• and 1O2 98.2 [32] Magnetic iron-char
compositesPeanut shells Fe3O4 Impregnation-
pyrolysisPDS SMX $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 99.4 [33] FeS@biochar Peanut shells FeS Pyrolysis PDS SMT $\text{SO}_{4}^{-}{\text{•}} $, HO• and 1O2 96.4 [34] Magnetic loofah biochar Loofah Fe2O3 Impregnation-
pyrolysisPDS CEX $\text{SO}_{4}^{-}{\text{•}} $ and HO• 73.9 [35] Cobalt and iron coloaded pomelo peel biochar composite Pomelo peels CoFe2O4 Impregnation and
coprecipitationPMS TC $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 86.2 [36] MgFe2O4/biochar Pomelo peels MgFe2O4 Coprecipitation PDS LFX $\text{O}_{2}^{-} {\text{•}}$ and 1O2 87.9 [37] MnFe2O4/biochar Banana
pseudo-stemMnFe2O4 Sol-gel pyrolysis PDS TC $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 94.7 [38] Lanthanum-doped
magnetic biocharBagasse Fe3O4 Impregnation-
pyrolysisPDS FLO $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 99.5 [39] Mn doped magnetic biochar Bamboo Fe3O4, Fe3C
and MnFe2O4Impregnation-
pyrolysisPDS TC $\text{SO}_{4}^{-}{\text{•}} $ and HO• 93.0 [40] Biochar-loaded MIL-53(Fe) derivatives Bamboo Fe3O4, Fe0 and
α-Fe2O3Pyrolysis PDS NOR $\text{SO}_{4}^{-}{\text{•}} $, HO• and 1O2 91.2 [41] FeS@biochar Pine sawdust FeS Ball milling PDS TC $\text{SO}_{4}^{-}{\text{•}} $ and HO• 87.4 [42] Potassium-doped magnetic
biocharPine sawdust Fe3O4,
α-Fe2O3Impregnation-
pyrolysisPDS MNZ $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 98.4 [43] Mn-based magnetic biochar Pine sawdust Fe3O4 Impregnation-
pyrolysisPDS MNZ $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 95.6 [44] Nitrogen-rich magnetic
biocharPine sawdust Fe3O4,
α-Fe2O3Impregnation-
pyrolysisPDS MNZ $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 99.6 [45] CoFe2O4/biochar Sludge/pine
needleCoFe2O4 Hydrothermal PMS TC SO4−• and HO• 99.8 [46] Magnetic N-doped iron sludge based biochar Sycamore leaves and sludge Fe3O4 Pyrolysis PDS TC $\text{SO}_{4}^{-}{\text{•}} $, HO• and 1O2 86.6 [47] MnFe2O4/biochar Eichhornia crassipes MnFe2O4 Coprecipitation PMS TC,
SMX$\text{SO}_{4}^{-}{\text{•}} $, HO• and 1O2 90.1
96.5[48] Co/N co-doped biochar Kelp Co Pyrolysis PMS TC $\text{SO}_{4}^{-}{\text{•}} $, HO• and 1O2 99.0 [49] Copper doping in magnetic
biocharCow dung Fe3O4 Impregnation-
pyrolysisPMS SMX,
CIP$\text{SO}_{4}^{-}{\text{•}} $, HO•, O2•−and 1O2 91.7
97.3[21] Magnetic biochar Piggery sludge Fe3O4
α-Fe2O3Coprecipitation PMS TC $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 77.2 [50] Fe/Mn bimetal co-functionalized sludge biochar Sludge Fe3O4 Impregnation-
pyrolysisPDS SMX 1O2 98.8 [51] Magnetic nitrogen-doped
sludge-derived biocharSludge γ-Fe2O3 Pyrolysis PDS TC $\text{SO}_{4}^{-}{\text{•}} $ and HO• 82.2 [52] N-functionalized sewage sludge -red mud complex biochar Sludge Fe3O4 Pyrolysis PMS SMX $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 97.5 [53] Co-Fe/SiO2 Iron sludge Co-Fe-LBH Solvothermal PMS CIP $\text{SO}_{4}^{-}{\text{•}} $ and HO• 98.0 [54] Iron-loaded biochar Fermentation dreg Fe3O4 Coprecipitation PDS TC $\text{SO}_{4}^{-}{\text{•}} $, HO•, $\text{O}_{2}^{-} {\text{•}}$ and 1O2 85.1 [55] Notes: LBH—Layered double hydroxide; PS—Persulfate; PMS—Peroxymonosulfate; PDS—Peroxysulphate; TC—Tetracycline; SMX—Sulfamethoxazole; SMT—Sulfamethazine; CEX—Cephalexin; LFX—Levofloxacin; FLO—Florfenicol; NOR—Norfloxacin; MNZ—Metronidazole; CIP—Ciprofloxacin. 表 2 不同制备磁性生物炭复合材料方法的优点和缺点
Table 2. Advantages and disadvantages of different preparation methods
Preparation method Advantage Disadvantage Ref. Impregnation-pyrolysis Magnetization and pyrolysis at the same time,
simple operationGas pollutants are easy to cause secondary pollution, high temperature energy-consuming crystallinity, size and porosity are difficult to control. [25, 57-59] Coprecipitation Simple operation, controlled reaction The introduction of alkaline reagents is required, and the usable surface area of the prepared material is small. [60-61] Hydrothermal Low temperatures (100-300℃), mild reaction conditions, no need for bases or strong reducing agents, no need for energy-intensive pre-drying processes Higher dependence on production equipment [18, 22, 62-63] Chemical reduction Convenient operation, controllable reaction,
high product purityReducing agents added are toxic and need to be stored and used properly. [64] -
[1] VAN BOECKEL T P, BROWER C, GILBERT M, et al. Global trends in antimicrobial use in food animals[J]. Proceedings of the National Academy of Sciences, 2015, 112(18): 5649-5654. doi: 10.1073/pnas.1503141112 [2] GHANBARI F, AHMADI M, GOHARI F. Heterogeneous activation of peroxymonosulfate via nanocomposite CeO2-Fe3O4 for organic pollutants removal: The effect of UV and US irradiation and application for real wastewater[J]. Separation and Purification Technology, 2019, 228: 115732. doi: 10.1016/j.seppur.2019.115732 [3] JJEMBA P K. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment[J]. Ecotoxicology and Environmental Safety, 2006, 63(1): 113-130. doi: 10.1016/j.ecoenv.2004.11.011 [4] KÜMMERER K. Drugs in the environment emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources a review[J]. Chemosphere, 2001, 45: 957-969. doi: 10.1016/S0045-6535(01)00144-8 [5] LI N, YE J, DAI H, et al. A critical review on correlating active sites, oxidative species and degradation routes with persulfate-based antibiotics oxidation[J]. Water Research, 2023, 235: 119926. doi: 10.1016/j.watres.2023.119926 [6] TANG R, GONG D, DENG Y, et al. π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2022, 423: 126944. doi: 10.1016/j.jhazmat.2021.126944 [7] LIN K Y A, ZHANG Z Y. Degradation of bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 313: 1320-1327. doi: 10.1016/j.cej.2016.11.025 [8] AHN Y Y, BAE H, KIM H I, et al. Surface-loaded metal nanoparticles for peroxymonosulfate activation: Efficiency and mechanism reconnaissance[J]. Applied Catalysis B: Environmental, 2019, 241: 561-569. doi: 10.1016/j.apcatb.2018.09.056 [9] ZHOU J, LI X, YUAN J, et al. Efficient degradation and toxicity reduction of tetracycline by recyclable ferroferric oxide doped powdered activated charcoal via peroxymonosulfate (PMS) activation[J]. Chemical Engineering Journal, 2022, 441: 136061. doi: 10.1016/j.cej.2022.136061 [10] XIE J, ZHANG L, LUO X, et al. Sulfur anchored on N-doped porous carbon as metal-free peroxymonosulfate activator for tetracycline hydrochloride degradation: Nonradical pathway mechanism, performance and biotoxicity[J]. Chemical Engineering Journal, 2023, 457: 141149. doi: 10.1016/j.cej.2022.141149 [11] PENG Y, XIE G, SHAO P, et al. A comparison of SMX degradation by persulfate activated with different nanocarbons: Kinetics, transformation pathways, and toxicity[J]. Applied Catalysis B: Environmental, 2022, 310: 121345. doi: 10.1016/j.apcatb.2022.121345 [12] WANG Y, PAN T, YU Y, et al. A novel peroxymonosulfate (PMS)-enhanced iron coagulation process for simultaneous removal of trace organic pollutants in water[J]. Water Research, 2020, 185: 116136. doi: 10.1016/j.watres.2020.116136 [13] 张洪涛, 刘涛, 杨宗建, 等. 铁基生物炭活化过硫酸盐处理有机废水的研究进展[J]. 工业水处理, 2023, 43(6): 22-31.ZHANG Hongtao, LIU Tao, YANG Zongjian, et al. Research progress in the treatment of organic wastewater by iron-based biochar activated persulfate[J]. Industrial Water Treatmen, 2023, 43(6): 22-31(in Chinese). [14] 王俊辉, 张菁玮, 孙静, 等. 铁酸镍负载杉木屑生物炭活化过一硫酸盐降解磷酸氯喹[J]. 复合材料学报, 2024, 41(8): 4310-4323.WANG Junhui, ZHANG Jingwei, SUN Jing, et al. Preparation of nickel ferrite loaded fir sawdust biochar to activate peroxymonosulfate for chloroquine phosphate degradation[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4310-4323(in Chinese). [15] ZHENG X, NIU X, ZHANG D, et al. Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: A review[J]. Chemical Engineering Journal, 2022, 429: 132323. doi: 10.1016/j.cej.2021.132323 [16] HUANG P, ZHANG P, WANG C, et al. Enhancement of persulfate activation by Fe-biochar composites: Synergism of Fe and N-doped biochar[J]. Applied Catalysis B: Environmental, 2022, 303: 120926. doi: 10.1016/j.apcatb.2021.120926 [17] GAO Y, WANG Q, JI G, et al. Degradation of antibiotic pollutants by persulfate activated with various carbon materials[J]. Chemical Engineering Journal, 2022, 429: 132387. doi: 10.1016/j.cej.2021.132387 [18] 朱浩, 杜春艳, 曹姣, 等. 磁性硅酸盐纳米材料在光催化降解有机污染物中的研究进展[J]. 复合材料学报, 2024, 41(11): 5677-5688.(还有待确定ZHU Hao, DU Chunyan, CAO Jiao, et al. Research progress of magnetic silicate nanomaterials for photocatalytic degradation of organic pollutants[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5677-5688(in Chinese). [19] ZHANG Y, ZHANG B T, TENG Y, et al. Heterogeneous activation of persulfate by carbon nanofiber supported Fe3O4@carbon composites for efficient ibuprofen degradation[J]. Journal of Hazardous Materials, 2021, 401: 123428. doi: 10.1016/j.jhazmat.2020.123428 [20] LI Q, TANG Y, ZHOU B, et al. Resource utilization of tannery sludge to prepare biochar as persulfate activators for highly efficient degradation of tetracycline[J]. Bioresource Technology, 2022, 358: 127417. doi: 10.1016/j.biortech.2022.127417 [21] WANG C B, DAI H X, LIANG L, et al. Enhanced mechanism of copper doping in magnetic biochar for peroxymonosulfate activation and sulfamethoxazole degradation[J]. Journal of Hazardous Materials, 2023, 458: 132002. [22] 苏浩杰, 吴俊峰, 王召东, 等. 生物炭及其复合材料活化过硫酸盐研究进展[J]. 材料工程, 2023, 51(2): 80-90. doi: 10.11868/j.issn.1001-4381.2021.001201SU Haojie, WU Junfeng, WANG Zhaodong, et al. Research progress in biochar and its composites activated persulfate[J]. Journal of Materials Engineering, 2023, 51(2): 80-90(in Chinese). doi: 10.11868/j.issn.1001-4381.2021.001201 [23] 毛懿德, 铁柏清, 叶长城, 等 生物炭对重污染土壤镉形态及油菜吸收镉的影响[J]. 生态与农村环境学报, 2015, 31(4): 579-582.MAO Yide, TIE Boqing, YE Changcheng, et al. Effects of biochar on forms and uptake of cadmium by rapeseed in cadmium-polluted soil[J]. Journal of Ecology and Rural Environment, 2015, 31(4): 579-582(in Chinese). [24] 梁锦芝, 许伟城, 赖树锋, 等. 磁性生物炭的制备及其活化过一硫酸盐的研究进展[J]. 环境化学, 2021, 40(9): 2901-2911. doi: 10.7524/j.issn.0254-6108.2021022301LIANG Jinzhi, XU Weicheng, LAI Shufeng, et al. Research progress on preparation and peroxymonosulfate activation of magnetic biochar[J]. Environmental Chemistry, 2021, 40(9): 2901-2911(in Chinese). doi: 10.7524/j.issn.0254-6108.2021022301 [25] 魏太庆, 王博, 艾丹, 等. 磁性生物炭的制备及其在环境修复中的研究进展[J]. 功能材料, 2021, 52(10): 10039-10047. doi: 10.3969/j.issn.1001-9731.2021.10.006WEI Taiqing, WANG Bo, Al Dan, et al. Preparation of magnetic biochar and its application in environmental remediation[J]. Journal of Functional Materials, 2021, 52(10): 10039-10047(in Chinese). doi: 10.3969/j.issn.1001-9731.2021.10.006 [26] HUANG H, GUO T, WANG K, et al. Efficient activation of persulfate by a magnetic recyclable rape straw biochar catalyst for the degradation of tetracycline hydrochloride in water[J]. Science of the Total Environment, 2021, 758: 143957. doi: 10.1016/j.scitotenv.2020.143957 [27] XIONG M, SUN Y, CHAI B, et al. Efficient peroxymonosulfate activation by magnetic CoFe2O4 nanoparticle immobilized on biochar toward sulfamethoxazole degradation: Performance, mechanism and pathway[J]. Applied Surface Science, 2023, 615: 156398. doi: 10.1016/j.apsusc.2023.156398 [28] ZHUO S N, SUN H, WANG Z Y, et al. A magnetic biochar catalyst with dual active sites of Fe3C and Fe4N derived from floc: The activation mechanism for persulfate on degrading organic pollutant[J]. Chemical Engineering Journal, 2023, 455: 140702. doi: 10.1016/j.cej.2022.140702 [29] HUANG Y, CHEN Y, LI X, et al. One-step solvothermal construction of coral reef-like FeS2/biochar to activate peroxymonosulfate for efficient organic pollutant removal[J]. Separation and Purification Technology, 2023, 308: 122976. doi: 10.1016/j.seppur.2022.122976 [30] YANG Z, AN Q, DENG S, et al. Efficient activation of peroxydisulfate by modified red mud biochar derived from waste corn straw for levofloxacin degradation: Efficiencies and mechanisms[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111609. doi: 10.1016/j.jece.2023.111609 [31] GUO P, ZHOU Y, ZHANG Y, et al. Insights into the well-dispersed nano-Fe3O4 catalyst supported by N-doped biochar prepared from steel pickling waste liquor for activating peroxydisulfate to degrade tetracycline[J]. Chemical Engineering Journal, 2023, 464: 142548. doi: 10.1016/j.cej.2023.142548 [32] LIU T, WANG Q, LI C, et al. Synthesizing and characterizing Fe3O4 embedded in N-doped carbon nanotubes-bridged biochar as a persulfate activator for sulfamethoxazole degradation[J]. Journal of Cleaner Production, 2022, 353: 131669. doi: 10.1016/j.jclepro.2022.131669 [33] LIANG J, DUAN X, XU X, et al. Persulfate oxidation of sulfamethoxazole by magnetic iron-char composites via nonradical pathways: Fe(IV) versus surface-mediated electron transfer[J]. Environmental Science & Technology, 2021, 55(14): 10077-10086. [34] JIN Z, LI Y, DONG H, et al. A comparative study on the activation of persulfate by mackinawite@biochar and pyrite@biochar for sulfamethazine degradation: The role of different natural iron-sulfur minerals doping[J]. Chemical Engineering Journal, 2022, 448: 13760. [35] SONG H, LI Q, YE Y, et al. Degradation of cephalexin by persulfate activated with magnetic loofah biochar: Performance and mechanism[J]. Separation and Purification Technology, 2021, 272: 118971. doi: 10.1016/j.seppur.2021.118971 [36] HAN S, XIAO P. Catalytic degradation of tetracycline using peroxymonosulfate activated by cobalt and iron co-loaded pomelo peel biochar nanocomposite: Characterization, performance and reaction mechanism[J]. Separation and Purification Technology, 2022, 287: 120533. doi: 10.1016/j.seppur.2022.120533 [37] YAO B, LUO Z, DU S, et al. Magnetic MgFe2O4/biochar derived from pomelo peel as a persulfate activator for levofloxacin degradation: Effects and mechanistic consideration[J]. Bioresource Technology, 2022, 346: 126547. doi: 10.1016/j.biortech.2021.126547 [38] WANG L, LU X, CHEN G, et al. Synergy between MgFe2O4 and biochar derived from banana pseudo-stem promotes persulfate activation for efficient tetracycline degradation[J]. Chemical Engineering Journal, 2023, 468: 143773. doi: 10.1016/j.cej.2023.143773 [39] PENG Y, XUE C, LUO J, et al. Lanthanum-doped magnetic biochar activating persulfate in the degradation of florfenicol[J]. Science of the Total Environment, 2024, 916: 170312. doi: 10.1016/j.scitotenv.2024.170312 [40] HUANG D, ZHANG Q, ZHANG C, et al. Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline[J]. Chemical Engineering Journal, 2020, 391: 123532. doi: 10.1016/j.cej.2019.123532 [41] TONG J, CHEN L, CAO J, et al. Biochar supported magnetic MIL-53-Fe derivatives as an efficient catalyst for peroxydisulfate activation towards antibiotics degradation[J]. Separation and Purification Technology, 2022, 294: 121064. doi: 10.1016/j.seppur.2022.121064 [42] HE J, TANG J, ZHANG Z, et al. Magnetic ball-milled FeS@biochar as persulfate activator for degradation of tetracycline[J]. Chemical Engineering Journal, 2021, 404: 126997. doi: 10.1016/j.cej.2020.126997 [43] LUO J, YI Y, ZHOU L, et al. Impacts of anions on activated persulfate oxidation of Fe(II)-rich potassium doped magnetic biochar[J]. Chemosphere, 2023, 310: 136693. doi: 10.1016/j.chemosphere.2022.136693 [44] LUO J, YI Y, FANG Z. Effect of Mn-based magnetic biochar/PS reaction system on oxidation of metronidazole[J]. Chemosphere, 2023, 332: 138747. doi: 10.1016/j.chemosphere.2023.138747 [45] LUO J, YI Y, FANG Z. Nitrogen-rich magnetic biochar prepared by urea was used as an efficient catalyst to activate persulfate to degrade organic pollutants[J]. Chemosphere, 2023, 339: 139614. doi: 10.1016/j.chemosphere.2023.139614 [46] HUANG N, WANG T, WU Y, et al. Preparation of magnetically recyclable hierarchical porous sludge-pine needle derived biochar loaded CoFe2O4 nanoparticles for rapid degradation of tetracycline by activated PMS[J]. Materials Today Communications, 2023, 35: 106313. doi: 10.1016/j.mtcomm.2023.106313 [47] ZENG H, LI J, XU J, et al. Preparation of magnetic N-doped iron sludge based biochar and its potential for persulfate activation and tetracycline degradation[J]. Journal of Cleaner Production, 2022, 378: 134519. doi: 10.1016/j.jclepro.2022.134519 [48] CHEN X L, LI H, LAI L, et al. Peroxymonosulfate activation using MnFe2O4 modified biochar for organic pollutants degradation: Performance and mechanisms[J]. Separation and Purification Technology, 2023, 308: 122886. doi: 10.1016/j.seppur.2022.122886 [49] ZHU H, GUO A, WANG S, et al. Efficient tetracycline degradation via peroxymonosulfate activation by magnetic Co/N co-doped biochar: Emphasizing the important role of biochar graphitization[J]. Chemical Engineering Journal, 2022, 450: 138428. doi: 10.1016/j.cej.2022.138428 [50] LUO X, SHEN M, LIU J, et al. Resource utilization of piggery sludge to prepare recyclable magnetic biochar for highly efficient degradation of tetracycline through peroxymonosulfate activation[J]. Journal of Cleaner Production, 2021, 294: 126372. doi: 10.1016/j.jclepro.2021.126372 [51] MA Y, CHEN X, TANG J, et al. An in-situ electrogenerated persulfate and its activation by functionalized sludge biochar for efficient degradation of sulfamethoxazole[J]. Journal of Cleaner Production, 2023, 423: 138768. doi: 10.1016/j.jclepro.2023.138768 [52] YU J, TANG L, PANG Y, et al. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism[J]. Chemical Engineering Journal, 2019, 364: 146-159. doi: 10.1016/j.cej.2019.01.163 [53] LIANG L, CHEN G, LI N, et al. Active sites decoration on sewage sludge-red mud complex biochar for persulfate activation to degrade sulfanilamide[J]. Journal of Colloid and Interface Science, 2022, 608: 1983-1998. doi: 10.1016/j.jcis.2021.10.150 [54] ZHU S, XU Y, ZHU Z, et al. Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 384: 123298. doi: 10.1016/j.cej.2019.123298 [55] WANG M, WANG Y, LI Y, et al. Persulfate oxidation of tetracycline, antibiotic resistant bacteria, and resistance genes activated by Fe doped biochar catalysts: Synergy of radical and non-radical processes[J]. Chemical Engineering Journal, 2023, 464: 142558. doi: 10.1016/j.cej.2023.142558 [56] FENG Z Q, ZHOU B H, YUAN R F, et al. Biochar derived from different crop straws as persulfate activator for the degradation of sulfadiazine: Influence of biomass types and systemic cause analysis[J]. Chemical Engineering Journal, 2022, 440: 135669. doi: 10.1016/j.cej.2022.135669 [57] YI Y, TU G, ZHAO D, et al. Pyrolysis of different biomass pre-impregnated with steel pickling waste liquor to prepare magnetic biochars and their use for the degradation of metronidazole[J]. Bioresource Technology, 2019, 289: 121613. doi: 10.1016/j.biortech.2019.121613 [58] MA Y, WANG Q, SUN X, et al. A novel magnetic biochar from spent shiitake substrate: Characterization and analysis of pyrolysis process[J]. Biomass Conversion and Biorefinery, 2014, 5(4): 339-346. [59] PEIXOTO B S, DE OLIVEIRA MOTA L S, DIAS I M, et al. An alternative synthesis of magnetic biochar from green coconut husks and its application for simultaneous and individual removal of caffeine and salicylic acid from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110835. doi: 10.1016/j.jece.2023.110835 [60] AN T Y, CHANG Y F, XIE J X, et al. Deciphering physicochemical properties and enhanced microbial electron transfer capacity by magnetic biochar[J]. Bioresource Technology, 2022, 363: 127894. doi: 10.1016/j.biortech.2022.127894 [61] SHANG J, PI J, ZONG M, et al. Chromium removal using magnetic biochar derived from herb-residue[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68: 289-294. doi: 10.1016/j.jtice.2016.09.012 [62] YI Y, HUANG Z, LU B, et al. Magnetic biochar for environmental remediation: A review[J]. Bioresource Technology, 2020, 298: 122468. doi: 10.1016/j.biortech.2019.122468 [63] ÁLVAREZ M L, GASCÓ G, PALACIOS T, et al. Fe oxides-biochar composites produced by hydrothermal carbonization and pyrolysis of biomass waste[J]. Journal of Analytical and Applied Pyrolysis, 2020, 151: 104893. doi: 10.1016/j.jaap.2020.104893 [64] LI P, LIN K, FANG Z, et al. Enhanced nitrate removal by novel bimetallic Fe/Ni nanoparticles supported on biochar[J]. Journal of Cleaner Production, 2017, 151: 21-33. doi: 10.1016/j.jclepro.2017.03.042 [65] YANG F, ZHANG S, SUN Y, et al. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal[J]. Bioresource Technology, 2018, 265: 490-497. doi: 10.1016/j.biortech.2018.06.029 [66] MENG Y, CHEN D, SUN Y, et al. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method[J]. Applied Surface Science, 2015, 324: 745-750. doi: 10.1016/j.apsusc.2014.11.028 [67] 李玉梅, 王畅, 张连科, 等. 生物炭/铁酸镧磁性复合材料的制备及对亚甲基蓝的吸附性能[J]. 环境污染与防治, 2020, 42(7): 826-832.LI Yumei, WANG Chang, ZHANG Lianke, et al. Preparation of biochar/LaFeO3, magnetic composite material and adsorption properties for methylene blue[J]. Environmental Pollution & Control, 2020, 42(7): 826-832(in Chinese). [68] TANG L, LIU Y, WANG J, et al. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism[J]. Applied Catalysis B: Environmental, 2018, 231: 1-10. doi: 10.1016/j.apcatb.2018.02.059 [69] LIU H, XU G, LI G. Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline[J]. Journal of Colloid and Interface Science, 2021, 587: 271-278. doi: 10.1016/j.jcis.2020.12.014 [70] 武利园, 郭朋朋, 李海燕, 等. MoS2催化活化单过硫酸盐降解有机污染物研究现状[J]. 复合材料学报, 2021, 38(5): 1348-1357.WU Liyuan, GUO Pengpeng, LI Haiyan, et al. MoS2 catalyzed peroxymonosulfate activation for organic pollutants degradation: A review[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1348-1357(in Chinese). [71] 荣幸. 磁性生物炭活化过硫酸盐降解水中有机污染物的研究[D]. 济南: 山东大学, 2019.RONG Xing. Activation of persulfate by magnetic biochar for organic contaminants degradation in water[D]. Jinan: Shandong University, 2019(in Chinese). [72] ZHAO C, SHAO B, YAN M, et al. Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: A review[J]. Chemical Engineering Journal, 2021, 416: 128829. doi: 10.1016/j.cej.2021.128829 [73] SONG T, KANG X, GUO C, et al. Recent advances in persulfate activation by magnetic ferrite-carbon composites for organic contaminants degradation: Role of carbon materials and environmental application[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109087. doi: 10.1016/j.jece.2022.109087 [74] XIE J L, CHEN L, LUO X, et al. Degradation of tetracycline hydrochloride through efficient peroxymonosulfate activation by B, N co-doped porous carbon materials derived from metal-organic frameworks: Nonradical pathway mechanism[J]. Separation and Purification Technology, 2022, 281: 119887. doi: 10.1016/j.seppur.2021.119887 [75] ZHONG J, FENG Y, YANG B, et al. Accelerated degradation of sulfadiazine by nitrogen-doped magnetic biochar-activated persulfate: Role of oxygen vacancy[J]. Separation and Purification Technology, 2022, 289: 120735. doi: 10.1016/j.seppur.2022.120735 [76] LEE J, VON GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081. [77] YIN R, GUO W, WANG H, et al. Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: Direct oxidation and nonradical mechanisms[J]. Chemical Engineering Journal, 2018, 334: 2539-2546. doi: 10.1016/j.cej.2017.11.174 [78] CHEN J, FANG C, XIA W, et al. Selective transformation of β-lactam antibiotics by peroxymonosulfate: Reaction kinetics and nonradical mechanism[J]. Environmental Science & Technology, 2018, 52(3): 1461-1470. [79] 王宇航, 俞伟, 赵思钰, 等. 改性生物炭对水环境中抗生素类药物的吸附研究进展[J]. 环境工程, 2021, 39(12): 91-99, 134.WANG Yuhang, YU Wei, ZHAO Siyu, et al. Adsorption of antibiotic drugs in water environment by modified biochar: A review[J]. Environmental Engineering, 2021, 39(12): 91-99, 134(in Chinese). [80] YANG Y, JI W, LI X, et al. Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe0[J]. Journal of Hazardous Materials, 2022, 424: 127640. doi: 10.1016/j.jhazmat.2021.127640 [81] ZHANG X, WEI J, WANG C, et al. Recent advance of Fe-based bimetallic persulfate activation catalysts for antibiotics removal: Performance, mechanism, contribution of the key ROSs and degradation pathways[J]. Chemical Engineering Journal, 2024, 487: 150514. doi: 10.1016/j.cej.2024.150514 [82] TIAN N, TIAN X, NIE Y, et al. Biogenic manganese oxide: An efficient peroxymonosulfate activation catalyst for tetracycline and phenol degradation in water[J]. Chemical Engineering Journal, 2018, 352: 469-476. doi: 10.1016/j.cej.2018.07.061 [83] LIMA L M, SILVA B N M D, BARBOSA G, et al. β-lactam antibiotics: An overview from a medicinal chemistry perspective[J]. European Journal of Medicinal Chemistry, 2020, 208: 112829. doi: 10.1016/j.ejmech.2020.112829 [84] LEI J, DUAN P, LIU W, et al. Degradation of aqueous cefotaxime in electro-oxidation—electro-Fenton—persulfate system with Ti/CNT/SnO2-Sb-Er anode and Ni@NCNT cathode[J]. Chemosphere, 2020, 250: 126163. doi: 10.1016/j.chemosphere.2020.126163 [85] DUAN P, LIU W, LEI J, et al. Electrochemical mineralization of antibiotic ceftazidime with SnO2-Al2O3/CNT anode: Enhanced performance by peroxydisulfate/Fenton activation and degradation pathway[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103812. doi: 10.1016/j.jece.2020.103812 [86] DUAN P, CHEN D, HU X. Tin dioxide decorated on Ni-encapsulated nitrogen-doped carbon nanotubes for anodic electrolysis and persulfate activation to degrade cephalexin: Mineralization and degradation pathway[J]. Chemosphere, 2021, 269: 128740. doi: 10.1016/j.chemosphere.2020.128740