留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻燃功能化氮化硼杂化物的制备及其在环氧树脂中的应用

林黎明 王正洲

林黎明, 王正洲. 阻燃功能化氮化硼杂化物的制备及其在环氧树脂中的应用[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 林黎明, 王正洲. 阻燃功能化氮化硼杂化物的制备及其在环氧树脂中的应用[J]. 复合材料学报, 2024, 42(0): 1-10.
LIN Liming, WANG Zhengzhou. Preparation of flame-retardant functionalized boron nitride hybrids and their properties in epoxy resin[J]. Acta Materiae Compositae Sinica.
Citation: LIN Liming, WANG Zhengzhou. Preparation of flame-retardant functionalized boron nitride hybrids and their properties in epoxy resin[J]. Acta Materiae Compositae Sinica.

阻燃功能化氮化硼杂化物的制备及其在环氧树脂中的应用

基金项目: 国家自然科学基金(21975185)
详细信息
    通讯作者:

    王正洲,博士,研究员,博士生导师,研究方向为聚合物阻燃材料研究, E-mail: zwang@tongji.edu.cn

  • 中图分类号: TB332

Preparation of flame-retardant functionalized boron nitride hybrids and their properties in epoxy resin

Funds: National Natural Science Foundation of China (No.21975185)
  • 摘要: 氮化硼(BN)因表面呈惰性与环氧树脂(EP)相容性较差,而且其阻燃效率也不高。通过将9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物衍生物(DMZ)与Fe(NO3)3反应得到的配位化合物(FeD)在BN表面进行原位生长,制备出阻燃功能化氮化硼(FeD/BN)。将FeD/BN加入到EP中,制备导热阻燃的EP复合材料。通过极限氧指数(LOI)、垂直燃烧(UL-94)测试和锥形量热测试对复合材料的阻燃性能进行了研究,发现含有15%的FeD/BN的EP复合材料(15(Fe/B)/EP)的LOI为33.2%,达到了UL-94的V-0级;该复合材料峰值热释放速率(pHRR)、总热释放量(THR)和总烟释放量(TSR)相较于纯EP分别降低28.2%、18.9%和30.1%。导热系数测试表明, 15(Fe/B)/EP的导热系数相较于纯EP的导热系数提高了235%。此外,与纯EP相比,该复合材料的拉伸强度与冲击强度都有所提高。

     

  • 图  1  FeD的制备过程示意图

    Figure  1.  Schematic illustration of preparation of FeD

    图  2  FeD/BN的制备过程示意图

    Figure  2.  Schematic illustration of preparation of FeD/BN

    图  3  BN、FeD和FeD/BN的(a) FT-IR,(b) XRD

    Figure  3.  (a) FT-IR images and (b) XRD images of BN, FeD, and FeD/BN

    图  4  (a) BN和(b) FeD/BN的SEM图;FeD/BN的EDS图:(c) B,(d) C,(e) N,(f) O,(g) P和(h) Fe

    Figure  4.  SEM images of (a) BN and (b) FeD/BN; EDS images of FeD/BN: (c) B, (d) C, (e) N, (f) O, (g) P, and (h) Fe

    图  5  EP复合材料的LOI和UL-94等级

    Figure  5.  LOI and UL-94 results of EP composites

    图  6  EP复合材料的燃烧行为,(a) HRR曲线,(b) THR曲线和(c) TSP曲线

    Figure  6.  Combustion behavior: (a) HRR curves, (b) THR curves and (c) TSP curves of EP composites

    图  7  EP复合材料经CCT后的残炭照片

    Figure  7.  Images of residues of EP composites after CCT tests

    图  8  EP复合材料残炭的SEM图:(a) EP,(b) 15 BN/EP,(c) 15(Fe/B)/EP,(d) 15(Fe-B)/EP,(e) 15 FeD/EP;15(Fe/B)/EP复合材料的EDS图:(f) B,(g) C,(h) N,(i) O,(j) P,(k) Fe

    Figure  8.  SEM images of residues of EP composites: (a) EP, (b) 15 BN/EP, (c) 15(Fe/B)/EP, (d) 15(Fe-B)/EP, (e) 15 FeD/EP; EDS images of residuals of 15(Fe/B)/EP: (f) B, (g) C, (h) N, (i) O, (j) P, (k) Fe

    图  9  EP复合材料的TG曲线(N2氛围)

    Figure  9.  TG curves of EP composites (N2 atmosphere)

    图  10  EP复合材料残炭的拉曼光谱:(a) EP,(b) 15 BN/EP,(c) 15(Fe/B)/EP,(d) 15(Fe-B)/EP,(e) 15 FeD/EP;

    Figure  10.  Raman spectra of residues of EP composites after CCT tests: (a) EP, (b) 15 BN/EP, (c) 15(Fe/B)/EP, (d) 15(Fe-B)/EP, (e) 15 FeD/EP

    图  11  EP复合材料的导热系数

    Figure  11.  Thermal conductivity of EP composites

    图  12  复合材料的力学性能:(a) 拉伸强度和断裂伸长率,(b) 冲击强度

    Figure  12.  Mechanical properties of EP composites: (a) tensile strength and elongation at break, (b) impact strength

    图  13  EP复合材料的SEM图:(a) EP,(b) 15 BN/EP,(c) 15(Fe/B)/EP,(d) 15 FeD/EP

    Figure  13.  SEM images of EP composites: (a) EP, (b) 15 BN/EP, (c) 15(Fe/B)/EP, (d) 15 FeD/EP

    表  1  EP复合材料的配方

    Table  1.   Formulations of EP composites

    Sample EP/wt% DDM/wt% FeD/BN/wt% BN/wt% FeD/wt%
    EP 80 20 0 0 0
    5(Fe/B)/EP 76 19 5 0 0
    10(Fe/B)/EP 72 18 10 0 0
    15(Fe/B)/EP 68 17 15 0 0
    15(Fe-B)/EP 68 17 0 11.38 3.62
    15 BN/EP 68 17 0 15 0
    15 FeD/EP 68 17 0 0 15
    Notes: FeD/BN:FeD functionalized BN; 15 (Fe/B)/EP: epoxy composite with 15 wt% FeD/BN; 15(Fe-B)/EP: epoxy composite with 15 wt% FeD and BN compound (the compound ratio is calculated according to the load ratio); 15 FeD/EP: epoxy composite with 15 wt% FeD
    下载: 导出CSV

    表  2  EP及其复合材料的CCT测试结果

    Table  2.   CCT test results of EP composites

    Sample TTI/s pHRR/(kW·m−2) THR/(MJ·m−2) TSR/(m2·m−2)
    EP 85 1026 111 2770
    15 BN/EP 125 932 105 2143
    15(Fe/B)/EP 109 737 90 1937
    15(Fe-B)/EP 102 873 99 2146
    15 FeD/EP 99 606 91 1655
    Notes: TTI: time to ignition; pHRR: peak of heat release rate; THR: total heat release; TSR: total smoke rate
    下载: 导出CSV

    表  3  本工作和其它类似导热阻燃EP复合材料的性能比较[17, 18, 29, 30]

    Table  3.   Comparison of this work and other typical thermal conductive and flame retardant EP composites[17, 18, 29, 30]

    Filler Size Loading TC/(W·m−1·K−1) LOI/% pHRR Tensile strength Year
    h-BN 1~2 μm 2wt% 0.23 34.3 −44.7% \ 2023
    h-BN 3~5 μm 12.1vol% 1.04 \ −68.9% \ 2023
    h-BN 1~2 μm 16wt% 0.69 \ −58.2% +31.3% 2023
    h-BN 5 μm 11.3wt% 0.47 33.2 −28.2% +4.4% This work
    Notes: TC: thermal conductivity; LOI: limiting oxygen index; pHRR: peak of heat release rate
    下载: 导出CSV
  • [1] TIAN S. Preparation and properties of nano-SiO2/grapheme flame retardant epoxy resin composites[J]. Journal of Functional Materials, 2020, 51(6): 6052-6056+6095.
    [2] XING W, CHEN L, ZHOU M, et al. Preparation of boron nitride/graphene composite thermal conductive filler and study on flame retardant, thermal conductivity and insulation properties of epoxy resin composites[J]. Scientia Sinica Chimica, 2023, 53(2): 207-216.
    [3] WANG Y D, MA L, YUAN J, et al. A green flame retardant by elaborate designing towards multifunctional fire-safety epoxy resin composites[J]. Reactive & Functional Polymers, 2023, 191: 137823.
    [4] LU J Y, WANG B B, JIA P F, et al. Designing advanced OD-2D hierarchical structure for Epoxy resin to accomplish exceeding thermal management and safety[J]. Chemical Engineering Journal, 2022, 427: 132046. doi: 10.1016/j.cej.2021.132046
    [5] JIANG G Y, XIAO Y L, QIAN Z Y, et al. A novel phosphorus-, nitrogen- and sulfur-containing macromolecule flame retardant for constructing high-performance epoxy resin composites[J]. Chemical Engineering Journal, 2023, 451: 137823. doi: 10.1016/j.cej.2022.137823
    [6] XIAO Y L, MU X W, CHEN S Q, et al. Biomass-derived polyphosphazene toward simultaneously enhancing the flame retardancy and mechanical properties of epoxy resins[J]. Chemosphere, 2023, 311: 137058. doi: 10.1016/j.chemosphere.2022.137058
    [7] ZHANG W J, ZHOU M T, KAN Y C, et al. Synthesis and flame retardant efficiency study of two phosphorus-nitrogen type flame retardants containing triazole units[J]. Polymer Degradation and Stability, 2023, 208: 110236. doi: 10.1016/j.polymdegradstab.2022.110236
    [8] JIA Y, SHI R, HU X, et al. Research progress on thermal conductive epoxy resin composites[J]. Engineering Plastics Application, 2020, 48(4): 139-143+149.
    [9] YANG J, YANG Y, JIA Y, et al. The development in preparation and application of thermal conductive composites[J]. Polymer Bulletin, 2021, (8): 1-8.
    [10] NIU W, ZHANG X, QIAO J, et al. Optimization formula design of thermal conductive insulating silicone rubber filler[J]. New Chemical Materials, 2020, 48(1): 115-119.
    [11] MIAO Z C, WU Z X, WANG T, et al. In situ synthesis of boron nitride "nanonoodles" based epoxy nanocomposites with enhanced thermal and dielectric properties[J]. Polymer Composites, 2022, 43(8): 5344-5352. doi: 10.1002/pc.26836
    [12] LI Z, LIRA SIM, ZHANG L, et al. Bio-inspired engineering of boron nitride with iron-derived nanocatalyst toward enhanced fire retardancy of epoxy resin[J]. Polymer Degradation and Stability, 2018, 157: 119-130. doi: 10.1016/j.polymdegradstab.2018.10.005
    [13] WANG C, HAO Z, SHEN Z, et al. Research progress of filler-filled polymer-based thermal conductive materials[J]. Polymer Bulletin, 2022, (1): 18-23.
    [14] ZHANG Y R, TUO R, YANG W, et al. Improved thermal and electrical properties of epoxy resin composites by dopamine and silane coupling agent modified hexagonal BN[J]. Polymer Composites, 2020, 41(11): 4727-4739. doi: 10.1002/pc.25746
    [15] HUA Y F, LIU J, ZHANG J Y, et al. A compound with boron and phosphorus towards epoxy resin with excellent flame retardancy, smoke suppression, transparency, and dielectric properties. Chemical Engineering Journal. 2024, 483: 149212.
    [16] HE Y F, CUI X Y, LIU Z S, et al. A new approach to prepare flame retardant epoxy resin with excellent transmittance, mechanical properties, and anti-aging performance by the incorporation of DOPO derivative. Polymer Degradation and Stability. 2023, 218: 110579.
    [17] BAO Q R, HE R, LIU Y, et al. Multifunctional boron nitride nanosheets cured epoxy resins with highly thermal conductivity and enhanced flame retardancy for thermal management applications[J]. Composites Part A-Applied Science and Manufacturing, 2023, 164: 107309. doi: 10.1016/j.compositesa.2022.107309
    [18] LI X W, FENG Y Z, CHEN C, et al. Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets[J]. Journal of Materials Chemistry A, 2018, 6(41): 20500-20512. doi: 10.1039/C8TA08008A
    [19] LIU D Y, CUI Y H, ZHANG T L, et al. Improving the flame retardancy and smoke suppression of epoxy resins by introducing of DOPO derivative functionalized ZIF-8[J]. Polymer Degradation and Stability, 2021, 194: 109749. doi: 10.1016/j.polymdegradstab.2021.109749
    [20] KOROGLU L, AYAS E, AY N. BNNS formation through surface modification of hBN nanopowders with a silane coupling agent[J]. Journal of Dispersion Science and Technology. 2023: 2222806.
    [21] CHEN Q, WANG Z Z. A copper organic phosphonate functionalizing boron nitride nanosheet for PVA film with excellent flame retardancy and improved thermal conductive property[J]. Composites Part a-Applied Science and Manufacturing, 2022, 153: 106738. doi: 10.1016/j.compositesa.2021.106738
    [22] CAI W, FENG X M, WANG B B, et al. A novel strategy to simultaneously electrochemically prepare and functionalize graphene with a multifunctional flame retardant[J]. Chemical Engineering Journal, 2017, 316: 514-524. doi: 10.1016/j.cej.2017.01.017
    [23] OU M Y, LIAN R C, LI R J, et al. A high-efficient DOPO-based flame retardant as a Co-curing agent for simultaneously enhancing the fire safety and mechanical properties of epoxy resin[J]. Macromolecular Rapid Communications. 2023: 202300262.
    [24] LI L, LI X W, WAN S B, et al. High-efficiency flame-retardant epoxy resin using phosphoraphenanthrene/thiazole-based co-curing agent[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(19): 10115-10124. doi: 10.1007/s10973-023-12363-2
    [25] LI J W, ZHENG P L, LIU H Y, et al. An organometallic flame retardant containing P/N/S-Cu2+for epoxy resins with reduced fire hazard and smoke toxicity[J]. Acs Omega, 2023, 8(18): 16080-16093. doi: 10.1021/acsomega.2c08226
    [26] WANG W, LIU Y, WANG Q. Adjustable boron nitride segregated framework in epoxy resin for high performance thermal management and flame retardant applications[J]. Composites Science and Technology, 2023, 242: 110161. doi: 10.1016/j.compscitech.2023.110161
    [27] JIAO L M, WANG Y, WU Z H, et al. Effect of gamma and neutron irradiation on properties of boron nitride/epoxy resin composites[J]. Polymer Degradation and Stability, 2021, 190: 109643. doi: 10.1016/j.polymdegradstab.2021.109643
    [28] LI G H, MA Y J, XU H Y, et al. Hydroxylated hexagonal boron nitride nanoplatelets enhance the mechanical and tribological properties of epoxy-based composite coatings[J]. Progress in Organic Coatings, 2022, 165: 106731. doi: 10.1016/j.porgcoat.2022.106731
    [29] WANG S H, JIANG Y C, TONG X, et al. The fabrication of a boron nitride/ammonium polyphosphate skeleton based on ice template method for thermal conductive and flame retardant epoxy. Polymer Degradation and Stability. 2024, 219: 110606.
    [30] FENG T T, CUI J H, OU M Y, et al. 0D-2D nanohybrids based on binary transitional metal oxide decorated boron nitride enabled epoxy resin efficient flame retardant coupled with enhanced thermal conductivity at ultra-low additions. Composites Communications. 2023, 41: 101649.
  • 加载中
计量
  • 文章访问数:  39
  • HTML全文浏览量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-04-08
  • 录用日期:  2024-04-14
  • 网络出版日期:  2024-05-29

目录

    /

    返回文章
    返回