留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续纤维增强热塑性复合材料构件增材制造工艺力学及机制的多尺度模拟研究进展

燕鑫 王莘儒 刘思琴 常保宁 刘斐 祝颖丹 张武翔 丁希仑

燕鑫, 王莘儒, 刘思琴, 等. 连续纤维增强热塑性复合材料构件增材制造工艺力学及机制的多尺度模拟研究进展[J]. 复合材料学报, 2024, 41(9): 4502-4517. doi: 10.13801/j.cnki.fhclxb.20240722.005
引用本文: 燕鑫, 王莘儒, 刘思琴, 等. 连续纤维增强热塑性复合材料构件增材制造工艺力学及机制的多尺度模拟研究进展[J]. 复合材料学报, 2024, 41(9): 4502-4517. doi: 10.13801/j.cnki.fhclxb.20240722.005
YAN Xin, WANG Shenru, LIU Siqin, et al. Research progress in multi-scale modeling of processing mechanics and mechanism in additive manufacturing technology of continuous fiber reinforced thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4502-4517. doi: 10.13801/j.cnki.fhclxb.20240722.005
Citation: YAN Xin, WANG Shenru, LIU Siqin, et al. Research progress in multi-scale modeling of processing mechanics and mechanism in additive manufacturing technology of continuous fiber reinforced thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4502-4517. doi: 10.13801/j.cnki.fhclxb.20240722.005

连续纤维增强热塑性复合材料构件增材制造工艺力学及机制的多尺度模拟研究进展

doi: 10.13801/j.cnki.fhclxb.20240722.005
基金项目: 国家自然科学基金(12372106;52205003);浙江省自然科学基金(LD22E050011);宁波市科技创新2025重大专项(2022Z070;2023Z054)
详细信息
    通讯作者:

    刘斐,博士,博士后,研究方向为复合材料成型工艺优化 E-mail: feiliulf@buaa.edu.cn

    祝颖丹,博士,研究员,博士生导师,研究方向为复合材料制造及装备 E-mail: y.zhu@nimte.ac.cn

    张武翔,博士,教授,博士生导师,研究方向为复合材料成型装备研制 E-mail: zhangwuxiang@buaa.edu.cn

  • 中图分类号: V258; TB332

Research progress in multi-scale modeling of processing mechanics and mechanism in additive manufacturing technology of continuous fiber reinforced thermoplastic composites

Funds: National Natural Science Foundation of China (12372106; 52205003); Zhejiang Provincial Natural Science Foundation of China (LD22E050011); Ningbo Key Projects of Science and Technology Innovation 2025 Plan (2022Z070; 2023Z054)
  • 摘要: 连续纤维增强热塑性复合材料由于优异的力学和化学性能,具有广阔的应用前景。针对高性能复杂结构零件自动化制造需求,以自动铺放及连续纤维3D打印成型技术为代表的连续纤维增强热塑性复合材料的增材制造技术引起广泛关注。增材制造过程是一个包含多尺度、多物理场的复杂过程,工艺机制尚不明确,且热塑性聚合物具有熔点高、黏度大等特性,增大了加工难度,成型工艺控制极具挑战。由于成型过程包含一系列力学问题,采用多尺度工艺力学仿真,结合理论与实验研究可以构建成型工艺参数及成型工艺质量之间的关联,为优化工艺参数设计和装备模块设计提供理论支持。多尺度模拟工艺力学及机制研究涉及到对各类复杂物理现象的理解和捕捉,算法种类繁杂,模型构建难度大,使得多尺度工艺力学建模颇具挑战性。本文总结了近年来不同尺度模拟方法在自动铺放及连续纤维3D打印等连续纤维增强热塑性复合材料工艺机制研究方面的进展,并对未来的发展方向及应用前景进行了分析和展望。

     

  • 图  1  热塑性复合材料增材制造多尺度物理机制和工艺力学仿真方法[9-16]

    Figure  1.  Multi-scale physical mechanisms and process mechanics simulation methods for additive manufacturing of thermoplastic composites[9-16]

    图  2  (a)模块化铺丝机器人;(b)铺丝系统原理

    Figure  2.  (a) Modular AFP robot; (b) Principle of AFP system

    图  3  (a)FDM共挤出式打印原理;(b)FDM预浸料挤出式打印原理;(c)Markforged X7 3D 打印机[28];(d)、(e)西交研制FDM打印机[29];(f)、(g)三端进料式FDM打印机[30];(h)多轴FDM打印机原理;(i)多轴FDM打印机装置[31-32]

    Figure  3.  (a) Principle of co-extrusion FDM printing; (b) Principle of prepreg extrusion FDM printing; (c) Markforged X3 3D printer machine[28]; (d), (e) XJTU-developed FDM printer machine[29]; (f), (g) Triple-extruder FDM printer machine[30]; (h) principle of multi-axis FDM printer; (i) Multi-axis FDM printer machine[31-32]

    图  4  连续纤维3D打印界面原子模型[16]:(a)打印原理示意图;(b)原子模型构件思路及流程;(c)界面成型过程

    Figure  4.  Microscopic modeling of the interface in continuous fiber 3D printing[16]: (a) Schematic diagram of the printing principle; (b) All-atom model of the interface; (c) Snapshots of the interface formation process

    图  5  连续纤维三维浸渍模型[13]

    Figure  5.  Three-dimensional impregnation model of continuous fiber thermoplastic composite material in FDM process[13]

    图  6  (a) FDM传热边界条件示意图[36];(b) AFP传热边界条件示意图[83]

    Figure  6.  (a) Schematic diagram of thermal boundary conditions in the FDM model[36]; (b) Schematic diagram of thermal boundary conditions in the AFP model[83]

    图  7  复合材料增材制造的界面结合过程[39]

    Figure  7.  Interfacial bonding process in additive manufacturing of composite materials[39]

    图  8  FDM中界面结合过程中的孔洞缺陷示意图[95]

    Figure  8.  Schematic diagram of void defects in the interfacial bonding process in FDM[95]

    图  9  (a)自动铺放工艺的多尺度协同模拟[98];(b)连续纤维3D打印的多尺度优化模型[99]

    Figure  9.  (a) Multi-scale modeling of the automated fiber placement process[98]; (b) Multi-scale modeling of the 3D printing process[99]

    图  10  基于3D打印制造技术的数字孪生应用框架[112]

    Figure  10.  Digital twin framework based on 3D printing manufacturing technology[112]

  • [1] RAJAK D K, PAGAR D D, MENEZES P L, et al. Fiber-reinforced polymer composites: Manufacturing, properties, and applications[J]. Polymers, 2019, 11(10): 1667. doi: 10.3390/polym11101667
    [2] PRASHANTH S, SUBBAYA K, NITHIN K, et al. Fiber reinforced composites-a review[J]. Journal of Materials Science, 2017, 6(3): 2-6.
    [3] BARILE M, LECCE L, IANNONE M, et al. Thermoplastic composites for aerospace applications[M]. Revolutionizing Aircraft Materials and Processes. Springer, 2020: 87-114.
    [4] VALINO A D, DIZON J R C, ESPERA JR A H, et al. Advances in 3D printing of thermoplastic polymer composites and nanocomposites[J]. Progress in Polymer Science, 2019, 98: 101162. doi: 10.1016/j.progpolymsci.2019.101162
    [5] 胡记强, 王兵, 张涵其, 等. 热塑性复合材料构件的制备及其在航空航天领域的应用[J]. 宇航总体技术, 2020, 4(4): 61-70.

    HU Jiqiang, WANG Bing, ZHANG Hanqi, et al. Fabrication of thermoplastic composite components and their application in aerospace[J]. As-tronautical Systems Engineering Technology, 2020, 4(4): 61-70(in Chinese).
    [6] DONOUGH M J, ST JOHN N A, PHILIPS A W, et al. Process modelling of in-situ consolidated thermoplastic composite by automated fibre placement—A review[J]. Composites Part A: Applied Science and Manufacturing, 2022, 163: 107179. doi: 10.1016/j.compositesa.2022.107179
    [7] CAI R, JIN T. The effect of microstructure of unidirectional fibre-reinforced composites on mechanical properties under transverse loading: A review[J]. Journal of Reinforced Plastics and Composites, 2018, 37(22): 1360-1377. doi: 10.1177/0731684418796308
    [8] TIAN X, TODOROKI A, LIU T, et al. 3D printing of continuous fiber reinforced polymer composites: development, application, and prospective[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1(1): 100016. doi: 10.1016/j.cjmeam.2022.100016
    [9] 陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展[J]. 固体力学学报, 2018, 39(1): 1-68.

    CHEN Yuli, MA Yong, PAN Fei, et al. Research progress in multi-scale mechanics of composite materials[J]. Acta Mechanica Solida Sinica, 2018, 39(1): 1-68(in Chinese).
    [10] XIA H, LU J, DABIRI S, et al. Fully resolved numerical simulations of fused deposition modeling. Part I: fluid flow[J]. Rapid Prototyping Journal, 2018, 24(2): 463-476. doi: 10.1108/RPJ-12-2016-0217
    [11] GUAN X, PITCHUMANI R. Modeling of spherulitic crystallization in thermoplastic tow-placement process: spherulitic microstructure evolution[J]. Composites Science and Technology, 2004, 64(9): 1363-1374. doi: 10.1016/j.compscitech.2003.10.023
    [12] TIERNEY J, GILLESPIE JR J W. Modeling of heat transfer and void dynamics for the thermoplastic composite tow-placement process[J]. Journal of Composite Materials, 2003, 37(19): 1745-1768. doi: 10.1177/002199803035188
    [13] ZHANG J, YANG W, LI Y. Process-dependent multiscale modeling for 3D printing of continuous fiber-reinforced composites[J]. Additive Manufacturing, 2023, 73: 103680. doi: 10.1016/j.addma.2023.103680
    [14] GHNATIOS C, FAYAZBAKHSH K. Warping estimation of continuous fiber-reinforced composites made by robotic 3D printing[J]. Additive Manufacturing, 2022, 55: 102796. doi: 10.1016/j.addma.2022.102796
    [15] GUO H, YANG X, LI T. Molecular dynamics study of the behavior of a single long chain polyethylene on a solid surface[J]. Physical Review E, 2000, 61(4): 4185. doi: 10.1103/PhysRevE.61.4185
    [16] WANG S, YAN X, CHANG B, et al. Atomistic modeling of the effect of temperature on interfacial properties of 3D-printed continuous carbon fiber-reinforced polyamide 6 composite: From processing to loading[J]. ACS Applied Materials & Interfaces, 2023, 15(48): 56454-56463.
    [17] OROMIEHIE E, PRUSTY B G, COMPSTON P, et al. Automated fibre placement based composite structures: Review on the defects, impacts and inspections techniques[J]. Composite Structures, 2019, 224: 110987. doi: 10.1016/j.compstruct.2019.110987
    [18] GRANT C. Automated processes for composite aircraft structure[J]. Industrial Robot: An International Journal, 2006, 33(2): 117-121. doi: 10.1108/01439910610651428
    [19] JAYASEKARA D, LAI N Y G, WONG K-H, et al. Level of automation (LOA) in aerospace composite manufacturing: Present status and future directions towards industry 4.0[J]. Journal of Manufacturing Systems, 2022, 62: 44-61. doi: 10.1016/j.jmsy.2021.10.015
    [20] MARSH G. Automating aerospace composites production with fibre placement[J]. Reinforced Plastics, 2011, 55(3): 32-37. doi: 10.1016/S0034-3617(11)70075-3
    [21] GAN D, DAI J S, DIAS J, et al. Singularity-free workspace aimed optimal design of a 2T2R parallel mechanism for automated fiber placement[J]. Journal of Mechanisms, 2015, 7(4): 041022.
    [22] ZHANG X, XIE W, HOA S V, et al. Design and analysis of collaborative automated fiber placement machine[J]. International Journal of Advanced Robotics, 2016, 1(1): 1-14.
    [23] ASSADI M, FIELD T. AFP processing of dry fiber carbon materials (DFP) for improved rates and reliability[J]. SAE International Journal of Advances and Current Practices in Mobility, 2020, 2(3): 1196-1201. doi: 10.4271/2020-01-0030
    [24] Coriolis. Coriolis C5 Compact-Fiber placement machine for 2D net shape blanks[EB/OL]. [2024-03-15]. https://www.coriolis-composites.com/fiber-placement-machines/coriolis-c5-compact/.
    [25] 邵忠喜. 纤维铺放装置及其铺放关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    SHAO Zhongxi. Research on key technology of fiber placement machine[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
    [26] 张小辉, 朱玉祥, 张少秋, 等. 先进复合材料自动铺丝技术研究进展[J]. 航空制造技术, 2018, 61(7): 54-61.

    ZHANG Xiaohui, ZHU Yuxiang, ZHANG Shaoqiu, et al. Research progress on automated fiber placement technology[J]. Aeronautical Manufacturing Technology, 2018, 61(7): 54-61(in Chinese).
    [27] ZHANG W, LIU F, TAO J, et al. Overview of current design and analysis of potential theories for automated fibre placement mechanisms[J]. Chinese Journal of Aeronautics, 2022, 35(4): 1-13. doi: 10.1016/j.cja.2021.04.018
    [28] Markforged. The digital forge platform[EB/OL]. [2024-03-15]. http://markforged.com/.
    [29] YANG C, TIAN X, LIU T, et al. 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance[J]. Rapid Prototyping Journal, 2017, 23(1): 209-215. doi: 10.1108/RPJ-08-2015-0098
    [30] PRüß H, VIETOR T. Design for fiber-reinforced additive manufacturing[J]. Journal of Mechanical Design, 2015, 137(11): 111409. doi: 10.1115/1.4030993
    [31] ZHANG K, ZHANG W, DING X. Multi-axis additive manufacturing process for continuous fibre reinforced composite parts[J]. Procedia CIRP, 2019, 85: 114-120. doi: 10.1016/j.procir.2019.09.022
    [32] SHANG J, ZHANG W, LIU F, et al. Z-direction performance and failure behavior of 3D printed continuous fiber reinforced composites with sinusoidal structure[J]. Composites Science and Technology, 2023, 239: 110069. doi: 10.1016/j.compscitech.2023.110069
    [33] AZAROV A, ANTONOV F, VASIL’EV V, et al. Development of a two-matrix composite material fabricated by 3D printing[J]. 2017, 10: 87-90.
    [34] PERVAIZ S, QURESHI T A, KASHWANI G, et al. 3D printing of fiber-reinforced plastic composites using fused deposition modeling: A status review[J]. Materials, 2021, 14(16): 4520. doi: 10.3390/ma14164520
    [35] WICKRAMASINGHE S, DO T, TRAN P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments[J]. Polymers, 2020, 12(7): 1529. doi: 10.3390/polym12071529
    [36] ADAM L, LIETAER O, MATHIEU S, et al. Numerical simulation of additive manufacturing of polymers and polymer-based composites[M]. Structure and Properties of Additive Manufactured Polymer Components. Elsevier, 2020: 115-146.
    [37] PENUMAKALA P K, SANTO J, THOMAS A. A critical review on the fused deposition modeling of thermoplastic polymer composites[J]. Composites Part B: Engineering, 2020, 201: 108336. doi: 10.1016/j.compositesb.2020.108336
    [38] 陈吉平, 李岩, 刘卫平, 等. 连续纤维增强热塑性树脂基复合材料自动铺放原位成型技术的航空发展现状[J]. 复合材料学报, 2019, 36(4): 784-794.

    CHEN Jiping, LI Yan, LIU Weiping, et al. Development of AFP in-situ consolidation technology on continuous fiber reinforced thermoplastic matrix composites in aviation[J]. Acta Materiae Compositae Sinica, 2019, 36(4): 784-794(in Chinese).
    [39] TURNER B N, STRONG R, GOLD S A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling[J]. Rapid Prototyping Journal, 2014, 20(3): 192-204.
    [40] PAQUET E, VIKTOR H L. Molecular dynamics, monte carlo simulations, and langevin dynamics: a computational review[J]. BioMed Research International, 2015, 2015(1): 183918.
    [41] LEE D C, KWON G, KIM H, et al. Three-dimensional Monte Carlo simulation of the electrical conductivity of carbon nanotube/polymer composites[J]. Applied Physics Express, 2012, 5(4): 045101. doi: 10.1143/APEX.5.045101
    [42] LIU B, HUANG Y, JIANG H, et al. The atomic-scale finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(17-20): 1849-1864. doi: 10.1016/j.cma.2003.12.037
    [43] ZHANG M, JIANG B, CHEN C, et al. The effect of temperature and strain rate on the interfacial behavior of glass fiber reinforced polypropylene composites: A molecular dynamics study[J]. Polymers (Basel), 2019, 11(11): 1766. doi: 10.3390/polym11111766
    [44] WANG X Q, JIAN W, BUYUKOZTURK O, et al. Degradation of epoxy/glass interface in hygrothermal environment: An atomistic investigation[J]. Composites Part B: Engineering, 2021, 206: 108534. doi: 10.1016/j.compositesb.2020.108534
    [45] YAN Y, XU J, ZHU H, et al. Molecular dynamics simulation of the interface properties of continuous carbon fiber/ polyimide composites[J]. Applied Surface Science, 2021, 563: 150370. doi: 10.1016/j.apsusc.2021.150370
    [46] DRISSI-HABTI M, EL ASSAMI Y, RAMAN V. Multiscale toughening of composites with carbon nanotubes—continuous multiscale reinforcement new concept[J]. Journal of Composites Science, 2021, 5(5): 135. doi: 10.3390/jcs5050135
    [47] JIANG B, ZHANG M, FU L, et al. Molecular dynamics simulation on the interfacial behavior of over-molded hybrid fiber reinforced thermoplastic composites[J]. Polymers (Basel), 2020, 12(6): 1270. doi: 10.3390/polym12061270
    [48] YAN X, CAO P, TAO W, et al. Atomistic modeling at experimental strain rates and timescales[J]. Journal of Physics D: Applied Physics, 2016, 49(49): 493002. doi: 10.1088/0022-3727/49/49/493002
    [49] BRENKEN B, BAROCIO E, FAVALORO A, et al. Fused filament fabrication of fiber-reinforced polymers: A review[J]. Additive Manufacturing, 2018, 21: 1-16. doi: 10.1016/j.addma.2018.01.002
    [50] NGO S I, LIM Y-I, HAHN M-H, et al. Prediction of degree of impregnation in thermoplastic unidirectional carbon fiber prepreg by multi-scale computational fluid dynamics[J]. Chemical Engineering Science, 2018, 185: 64-75. doi: 10.1016/j.ces.2018.04.010
    [51] BANERJEE R, RAY S S. Role of rheology in morphology development and advanced processing of thermoplastic polymer materials: A review[J]. ACS Omega, 2023, 8(31): 27969-28001. doi: 10.1021/acsomega.3c03310
    [52] AUSIAS G, DOLO G, CARTIÉ D, et al. Modeling and numerical simulation of laminated thermoplastic composites manufactured by laser-assisted automatic tape placement[J]. International Polymer Processing, 2020, 35(5): 471-480. doi: 10.1515/ipp-2020-350509
    [53] GAROFALO J, WALCZYK D. In situ impregnation of continuous thermoplastic composite prepreg for additive manufacturing and automated fiber placement[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106446. doi: 10.1016/j.compositesa.2021.106446
    [54] WANG F, WANG G, NING F, et al. Fiber–matrix impregnation behavior during additive manufacturing of continuous carbon fiber reinforced polylactic acid composites[J]. Additive Manufacturing, 2021, 37: 101661. doi: 10.1016/j.addma.2020.101661
    [55] YASHIRO S. Application of particle simulation methods to composite materials: a review[J]. Advanced Composite Materials, 2017, 26(1): 1-22. doi: 10.1080/09243046.2016.1222508
    [56] MORIKAWA D, SENADHEERA H, ASAI M. Explicit incompressible smoothed particle hydrodynamics in a multi-GPU environment for large-scale simulations[J]. Computational Particle Mechanics, 2021, 8: 493-510. doi: 10.1007/s40571-020-00347-0
    [57] LIU M, LI S. On the modeling of viscous incompressible flows with smoothed particle hydro-dynamics[J]. Journal of Hydrodynamics, Ser. B, 2016, 28(5): 731-745.
    [58] YANG D, WU K, WAN L, et al. A particle element approach for modelling the 3D printing process of fibre reinforced polymer composites[J]. Journal of Manufacturing and Materials Processing, 2017, 1(1): 10.
    [59] HE L, LU G, CHEN D, et al. Three-dimensional smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites[J]. Modelling and Simulation in Materials Science and Engineering, 2017, 25(5): 055007. doi: 10.1088/1361-651X/aa6dc9
    [60] MURMU U K, ADHIKARI J, NASKAR A, et al. Mechanical properties of crystalline and semicrystalline polymer systems[J]. Encyclopedia of Materials: Plastics and Polymers, 2022, 2: 917-927.
    [61] NING N, FU S, ZHANG W, et al. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization[J]. Progress in Polymer Science, 2012, 37(10): 1425-1455. doi: 10.1016/j.progpolymsci.2011.12.005
    [62] LU X, DETREZ F, ROLAND S. Numerical study of the relationship between the spherulitic microstructure and isothermal crystallization kinetics. Part I. 2-D analyses[J]. Polymer, 2019, 179: 121642. doi: 10.1016/j.polymer.2019.121642
    [63] DURIN A, CHENOT J-L, HAUDIN J-M, et al. Simulating polymer crystallization in thin films: Numerical and analytical methods[J]. European Polymer Journal, 2015, 73: 1-16.
    [64] RUAN C, OUYANG J, LIU S. Multi-scale modeling and simulation of crystallization during cooling in short fiber reinforced composites[J]. International Journal of Heat and Mass Transfer, 2012, 55(7-8): 1911-1921. doi: 10.1016/j.ijheatmasstransfer.2011.11.046
    [65] GRÁNÁSY L, PUSZTAI T, BÖRZSÖNYI T, et al. Phase field theory of crystal nucleation and polycrystalline growth: A review[J]. Journal of materials research, 2006, 21(2): 309-319. doi: 10.1557/jmr.2006.0011
    [66] BAHLOUL A, DOGHRI I, ADAM L. An enhanced phase field model for the numerical simulation of polymer crystallization[J]. Polymer Crystallization, 2020, 3(4): e10144.
    [67] FAN M, HE W, LI Q, et al. PTFE crystal growth in composites: A phase-field model simulation study[J]. Materials, 2022, 15(18): 6286. doi: 10.3390/ma15186286
    [68] RAABE D, GODARA A. Mesoscale simulation of the kinetics and topology of spherulite growth during crystallization of isotactic polypropylene (iPP) by using a cellular automaton[J]. Modelling and Simulation in Materials Science and Engineering, 2005, 13(5): 733. doi: 10.1088/0965-0393/13/5/007
    [69] FANG H, WANG X, GU J, et al. A novel crystallization kinetics model of transcrystalline used for crystallization behavior simulation of short carbon fiber-reinforced polymer composites[J]. Polymer Engineering & Science, 2019, 59(4): 854-862.
    [70] SPINA R, SPEKOWIUS M, HOPMANN C. Multiphysics simulation of thermoplastic polymer crystallization[J]. Materials & Design, 2016, 95: 455-469.
    [71] HALL K W, SIRK T W, KLEIN M L, et al. A coarse-grain model for entangled polyethylene melts and polyethylene crystallization[J]. The Journal of Chemical Physics, 2019, 150(24).
    [72] ELHAJJAR R, GRANT P N, ASHFORTH C. Composite structures: effects of defects[M]. 2018.
    [73] MEHDIKHANI M, GORBATIKH L, VERPOEST I, et al. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance[J]. Journal of Composite Materials, 2019, 53(12): 1579-1669. doi: 10.1177/0021998318772152
    [74] PITCHUMANI R, RANGANATHAN S, DON R, et al. Analysis of transport phenomena governing interfacial bonding and void dynamics during thermoplastic tow-placement[J]. International Journal of Heat and Mass Transfer, 1996, 39(9): 1883-1897. doi: 10.1016/0017-9310(95)00271-5
    [75] POLYZOS E, KATALAGARIANAKIS A, POLYZOS D, et al. A multi-scale analytical methodology for the prediction of mechanical properties of 3D-printed materials with continuous fibres[J]. Additive Manufacturing, 2020, 36: 101394. doi: 10.1016/j.addma.2020.101394
    [76] SENTHIL K, AROCKIARAJAN A, PALANINATHAN R, et al. Defects in composite structures: Its effects and prediction methods—A comprehensive review[J]. Composite Structures, 2013, 106: 139-149. doi: 10.1016/j.compstruct.2013.06.008
    [77] 张恒, 张雄, 乔丕忠. 近场动力学在断裂力学领域的研究进展[J]. 力学进展, 2022, 52(4): 852-873. doi: 10.6052/1000-0992-22-023

    ZHANG Heng, ZHANG Xiong, QIAO Pizhong. Advances of peri-dynamics in fracture mechanics[J]. Advances in Me-chanics, 2022, 52(4): 852-873(in Chinese). doi: 10.6052/1000-0992-22-023
    [78] NISHIKAWA M, MATSUDA N, HOJO M. Fiber-reinforced composites modeling using peridynamics[M]. Peridynamic Modeling, Numerical Techniques, and Applications. Elsevier, 2021: 309-326.
    [79] WU K. Computational modelling of fluid-solid interaction problems by coupling smoothed particles hydrodynamics and the discrete element method[D]. Leeds: University of Leeds, 2017.
    [80] XIA H, LU J, TRYGGVASON G. Fully resolved numerical simulations of fused deposition modeling. Part II–solidification, residual stresses and modeling of the nozzle[J]. Rapid Prototyping Journal, 2018, 24(6): 973-987. doi: 10.1108/RPJ-11-2017-0233
    [81] LIU Y, MUKHERJEE S, NISHIMURA N, et al. Recent advances and emerging applications of the boundary element method[J]. Applied Mechanics Reviews, 2011, 64(3): 030802. doi: 10.1115/1.4005491
    [82] 曹忠亮, 富宏亚, 付云忠, 等. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展: 热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900. doi: 10.11896/cldb.201905022

    CAO Zhongliang, FU Hongya, FU Yunzhong, et al. A review of robotic prepreg placement and in-situ consolidation for manufacturing fiber-reinforced thermoplastic composites: Heat transfer behavior and interlaminar properties[J]. Materials Reports, 2019, 33(5): 894-900(in Chinese). doi: 10.11896/cldb.201905022
    [83] KOLLMANNSBERGER A, LICHTINGER R, HOHENESTER F, et al. Numerical analysis of the temperature profile during the laser-assisted automated fiber placement of CFRP tapes with thermoplastic matrix[J]. Journal of Thermoplastic Composite Materials, 2017, 31(12): 1563-1586.
    [84] SUN Q, RIZVI G, BELLEHUMEUR C, et al. Effect of processing conditions on the bonding quality of FDM polymer filaments[J]. Rapid Prototyping Journal, 2008, 14(2): 72-80. doi: 10.1108/13552540810862028
    [85] RODRíGUEZ J F, THOMAS J P, RENAUD J E. Mechanical behavior of acrylonitrile butadiene styrene fused deposition materials modeling[J]. Rapid Prototyping Journal, 2003, 9(4): 219-230. doi: 10.1108/13552540310489604
    [86] FAN C, SHAN Z, ZOU G, et al. Interfacial bonding mechanism and mechanical performance of continuous fiber reinforced composites in additive manufacturing[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 21. doi: 10.1186/s10033-021-00538-7
    [87] LI Z, YANG T, DU Y. Dynamic finite element simulation and transient temperature field analysis in thermoplastic composite tape lay-up process[J]. Journal of Thermoplastic Composite Materials, 2015, 28(4): 558-573. doi: 10.1177/0892705713486135
    [88] BRASINGTON A, FRANCIS B, GODBOLD M, et al. A review and framework for modeling methodologies to advance automated fiber placement[J]. Composites Part C: Open Access, 2023, 10: 100347. doi: 10.1016/j.jcomc.2023.100347
    [89] YADAV N, SCHLEDJEWSKI R. Review of in-process defect monitoring for automated tape laying[J]. Composites Part A: Applied Science and Manufacturing, 2023, 173: 107654. doi: 10.1016/j.compositesa.2023.107654
    [90] ÇELIK O, PEETERS D, DRANSFELD C, et al. Intimate contact development during laser assisted fiber placement: Microstructure and effect of process parameters[J]. Composites Part A: Applied Science and Manufacturing, 2020, 134: 105888. doi: 10.1016/j.compositesa.2020.105888
    [91] CHENG J, ZHAO D, LIU K, et al. Modeling and impact analysis on contact characteristic of the compaction roller for composite automated placement[J]. Journal of Reinforced Plastics and Composites, 2018, 37(23): 1418-1432. doi: 10.1177/0731684418798151
    [92] DU J, WEI Z, WANG X, et al. An improved fused deposition modeling process for forming large-size thin-walled parts[J]. Journal of Materials Processing Technology, 2016, 234: 332-341. doi: 10.1016/j.jmatprotec.2016.04.005
    [93] PHAN D D, HORNER J S, SWAIN Z R, et al. Computational fluid dynamics simulation of the melting process in the fused filament fabrication additive manufacturing technique[J]. Additive Manufacturing, 2020, 33: 101161. doi: 10.1016/j.addma.2020.101161
    [94] THIEN N P, TANNER R I. A new constitutive equation derived from network theory[J]. Journal of Non-Newtonian Fluid Mechanics, 1977, 2(4): 353-365. doi: 10.1016/0377-0257(77)80021-9
    [95] FU Y, YAO X. Multi-scale analysis for 3D printed continuous fiber reinforced thermoplastic composites[J]. Composites Science and Technology, 2021, 216: 109065. doi: 10.1016/j.compscitech.2021.109065
    [96] SIMACEK P, ADVANI S G, GRUBER M, et al. A non-local void filling model to describe its dynamics during processing thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing, 2013, 46: 154-165. doi: 10.1016/j.compositesa.2012.10.015
    [97] JEBAHI M, DAU F, CHARLES J-L, et al. Multiscale modeling of complex dynamic problems: an overview and recent developments[J]. Archives of Computational Methods in Engineering, 2016, 23: 101-138. doi: 10.1007/s11831-014-9136-6
    [98] SUN S, HAN Z, ZHANG J, et al. Multiscale collaborative process optimization method for automated fiber placement[J]. Composite Structures, 2021, 259: 113215. doi: 10.1016/j.compstruct.2020.113215
    [99] LIU F, WANG S, ZHANG W, et al. Mechanical and interfacial analysis of 3D-printed two-matrix continuous carbon fibre composites for enhanced structural performance[J]. Composites Part A: Applied Science and Manufacturing, 2024, 180: 108105.
    [100] TOHIDI S D, ROCHA A M, DOURADO N, et al. Influence of transcrystalline layer on finite element mesoscale modeling of polyamide 6 based single polymer laminate composites[J]. Composite Structures, 2020, 232: 111555. doi: 10.1016/j.compstruct.2019.111555
    [101] CHENG Z-Q, LIU H, TAN W. Advanced computational modelling of composite materials[J]. Engineering Fracture Mechanics, 2024, 305: 110120.
    [102] NIKNAFS S, SILANI M, CONCLI F, et al. A coarse-grained concurrent multiscale method for simulating brittle fracture[J]. International Journal of Solids and Structures, 2022, 254: 111898.
    [103] MARKESTEIJN A, KARABASOV S, SCUKINS A, et al. Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2021): 20130379. doi: 10.1098/rsta.2013.0379
    [104] WANG C, TAN X P, TOR S B, et al. Machine learning in additive manufacturing: State-of-the-art and perspectives[J]. Additive Manufacturing, 2020, 36: 101538. doi: 10.1016/j.addma.2020.101538
    [105] WANIGASEKARA C, OROMIEHIE E, SWAIN A, et al. Machine learning based predictive model for AFP-based unidirectional composite laminates[J]. IEEE Transactions on Industrial Informatics, 2019, 16(4): 2315-2324.
    [106] BISHARA D, XIE Y, LIU W K, et al. A state-of-the-art review on machine learning-based multiscale modeling, simulation, homogenization and design of materials[J]. Archives of Computational Methods in Engineering, 2023, 30(1): 191-222. doi: 10.1007/s11831-022-09795-8
    [107] XIAO S, HU R, LI Z, et al. A machine-learning-enhanced hierarchical multiscale method for bridging from molecular dynamics to continua[J]. Neural Computing and Applications, 2020, 32: 14359-14373. doi: 10.1007/s00521-019-04480-7
    [108] INGÓLFSSON H I, BHATIA H, AYDIN F, et al. Machine learning-driven multiscale modeling: bridging the scales with a next-generation simulation infrastructure[J]. Journal of Chemical Theory and Computation, 2023, 19(9): 2658-2675. doi: 10.1021/acs.jctc.2c01018
    [109] FONTES A, SHADMEHRI F. Data-driven failure prediction of Fiber-Reinforced Polymer composite materials[J]. Engineering Applications of Artificial Intelligence, 2023, 120: 105834. doi: 10.1016/j.engappai.2023.105834
    [110] TANG Y, WANG Q, CHENG L, et al. An in-process inspection method integrating deep learning and classical algorithm for automated fiber placement[J]. Composite Structures, 2022, 300: 116051. doi: 10.1016/j.compstruct.2022.116051
    [111] CAI R, WEN W, WANG K, et al. Tailoring interfacial properties of 3D-printed continuous natural fiber reinforced polypropylene composites through parameter optimization using machine learning methods[J]. Materials Today Communications, 2022, 32: 103985. doi: 10.1016/j.mtcomm.2022.103985
    [112] SHEN T, LI B. Digital twins in additive manufacturing: a state-of-the-art review[J]. The International Journal of Advanced Manufacturing Technology, 2024, 131: 63-92.
    [113] WANG Y, TAO F, ZUO Y, et al. Digital-twin-enhanced quality prediction for the composite materials[J]. Engineering, 2023, 22: 23-33. doi: 10.1016/j.eng.2022.08.019
    [114] POLINI W, CORRADO A. Digital twin of composite assembly manufacturing process[J]. International Journal of Production Research, 2020, 58(17): 5238-5252. doi: 10.1080/00207543.2020.1714091
    [115] SOORI M, AREZOO B, DASTRES R. Digital twin for smart manufacturing, A review[J]. Sustainable Manufacturing and Service Economics, 2023, 2: 100017.
  • 加载中
图(10)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  44
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-31
  • 修回日期:  2024-06-27
  • 录用日期:  2024-07-05
  • 网络出版日期:  2024-07-23
  • 刊出日期:  2024-09-15

目录

    /

    返回文章
    返回