留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低温和氯盐作用对超高韧性水泥基复合材料碳化性能的影响

钱维民 苏骏 李扬 嵇威 赵家玉

钱维民, 苏骏, 李扬, 等. 超低温和氯盐作用对超高韧性水泥基复合材料碳化性能的影响[J]. 复合材料学报, 2023, 40(6): 3486-3498. doi: 10.13801/j.cnki.fhclxb.20220907.004
引用本文: 钱维民, 苏骏, 李扬, 等. 超低温和氯盐作用对超高韧性水泥基复合材料碳化性能的影响[J]. 复合材料学报, 2023, 40(6): 3486-3498. doi: 10.13801/j.cnki.fhclxb.20220907.004
QIAN Weimin, SU Jun, LI Yang, et al. Effect of ultra-low temperature and chloride on carbonation performance of ultra-high toughness cement-based composite[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3486-3498. doi: 10.13801/j.cnki.fhclxb.20220907.004
Citation: QIAN Weimin, SU Jun, LI Yang, et al. Effect of ultra-low temperature and chloride on carbonation performance of ultra-high toughness cement-based composite[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3486-3498. doi: 10.13801/j.cnki.fhclxb.20220907.004

超低温和氯盐作用对超高韧性水泥基复合材料碳化性能的影响

doi: 10.13801/j.cnki.fhclxb.20220907.004
基金项目: 湖北省自然科学基金(2020CFB860)The Natural Science Foundation of Hubei Province of China (2020CFB860)
详细信息
    通讯作者:

    苏骏,博士,教授,硕士生导师,研究方向为纤维混凝土及工程结构抗震 E-mail: sujun930@163.com

  • 中图分类号: TB332

Effect of ultra-low temperature and chloride on carbonation performance of ultra-high toughness cement-based composite

  • 摘要: 极地地区及海洋环境下的资源开采导致混凝土结构受到低温、碳化和氯离子渗透的共同作用,加剧了混凝土材料及其结构的劣化。超高韧性水泥基复合材料(UHTCC)作为一种新型复合材料,其耐久性是评价其工作性能的重要指标。通过对UHTCC材料在超低温作用和氯离子侵蚀后的快速碳化试验,研究了复杂环境作用下不同纤维体积掺量的UHTCC的抗碳化性能变化规律。结果表明:随着温度的降低,UHTCC材料的抗碳化性能明显降低,温度达到−160℃时其碳化深度最大增加约58.76%,适量的纤维掺入对UHTCC材料的抗碳化性能具有明显的提升作用,而超过最优掺量后其抗碳化性能反而有所降低,同时SEM表明氯离子能够细化混凝土内部孔隙,阻碍CO2在材料内部的进一步扩散。提出了极端复杂环境下UHTCC的碳化深度回归模型,研究结论为UHTCC在复杂环境中的工程应用提供参考。

     

  • 图  1  超高韧性水泥基复合材料(UHTCC)单轴拉伸应力-应变曲线

    Figure  1.  Uniaxial tensile stress-strain curve of ultra-high toughness cement-based composite (UHTCC)

    图  2  试验设备

    Figure  2.  Test equipment

    图  3  不同纤维掺量与UHTCC碳化深度关系

    Figure  3.  Relationship between different fiber content and carbonization depth of UHTCC

    图  4  氯离子侵蚀时间与UHTCC碳化深度关系

    Figure  4.  Relationship between chloride ion erosion time and carbonation depth of UHTCC

    图  5  温度与UHTCC碳化深度关系曲线

    Figure  5.  Relationship curves between temperature and carbonation depth of UHTCC

    图  6  UHTCC试样微观形态

    Figure  6.  Microstructures of UHTCC samples

    图  7  不同影响因素下UHTCC碳化模型及参数

    Figure  7.  Carbonation models and parameters of UHTCC under different influencing factors

    K—Carbonization factor; R2—Fit coefficient

    图  8  不同影响因素下UHTCC碳化因子关系曲线

    Figure  8.  Carbonation factor curves of UHTCC under different influencing factors

    图  9  不同影响因素下UHTCC损伤因子

    Figure  9.  Damage factors of UHTCC under different different influencing factors influencing factors

    图  10  复杂因素下UHTCC碳化深度计算值与试验值

    Figure  10.  Calculation and test values of carbonation depth for UHTCC under complex factors

    图  11  本文模型计算碳化深度与文献结果对比

    Figure  11.  Comparison between the calculated carbonation depth values of this model and the literature results

    表  1  聚乙烯醇(PVA)纤维性能指标

    Table  1.   Polyvinyl alcohol (PVA) fiber performance index

    NameDensity
    /(g·cm−3)
    Diameter
    /mm
    Length
    /mm
    Elastic modulus
    /MPa
    Tensile strength
    /MPa
    REC15×121.30.04121200526
    下载: 导出CSV

    表  2  试件分组

    Table  2.   Specimen grouping

    GroupVolume fraction
    φ/vol%
    Temperature/℃Chloride ion
    erosion
    time/day
    Carbonation
    time/day
    Fly ash/
    (kg·m−3)
    Cement/
    (kg·m−3)
    Sand/
    (kg·m−3)
    Silica fume/
    (kg·m−3)
    0vol%PVA/C0.2-E0020/0/−40/−80/−120/−160 00/7/14/28533.3120133.313.3
    0.5vol%PVA/C0.2-E00.520/0/−40/−80/−120/−160 00/7/14/28533.3120133.313.3
    1.0vol%PVA/C0.2-E01.020/0/−40/−80/−120/−160 00/7/14/28533.3120133.313.3
    1.5vol%PVA/C0.2-E01.520/0/−40/−80/−120/−160 00/7/14/28533.3120133.313.3
    2.0vol%PVA/C0.2-E02.020/0/−40/−80/−120/−160 00/7/14/28533.3120133.313.3
    1.5vol%PVA/C0.2 -E71.520/0/−40/−80/−120/−160 70/7/14/28533.3120133.313.3
    1.5vol%PVA/C0.2 -E141.520/0/−40/−80/−120/−160140/7/14/28533.3120133.313.3
    1.5vol%PVA/C0.2 -E281.520/0/−40/−80/−120/−160280/7/14/28533.3120133.313.3
    Notes: C0.2—Cement mass ratio; E—Chloride ion erosion time.
    下载: 导出CSV

    表  3  典型混凝土碳化经验模型

    Table  3.   Typical empirical carbonation models for concrete

    NameCalculation expressionParameter note
    Huang Shiyuan Carbonization Model[21]$\begin{array}{l}x_{\mathrm{c}}=104 k_{\rm v} k_{\mathrm{c}}^{0.54} k_{\mathrm{w}}^{0.47} \sqrt{t} \;\;\; (W / C> 0.6) \\x_{\mathrm{c}}=73.54 k_{\rm v} k_{\mathrm{c}}^{0.81} k_{\mathrm{w}}^{0.13} \sqrt{t}\;\;\; (W / C<0.6)\end{array} $kc—Influence coefficient of cement dosage;
    kw—Influence coefficient of water cement ratio;
    kv—Cement variety coefficient;
    xcCarbonation depth; W/C—Water cement ratio; t—Carbonation time
    Bin tian-AnGu Model[22]$\begin{array}{l}x_{\mathrm{c}}=k_{\rm R} (W / C-0.25) \sqrt{\dfrac{t}{0.3(1.15+3 W / C)}} \quad(W / C > 0.6) \\x_{\mathrm{c}}=k_{\rm R} (4.6 W / C-1.76) \sqrt{\dfrac{t}{7.2}} \quad(W / C<0.6)\end{array} $kR—Relative carbonation depth, coefficients related to cement type, aggregate and admixture
    Shandong Research Institute Model[23]$x_{\mathrm{c}}=(12.1 W / C-3.2) \sqrt{t} $
    Soviet Union strength Model[24]$x_{\mathrm{c}}=k_{\rm A} \sqrt{\dfrac{0.639 f_{\mathrm{ce}}}{f_{\mathrm{cu} 28}+0.5 A f_{\mathrm{ce}}}}-0.245 \sqrt{t} $fce—Cement strength;
    fcu28—Concrete 28 days strength;
    kA—Cement, aggregate variety, fluidity related coefficient;
    Niu Ditao strength Model[20]$ x_{\mathrm{c}}=K \left(\dfrac{24.48}{\sqrt{f_{\text {cuk }}}}-2.74\right) \sqrt{t}$K—Considering the coefficient of environment and maintenance time;
    fcuk—Characteristic value of compressive strength of concrete cube
    下载: 导出CSV
  • [1] TOUTANJI H A, EVANS S, GRUGEL R. Performance oflunar sulfur concrete in lunar environments[J]. Construction and Building Materials, 2012, 29: 444-448.
    [2] 程旭东, 朱兴吉. LNG储罐外墙温度应力分析及预应力筋设计[J]. 石油学报, 2012, 33(3):499-505. doi: 10.7623/syxb201203024

    CHENG Xudong, ZHU Xingji. LNG tank exterior wall temperature stress analysis and prestressed reinforcement design[J]. Acta Petrolei Sinica,2012,33(3):499-505(in Chinese). doi: 10.7623/syxb201203024
    [3] 韩广忠. 中国新建 LNG 接收站的经营困境及其对策[J]. 天然气工业, 2014, 34(5):168-173.

    HAN Guangzhong. The operation dilemma and countermeasures of new LNG receiving stations in China[J]. Natural Gas Industry,2014,34(5):168-173(in Chinese).
    [4] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(22):45-60. doi: 10.3321/j.issn:1000-131X.2008.06.008

    XU Shilang, LI Hedong. Research progress and engineering application of ultra-high toughness cementitious composites[J]. China Civil Engineering Journal,2008,41(22):45-60(in Chinese). doi: 10.3321/j.issn:1000-131X.2008.06.008
    [5] 张秀芳, 徐世烺, 侯利军. 采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究(II): 试验研究[J]. 土木工程学报, 2009, 42(10):53-66. doi: 10.3321/j.issn:1000-131X.2009.10.008

    ZHANG Xiufang, XU Shilang, HOU Lijun. Using ultra-high toughness cementitious composites to improve the flexural crack resistance of reinforced concrete beams (II): Experimental study[J]. China Civil Engineering Journal,2009,42(10):53-66(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.10.008
    [6] 蔡新华. 超高韧性水泥基复合材料耐久性能试验研究[D]. 大连: 大连理工大学, 2010.

    CAI Xinhua. Experimental study on durability of ultra-high toughness cementitious composites[D]. Dalian: Dalian University of Technology, 2010(in Chinese).
    [7] SAHMARAN M, ÖZBAY E, YÜCEL H. Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures[J]. Journal of Materials in Civil Engi-neering,2011,23(12):1735-1745. doi: 10.1061/(ASCE)MT.1943-5533.0000335
    [8] LAI J Z, YANG H R, WANG H F, et al. Properties and modeling of ultra-high-performance concrete subjected to multiple bullet impacts[J]. Journal of Materials in Civil Engi-neering,2018,30(10):04018256.
    [9] DAHMANI L, KHENANE A, KACI S. Behavior of the reinforced concrete at cryogenic temperatures[J]. Cryogenics,2007,47(9-10):517-525. doi: 10.1016/j.cryogenics.2007.07.001
    [10] DANIELLE D, NEIL A, HOULT M. Effects of varying temperature on the performance of reinforced concrete[J]. Materials and Structure,2015,48(4):1109-1123. doi: 10.1617/s11527-013-0218-y
    [11] 王阵地, 姚燕, 王玲. 冻融循环与氯盐侵蚀作用下混凝土变形和损伤分析[J]. 硅酸盐学报, 2012, 40(8):1133-1138.

    WANG Zhendi, YAO Yan, WANG Ling. Deformation and damage analysis of concrete under freeze-thaw cycles and chloride attack[J]. Journal of the Chinese Ceramic Society,2012,40(8):1133-1138(in Chinese).
    [12] 乔宏霞, 杨振清, 王鹏辉, 等. 利用Wiener过程探究镁水泥混凝土中涂层钢筋在盐类环境下的腐蚀寿命[J]. 建筑材料学报, 2021, 24(5):986-993. doi: 10.3969/j.issn.1007-9629.2021.05.012

    QIAO Hongxia, YANG Zhenqing, WANG Penghui, et al. Study on corrosion life of coated steel bars in magnesium cement concrete under salt environment by Wiener process[J]. Journal of Building Materials,2021,24(5):986-993(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.05.012
    [13] SHEN X, LIU Q F, HU Z, et al. Combine ingress of chloride and carbonation in marine-exposed concrete under unsaturated environment: A numerical study[J]. Ocean Engineering, 2019, 189: 106350.
    [14] SHEN X, JIANG W, HOU D S, et al. Numerical study of carbonation and its effect on chloride binding in concrete[J]. Cement and Concrete Composites, 2019, 104: 103402.
    [15] 许晨, 王传坤, 金伟良. 混凝土中氯离子侵蚀与碳化的相互影响[J]. 建筑材料学报, 2011, 14(3):376-380. doi: 10.3969/j.issn.1007-9629.2011.03.017

    XU Chen, WANG Chuankun, JIN Weiliang. Interaction between chloride ion erosion and carbonation in concrete[J]. Journal of Building Materials,2011,14(3):376-380(in Chinese). doi: 10.3969/j.issn.1007-9629.2011.03.017
    [16] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing, Urban and Rural Construction of the People's Republic of China. Standard test method for long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Construction Industry Press, 2009(in Chinese).
    [17] 孙丛涛. 氯离子侵蚀环境下混凝土耐久性研究及寿命预测[D]. 西安: 西安建筑科技大学, 2010.

    SUN Congtao. Durability research and life prediction of concrete under chloride ion erosion environment[D]. Xi'an: Xi'an University of Architecture and Technology, 2010(in Chinese).
    [18] 齐广政. 海洋大气环境下混凝土氯离子侵蚀性能的试验研究[D]. 西安: 西安建筑科技大学, 2012.

    QI Guangzheng. Experimental study on chloride ion erosion performance of concrete in marine atmospheric environment[D]. Xi'an: Xi'an University of Architecture and Technology, 2012(in Chinese).
    [19] SKAPSKI A, BILLUPS R, ROONEY A. Capillary cone method for determination of surface tension of solids[J]. Journal of Chemical Physics,1957,26(5):1350-1351.
    [20] 牛荻涛, 陈亦奇, 于澍. 混凝土结构的碳化模式与碳化寿命分析[J]. 西安建筑科技大学学报, 1995(4):365-369.

    NIU Ditao, CHEN Yiqi, YU Shu. Analysis of carbonation mode and carbonation life of concrete structure[J]. Jour-nal of Xi'an University of Architecture and Technology,1995(4):365-369(in Chinese).
    [21] 许丽萍, 黄士元. 预测混凝土中碳化深度的数学模型[J]. 上海建材学院学报, 1991(4):347-357.

    XU Liping, HUANG Shiyuan. Mathematical model for predicting carbonation depth in concrete[J]. Journal of Building Materials,1991(4):347-357(in Chinese).
    [22] 肖佳, 勾成福. 混凝土碳化研究综述[J]. 混凝土, 2010(1):40-44,52. doi: 10.3969/j.issn.1002-3550.2010.01.014

    XIAO Jia, GOU Chengfu. Summary of concrete carbonation research[J]. Concrete,2010(1):40-44,52(in Chinese). doi: 10.3969/j.issn.1002-3550.2010.01.014
    [23] 朱安民. 混凝土碳化与钢筋混凝土耐久性[J]. 混凝土, 1992(6):18-22.

    ZHU Anmin. Concrete carbonation and durability of reinforced concrete[J]. Concrete,1992(6):18-22(in Chinese).
    [24] 金祖权. 西部地区严酷环境下混凝土的耐久性与寿命预测[D]. 南京: 东南大学, 2006.

    JIN Zuquan. Durability and life prediction of concrete under harsh environment in western China[D]. Nanjing: Southeast University, 2006(in Chinese).
    [25] 郭艳华, 潘慧敏, 李志业. 钢纤维混凝土碳化性能的研究[J]. 混凝土, 2007(2):45-47. doi: 10.3969/j.issn.1002-3550.2007.02.014

    GUO Yanhua, PAN Huimin, LI Zhiye. Carbonation properties of steel fiber reinforced concrete[J]. Concrete,2007(2):45-47(in Chinese). doi: 10.3969/j.issn.1002-3550.2007.02.014
    [26] 李珊珊. 高延性再生微粉混凝土(HDRPC)耐久性研究[D]. 济南: 山东建筑大学, 2022.

    LI Shanshan. The durability of high ductility recycled powder concrete (HDRPC)[D]. Ji'nan: Shandong Jianzhu University, 2022(in Chinese).
    [27] 代小兵. 纳米粒子和PVA纤维增强水泥基复合材料耐久性能研究[D]. 郑州: 郑州大学, 2017.

    DAI Xiaobing. Durability of nanoparticles and PVA fiber reinforced cementitious composites[D]. Zhengzhou: Zhengzhou University, 2017(in Chinese).
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  615
  • HTML全文浏览量:  293
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 修回日期:  2022-08-13
  • 录用日期:  2022-08-28
  • 网络出版日期:  2022-09-08
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回