留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二价阳离子掺杂优化铜锌锡硫(硒)薄膜太阳能电池性能的研究进展

赵鑫 杨艳春 崔国楠 刘艳青 任俊婷 田晓 朱成军

赵鑫, 杨艳春, 崔国楠, 等. 二价阳离子掺杂优化铜锌锡硫(硒)薄膜太阳能电池性能的研究进展[J]. 复合材料学报, 2023, 40(11): 6029-6042. doi: 10.13801/j.cnki.fhclxb.20230515.001
引用本文: 赵鑫, 杨艳春, 崔国楠, 等. 二价阳离子掺杂优化铜锌锡硫(硒)薄膜太阳能电池性能的研究进展[J]. 复合材料学报, 2023, 40(11): 6029-6042. doi: 10.13801/j.cnki.fhclxb.20230515.001
ZHAO Xin, YANG Yanchun, CUI Guonan, et al. Research progress on optimizing performance of Cu2ZnSnS4(Cu2ZnSn(S,Se)4) thin-film solar cells by bivalent cations doping[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6029-6042. doi: 10.13801/j.cnki.fhclxb.20230515.001
Citation: ZHAO Xin, YANG Yanchun, CUI Guonan, et al. Research progress on optimizing performance of Cu2ZnSnS4(Cu2ZnSn(S,Se)4) thin-film solar cells by bivalent cations doping[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6029-6042. doi: 10.13801/j.cnki.fhclxb.20230515.001

二价阳离子掺杂优化铜锌锡硫(硒)薄膜太阳能电池性能的研究进展

doi: 10.13801/j.cnki.fhclxb.20230515.001
基金项目: 国家自然科学基金(62164010;62064010);中央引导地方科技发展资金(2020ZY0009);中国博士后科学基金(2019M653806XB);内蒙古师范大学校级研究生科研创新基金发展资金(CXJJS22105)
详细信息
    通讯作者:

    杨艳春,博士,副教授,硕士生导师,研究方向为光伏材料制备及性能研究工作,包括铜锌锡硫硒、有机-无机钙钛矿材料的光伏性能、发光性能的研究 E-mail: 20170020@imnu.edu.cn;

    朱成军,博士,教授,博士生导师,研究方向为新能源材料与器件:薄膜太阳能电池材料与器件、低温固体氧化物燃料电池材料与器件E-mail: ndcjzhu@126.com

  • 中图分类号: TM914.4;TB33

Research progress on optimizing performance of Cu2ZnSnS4(Cu2ZnSn(S,Se)4) thin-film solar cells by bivalent cations doping

Funds: Natural Science Foundation of China (62164010; 62064010); Central Government Guides Local Funds for Science and Technology Development (2020ZY0009); China Postdoctoral Science Foundation (2019M653806XB); Inner Mongolia Normal University Graduate Research and Innovation Fund Development Fund (CXJJS22105)
  • 摘要: 阳离子掺杂措施被认为是调节优化铜锌锡硫硒薄膜(Cu2ZnSn(S, Se)4,CZTS(Se))太阳能电池有效措施之一,其中,二价阳离子掺杂措施是研究最多、应用最广的。本文从阳离子取代和阳离子额外添加两个方面详细介绍了二价阳离子掺杂措施在优化CZTS(Se)薄膜太阳能电池性能方面的研究进展,二价阳离子取代措施,如Cd2+取代Zn2+等,主要是可以有效降低CZTS(Se)薄膜太阳能电池吸收层的缺陷密度,提高结晶质量,解决吸收层和缓冲层之间界面能带偏移值较大的问题,从而减少电池器件的开路电压亏损,提高器件效率;二价阳离子的额外添加,如Co、Mn的额外添加,主要是优化薄膜的结晶性、帮助载流子的输运,提高吸收层薄膜的电学性能;最后,也总结两类阳离子掺杂措施的优缺点及应用前景。

     

  • 图  1  Cu2ZnSnS4 (CZTS)和Cu2Zn1-xMgxSnS4 (CZMTS)吸收层XRD图谱 (a) 和Raman图谱 (b)(插图为(112)衍射峰放大图)[49]

    Figure  1.  XRD patterns (a) and Raman scattering spectra (b) of Cu2ZnSnS4 (CZTS) and Cu2Zn1-xMgxSnS4 (CZMTS) absorber (The inset is the enlarged view of the (112) diffraction peak)[49]

    图  2  Cu2ZnSnS4和Cu2Zn1-xMgxSnS4吸收层横截面电场发射扫描电子显微镜(FESEM)图像[49]

    Figure  2.  Field emission scanning electron microscope (FESEM) cross-sectional images of the Cu2ZnSnS4 and Cu2Zn1-xMgxSnS4 absorber[49]

    图  3  Cu2Zn1-xBaxSn(S,Se)4薄膜表面SEM图像[52]

    Figure  3.  SEM images of the Cu2Zn1-xBaxSn(S,Se)4 thin films surface[52]

    图  4  Cu2BaSnSe4中本征缺陷在化学势点处的形成焓(ΔH)与费米能级(EF)的关系:(a) Cu-poor和Se-intermediate; (b) Cu-rich和Se-poor; (c) Cu-poor和Se-rich[53]

    Figure  4.  Calculated formation enthalpies (ΔH) of intrinsic defects in Cu2BaSnSe4 as a function of Fermi level (EF) at the chemical potential points: (a) Cu-poor and Se-intermediate; (b) Cu-rich and Se-poor; (c) Cu-poor and Se-rich[53]

    图  5  器件参数与微量Ca掺杂Cu2CaxZn1-xSn(S,Se)4(Ca/(Ca+Zn)%)的关系[55]

    PCE—Power conversion efficiency; VOC—Open circuit voltage; JSC—Short-circuit current density; FF—Fill factor

    Figure  5.  Relationship of the detail device parameters with trace Ca-doped Cu2CaxZn1-xSn(S,Se)4 (Ca/(Ca+Zn)%) devices[55]

    图  6  在不同μCu下Cu2ZnSnS4在(μZn, μSn)面的稳定化学势区域(黑色区域)和在(μCu, μZn, μSn)化学势[29]

    μ—Chemical potential

    Figure  6.  Calculated stable chemical potential region (black area) of Cu2ZnSnS4 in (μZn, μSn) planes with different μCu in the (μCu, μZn, μSn) chemical potential spaces[29]

    图  7  Cu2Zn1-xNixSnS4中带隙、价带偏移(VBO)、导带偏移(CBO)随Ni浓度变化[63]

    Figure  7.  Plot of variation of band gaps, valence band offset (VBO) and conduction band offset (CBO) versus Ni composition in Cu2Zn1-xNixSnS4[63]

    图  8  Cu2NixZn1-xSn(S,Se)4(0≤x≤0.1)薄膜SEM图像[61]

    Figure  8.  SEM images of the Cu2NixZn1-xSn(S,Se)4 (0≤x≤0.1) films[61]

    图  9  CZTS和Cu2(Zn0.96Cr0.04)SnS4薄膜能带图及价带(Ev)、中间带(Ei)、费米能级(EF)和导带(Ec)相对于真空能级(Evac)的位置[65]

    Figure  9.  Calculated band diagram of CZTS and Cu2(Zn0.96Cr0.04)SnS4 films and position of valence band (Ev), intermediate band states (Ei), fermi level (EF) and conduction band (Ec) with respect to vacuum level (Evac)[65]

    图  10  以Cu2Zn1-xCrxSnS4为吸收层的电池性能参数与x的关系[65]

    Figure  10.  Output parameters of the cells with Cu2Zn1-xCrxSnS4 absorber layers as the functions of x[65]

    图  11  Cu2MnxZn1-xSn(S,Se)4薄膜表面和截面SEM图像[71]

    Figure  11.  Surface and cross-sectional SEM images of Cu2MnxZn1-xSn(S,Se)4 thin films[71]

    图  12  (a)不同Co掺杂比(0mol%、1mol%、3mol%、5mol%) CZTS(Se)的XRD图谱; (b) (112)衍射峰的放大图[82]

    Figure  12.  (a) XRD patterns of CZTS(Se) samples with different trace Co incorporation ratio (0mol%, 1mol%, 3mol%, 5 mol%); (b) Enlarged view of (112) peaks[82]

    图  13  不同Mn掺杂比CZTS(Se)薄膜的AFM形貌和c-AFM表面电流图像:((a), (b)) 0mol%;((c), (d)) 1mol%;((e), (f)) 3mol%;((g), (h)) 5mol%;((i), (j)) 7mol%[23]

    Figure  13.  AFM topography and c-AFM surface current images of CZTS(Se) thin films with the different Mn-doping ratios: ((a), (b)) 0mol%; ((c), (d)) 1mol%; ((e), (f)) 3mol%; ((g), (h)) 5mol%; ((i), (j)) 7mol%[23]

    表  1  CZTS和CZCTS 样品的电性能[58]

    Table  1.   Electrical characteristics of the CZTS and CZCTS samples[58]

    AbsorberOptical Eg/eVPL peak/eVΔ(Eg–PL peak)/mVEUrbach/meV
    CZTS1.541.37~17065
    CZCTS1.381.31~7045
    Notes: Eg—Band gap; PL—Photoluminescence; Δ(Eg–PL peak)—Difference between the optical band gap and PL peak, correlated with the extent of band tailing; EUrbach—Urbach tail energy, is used to account for sub-band gap photon absorption and the characterized band tailing; CZCTS—Cu2Zn0.6Cd0.4SnS4.
    下载: 导出CSV

    表  2  不同二价阳离子掺杂所取得的最高铜锌锡硫硒(CZTS(Se))薄膜太阳能电池参数

    Table  2.   Paramaters of the hightest Cu2ZnSn(S,Se)4 (CZTS(Se)) thin-film solar cell by different divalent cation doping

    Battery device nameVOC/mVJSC/(mA·cm−2)FF/%η/%Ref.
    Cu2Mg0.0357Zn0.9643Sn(S,Se)4400.1533.4557.93 7.76[50]
    Cu2Ba0.01Zn0.9Sn(S,Se)4424.0032.3066.80 9.14[52]
    Cu2Ca0.02Zn0.8Sn(S,Se)4417.0035.8458.00 8.73[54]
    Cu2Zn0.6Cd0.4SnS4640.0027.8071.0012.60[18]
    Cu2Ni0.05Zn0.95Sn(S,Se)4351.0033.6245.05 5.32[60]
    Cu2Zn0.96Cr0.04SnS4568.0014.0049.80 3.96[64]
    Cu2Mn0.05Zn0.95Sn(S,Se)4418.0033.7063.30 8.90[70]
    Cu2Co0.03Zn0.97Sn(S,Se)4340.0026.8543.30 3.95[71]
    Notes: VOC—Open circuit voltage; JSC—Short-circuit current density; FF—Fill factor; η—Light-to-electricity conversion efficiency.
    下载: 导出CSV
  • [1] WANG J L, ZHOU J Z, XU X, et al. Ge bidirectional diffusion to simultaneously engineer back interface and bulk defects in the absorber for efficient CZTSSe solar cells[J]. Advanced Materials,2022,34(27):2202858. doi: 10.1002/adma.202202858
    [2] DENG H, SUN Q Z, YANG Z Y, et al. Novel symmetrical bifacial flexible CZTSSe thin film solar cells for indoor photovoltaic applications[J]. Nature Communications,2021,12(1):3107. doi: 10.1038/s41467-021-23343-1
    [3] LIU W C, GUO B L, MAK C L, et al. Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells[J]. Thin Solid Films,2013,535:39-43. doi: 10.1016/j.tsf.2012.11.073
    [4] LIU T C, HU Y. Preparation and characterization of CZTSe films through electrochemical deposition route[J]. International Journal of Electrochemical Science,2014,9(6):2985-2992.
    [5] 崔国楠, 杨艳春, 李月敏, 等. 溶液法制备铜锌锡硫硒薄膜太阳能电池的研究进展[J]. 硅酸盐学报, 2021, 49(3):483-494. doi: 10.14062/j.issn.0454-5648.20200441

    CUI Guonan, YANG Yanchun, LI Yuemin, et al. Solution-processed Cu2ZnSn(S, Se)4 thin film solar cells[J]. Journal of the Chinese Ceramic Society,2021,49(3):483-494(in Chinese). doi: 10.14062/j.issn.0454-5648.20200441
    [6] 张艳珠. CZTSSe吸光层结晶性的改善及其对电池效率的影响[D]. 郑州: 河南大学, 2016.

    ZHANG Yanzhu. Improving the crystallinity of the CZTSSe absorber and it's impact on the solar cell efficiency[D]. Zhengzhou: Henan University, 2016(in Chinese).
    [7] 米亚金, 杨艳春, 王晓宁, 等. 部分阳离子取代优化铜锌锡硫硒薄膜太阳能电池性能研究进展[J]. 发光学报, 2022, 43(2):255-267. doi: 10.37188/CJL.20210340

    MI Yajin, YANG Yanchun, WANG Xiaoning, et al. Research progress on optimizing performance of Cu2ZnSn(S, Se)4 thin-film solar cells by partial cation substitutions[J]. Chinese Journal of Luminescence,2022,43(2):255-267(in Chinese). doi: 10.37188/CJL.20210340
    [8] 沈韬, 柴鲜花, 孙淑红, 等. 微波法制备铜锌锡硫的研究进展[J]. 材料导报, 2019, 33(13):2159-2166. doi: 10.11896/cldb.18020033

    SHEN Tao, CHAI Xianhua, SUN Shuhong, et al. Research progress of Cu2ZnSnS4 prepared by microwave method[J]. Materials Reports,2019,33(13):2159-2166(in Chinese). doi: 10.11896/cldb.18020033
    [9] 赵其琛, 郝瑞亭, 刘思佳, 等. 退火温度对分步溅射制备铜锌锡硫薄膜性能的影响[J]. 激光与光电子学进展, 2017, 54(9):317-321. doi: 10.3788/LOP54.091601

    ZHAO Qichen, HAO Ruiting, LIU Sijia, et al. Influence of annealing temperature on properties of Cu2ZnSnS4 thin films prepared by step sputtering[J]. Laser and Optoelectronics Progress,2017,54(9):317-321(in Chinese). doi: 10.3788/LOP54.091601
    [10] 刘仪柯, 唐雅琴, 蒋良兴, 等. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 材料导报, 2018, 32(9):1412-1416, 1422. doi: 10.11896/j.issn.1005-023X.2018.09.003

    LIU Yike, TANG Yaqin, JIANG Liangxing, et al. Photovoltaic characteristics of Cu2ZnSn(SxSe1-x)4 thin films synthesized via the process of Cu-Zn-Sn presputtering and subsequent sulfurization(selenization) annealing[J]. Materials Reports,2018,32(9):1412-1416, 1422(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.09.003
    [11] 宋思悦, 刘旭炜, 林鸿霄, 等. 电镀法在氧化铟锡上制备铜锌锡硫薄膜的光谱特征[J]. 光谱学与光谱分析, 2019, 39(9):2940-2945.

    SONG Siyue, LIU Xuwei, LIN Hongxiao, et al. Spectral characterization of electrodeposited Cu2ZnSnS4 thin films on fluorine-doped tin oxide[J]. Spectroscopy and Spectral Analysis,2019,39(9):2940-2945(in Chinese).
    [12] 张克智, 陶加华, 刘俊峰, 等. 简单的溶胶-凝胶法制备致密的铜锌锡硫硒薄膜[J]. 无机材料学报, 2014, 29(7):781-784.

    ZHANG Kezhi, TAO Jiahua, LIU Junfeng, et al. Compact Cu2ZnSn(S, Se)4 thin films fabricated by a simple sol-gel technique[J]. Journal of Inorganic Materials,2014,29(7):781-784(in Chinese).
    [13] 李桐, 张林睿, 杨炎翰, 等. 铜锌锡硫薄膜太阳能电池吸收层的银掺杂[J]. 材料工程, 2018, 46(12):95-100. doi: 10.11868/j.issn.1001-4381.2017.001238

    LI Tong, ZHANG Linrui, YANG Yanhan, et al. Ag incorporation in Cu2ZnSnS4 thin film solar cell absorbed layer[J]. Journal of Materials Engineering,2018,46(12):95-100(in Chinese). doi: 10.11868/j.issn.1001-4381.2017.001238
    [14] 舒博, 凌武定, 韩奇峰. Cu2ZnSn(S, Se)4纳米晶薄膜太阳能电池的研究进展[J]. 上海师范大学学报(自然科学版), 2015, 44(4):447-460.

    SHU Bo, LING Wuding, HAN Qifeng. Research progress of Cu2ZnSn(S, Se)4 nanocrystalline thin film solar cells[J]. Journal of Shanghai Normal University (Natural Sciences),2015,44(4):447-460(in Chinese).
    [15] 阎森飚, 徐键. CZTS薄膜太阳能电池无镉缓冲层材料的研究进展[J]. 材料导报, 2020, 34(7):7045-7052. doi: 10.11896/cldb.19020106

    YAN Senbiao, XU Jian. Development of Cd-free buffer materials for CZTS thin-film solar cells[J]. Materials Reports,2020,34(7):7045-7052(in Chinese). doi: 10.11896/cldb.19020106
    [16] 黄晓梦, 许佳雄. 周期性前驱体的预硫化处理对Cu2ZnSnS4薄膜的影响[J]. 材料工程, 2020, 48(3):155-162. doi: 10.11868/j.issn.1001-4381.2018.000990

    HUANG Xiaomeng, XU Jiaxiong. Effect of pre-sulfurization treatment of periodic precursor on Cu2ZnSnS4 thin film[J]. Journal of Materials Engineering,2020,48(3):155-162(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000990
    [17] 李新毓, 张道永, 李祥, 等. 磁控溅射制备Cu2ZnSnS4薄膜太阳能电池[J]. 硅酸盐学报, 2022, 50(5):1257-1262.

    LI Xinyu, ZHANG Daoyong, LI Xiang, et al. Preparation of Cu2ZnSnS4 thin films solar cells based on magnetron sputtering[J]. Journal of the Chinese Ceramic Society,2022,50(5):1257-1262(in Chinese).
    [18] SU Z H, LIANG G X, FAN P, et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Advanced Materials,2020,32(32):2000121. doi: 10.1002/adma.202000121
    [19] GREEN M A, DUNLOP E D, EBINGER H J, et al. Solar cell efficiency tables (Version 60)[J]. Progress in Photovoltaics,2022,30(7):687-701. doi: 10.1002/pip.3595
    [20] STEICHEN M, DJEMOUR R, GÜTAY L, et al. Direct synthesis of single-phase p-type SnS by electrodeposition from a dicyanamide ionic liquid at high temperature for thin film solar cells[J]. The Journal of Physical Chemistry C,2013,117(9):4383-4393. doi: 10.1021/jp311552g
    [21] PRICE L S, PARKIN I P, HARDY A M E, et al. Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass[J]. Chemistry of Materials,1999,11(7):1792-1799. doi: 10.1021/cm990005z
    [22] SUI Y R, WU Y J, ZHANG Y, et al. Indium effect on structural, optical and electrical properties of Cu2InxZn1-xSnS4 alloy thin films for solar cell[J]. Superlattices and Microstructures,2017,111:579-590. doi: 10.1016/j.spmi.2017.07.015
    [23] CUI G N, YANG Y C, CHEN R L, et al. Influence of extra trace Mn-doping on the properties of Cu2ZnSn(S, Se)4 absorber layer[J]. Optical Materials,2021,111:110707. doi: 10.1016/j.optmat.2020.110707
    [24] 马骕驭, 马传贺, 卢小双, 等. 铜锌锡硫带边电子结构及缺陷态的光学表征[J]. 红外与毫米波学报, 2020, 39(1):92-98. doi: 10.11972/j.issn.1001-9014.2020.01.013

    MA Suyu, MA Chuanhe, LU Xiaoshuang, et al. Optical characterization of bandedge electronic structure and defect states in Cu2ZnSnS4[J]. Journal of Infrared and Millimeter Waves,2020,39(1):92-98(in Chinese). doi: 10.11972/j.issn.1001-9014.2020.01.013
    [25] DUAN B W, SHI J J, LI D M, et al. Underlying mechanism of the efficiency loss in CZTSSe solar cells: Disorder and deep defects[J]. Science China-Materials,2020,63(12):2371-2396. doi: 10.1007/s40843-020-1385-0
    [26] KRAUT E A, GRANT R W, WALDROP J R, et al. Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurement of semiconductor interface potentials[J]. Physical Review Letters,1980,44(24):1620-1623. doi: 10.1103/PhysRevLett.44.1620
    [27] ZHAO Y H, ZHAO X Y, KOU D X, et al. Local Cu component engineering to achieve continuous carrier transport for enhanced kesterite solar cells[J]. ACS Applied Materials & Interfaces,2021,13(1):795-805.
    [28] ZHANG X, ZHOU Z J, CAO L, et al. Suppressed interface defects by GeSe2 post-deposition treatment enables high-efficiency kesterite solar cells[J]. Advanced Functional Materials,2023,33(8):2211315. doi: 10.1002/adfm.202211315
    [29] CHEN S Y, WALSH A, GONG X G, et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers[J]. Advanced Materials,2013,25(11):1522-1539. doi: 10.1002/adma.201203146
    [30] CUI C C, KOU D X, ZHOU W H, et al. Surface defect ordered Cu2ZnSn(S, Se)4 solar cells with efficiency over 12% via manipulating local substitution[J]. Journal of Energy Chemistry,2022,67:555-562. doi: 10.1016/j.jechem.2021.10.035
    [31] ZHOU J Z, XU X, DUAN B W, et al. Regulating crystal growth via organic lithium salt additive for efficient kesterite solar cells[J]. Nano Energy,2021,89:106405.
    [32] GONG Y C, ZHU Q, LI B Y, et al. Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells[J]. Nature Energy,2022,7(10):966-977. doi: 10.1038/s41560-022-01132-4
    [33] CHEN S Y, WALSH A, YANG J H, et al. Compositional dependence of structural and electronic properties of Cu2ZnSn(S, Se)4 alloys for thin film solar cells[J]. Physical Review B,2011,83(12):125201. doi: 10.1103/PhysRevB.83.125201
    [34] PAIER J, ASAHI R, NAGOYA A, et al. Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study[J]. Physical Review B,2009,79(11):115126. doi: 10.1103/PhysRevB.79.115126
    [35] SUN Y L, QIU P F, YU W, et al. N-type surface design for p-type CZTSSe thin film to attain high efficiency[J]. Advanced Materials,2021,33(49):2104330. doi: 10.1002/adma.202104330
    [36] NAGAI T, SHIMAMURA T, TANIGAWA K, et al. Band alignment of the CdS/Cu2Zn(Sn1-xGex)Se4 heterointerface and electronic properties at the Cu2Zn(Sn1-xGex)Se4 surface: x = 0, 0.2, and 0.4[J]. ACS Applied Materials & Interfaces,2019,11(4):4637-4648.
    [37] SURESH M S, SREEJITH P M, ATHIMOTLY R R, et al. Barium (Ba) substitution in kesterite Cu2ZnSnS4: Cu2Zn1-xBaxSnS4 (CZBTS) quinary alloy thin films for efficient solar energy harvesting[J]. Crystal Growth & Design,2020,20(7):4387-4394.
    [38] SUI Y R, ZHANG Y, JIANG D Y, et al. Investigation of optimum Mg doping content and annealing parameters of Cu2MgxZn1-xSnS4 thin films for solar cells[J]. Nanomaterials,2019,9(7):955. doi: 10.3390/nano9070955
    [39] YANG Y C, HUANG L J, PAN D C. New insight of Li-doped Cu2ZnSn(S, Se)4 thin films: Li-induced Na diffusion from soda lime glass by a cation-exchange reaction[J]. ACS Applied Materials & Interfaces,2017,9(28):23878-23883.
    [40] QI Y F, TIAN Q W, MENG Y N, et al. Elemental precursor solution processed (Cu1-xAgx)2ZnSn(S, Se)4 photovoltaic devices with over 10% efficiency[J]. ACS Applied Materials & Interfaces,2017,9(25):21243-21250.
    [41] GUO H F, LI Y, GUO X H, et al. Effect of silicon doping on electrical and optical properties of stoichiometric Cu2ZnSnS4 solar cells[J]. Physica B:Condensed Matter,2018,531:9-15. doi: 10.1016/j.physb.2017.12.016
    [42] DENG Y Q, ZHOU Z J, ZHANG X, et al. Adjusting the SnZn defects in Cu2ZnSn(S, Se)4 absorber layer via Ge4+ implanting for efficient kesterite solar cells[J]. Journal of Energy Chemistry,2021,61:1-7. doi: 10.1016/j.jechem.2021.02.011
    [43] TIAN Q W, LIU S Z. Defect suppression in multinary chalcogenide photovoltaic materials derived from kesterite: Progress and outlook[J]. Journal of Materials Chemistry A,2020,8(47):24920-24942. doi: 10.1039/D0TA08202C
    [44] WEI M, DU Q Y, WANG R, et al. Synthesis of new earth-abundant kesterite Cu2MgSnS4 nanoparticles by hot-injection method[J]. Chemistry Letters,2014,43(7):1149-1151. doi: 10.1246/cl.140208
    [45] LIU K S, YAO B, LI Y F, et al. Fabrication of Cu2MSnS4(M = Co2+, Ni2+) nanocrystal thin films and their application in photodetectors[J]. New Journal of Chemistry,2017,41(2):685-691. doi: 10.1039/C6NJ02576E
    [46] ZHONG G H, TSE K, ZHANG Y O, et al. Induced effects by the substitution of Zn in Cu2ZnSnX4 (X = S and Se)[J]. Thin Solid Films,2016,603:224-229. doi: 10.1016/j.tsf.2016.02.005
    [47] CABALLERO R, HAASS S G, ANDRES C R, et al. Effect of magnesium incorporation on solution-processed kesterite solar cells[J]. Frontiers Chemistry,2018,6:5. doi: 10.3389/fchem.2018.00005
    [48] ZHANG Y, JIANG D Y, SUI Y R, et al. Synthesis and investigation of environmental protection and earth-abundant kesterite Cu2MgxZn1-xSn(S, Se)4 thin films for solar cells[J]. Ceramics International,2018,44(13):15249-15255. doi: 10.1016/j.ceramint.2018.05.167
    [49] WANG Y P, HAO R T, GUO J, et al. Effect of Mg doping on Cu2ZnSnS4 solar cells prepared by DMF-based solution method[J]. Optical Materials,2021,117:111211. doi: 10.1016/j.optmat.2021.111211
    [50] WANG Y M, YANG Y C, ZHU C J, et al. Boosting the electrical properties of Cu2ZnSn(S, Se)4 solar cells via low amounts of Mg substituting Zn[J]. ACS Applied Energy Materials,2020,3(11):11177-11182. doi: 10.1021/acsaem.0c02121
    [51] KHATTAK Y H, BAIG F, TOURA H, et al. Efficiency enhancement of Cu2BaSnS4 experimental thin-film solar cell by device modeling[J]. Journal of Materials Science,2019,54(24):14787-14796. doi: 10.1007/s10853-019-03942-6
    [52] GUO J J, MAO Y, ZHANG Z J, et al. Enhancing the photovoltaic performance of Cu2ZnSn(S, Se)4 solar cells with Ba trace doping: Large chemical mismatch cation incorporation[J]. Solar RRL,2021,5(11):2100607. doi: 10.1002/solr.202100607
    [53] XIAO Z W, MENG W W, LI J V, et al. Distant-atom mutation for better earth-abundant light absorbers: A case study of Cu2BaSnSe4[J]. ACS Energy Letters,2017,2(1):29-35. doi: 10.1021/acsenergylett.6b00577
    [54] CHEN R Z, PERSSON C. Electronic and optical properties of Cu2XSnS4(X=Be, Mg, Ca, Mn, Fe, and Ni) and the impact of native defect pairs[J]. Journal of Applied Physics,2017,121(20):203104. doi: 10.1063/1.4984115
    [55] WANG Y M, YANG Y C, LUAN H M, et al. Optimizing the properties of Cu2ZnSn(S, Se)4 solar cells via cationic substitution with trace Ca[J]. Journal of Alloys and Compounds,2022,921:166070. doi: 10.1016/j.jallcom.2022.166070
    [56] SU Z H, TAN J M R, LI X L, et al. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency[J]. Advanced Energy Materials,2015,5(19):1500682. doi: 10.1002/aenm.201500682
    [57] FU J E, TIAN Q W, ZHOU Z J, et al. Improving the performance of solution-processed Cu2ZnSn(S, Se)4 photovoltaic materials by Cd2+ substitution[J]. Chemistry of Materials,2016,28(16):5821-5828. doi: 10.1021/acs.chemmater.6b02111
    [58] YAN C, SUN K W, HUANG J L, et al. Beyond 11% efficient sulfide kesterite Cu2ZnxCd1-xSnS4 solar cell: Effects of cadmium alloying[J]. ACS Energy Letters,2017,2(4):930-936. doi: 10.1021/acsenergylett.7b00129
    [59] LUAN H M, YAO B, LI Y F, et al. Mechanism of enhanced power conversion efficiency of Cu2ZnSn(S, Se)4 solar cell by cadmium surface diffusion doping[J]. Journal of Alloys and Compounds,2021,876:160160. doi: 10.1016/j.jallcom.2021.160160
    [60] GUO H L, MENG R T, WANG G, et al. Band-gap-graded Cu2ZnSn(S, Se)4 drives highly efficient solar cells[J]. Energy & Environmental Science,2022,15(2):693-704.
    [61] ZENG F C, SUI Y R, MA M L, et al. Strengthening the properties of earth-abundant Cu2ZnSn(S, Se)4 photovoltaic materials via cation incorporation with Ni[J]. ACS Applied Energy Materials,2022,5(1):1271-1281. doi: 10.1021/acsaem.1c03687
    [62] 杨艳春. 碱金属(Li+, Na+)对Cu2ZnSn(S, Se)4 薄膜太阳能电池性能的影响研究[D]. 长春: 中国科学院长春应用化学研究所, 2017.

    YANG Yanchun. Effects of alkali metal (Li+, Na+) on performance of Cu2ZnSn(S, Se)4 thin film solar cells[D]. Changchun: Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 2017(in Chinese).
    [63] CHEN H J, FU S W, WU S H, et al. Structural and photoelectron spectroscopic studies of band alignment at the Cu2ZnSnS4/CdS heterojunction with slight Ni doping in Cu2ZnSnS4[J]. Journal of Physics D:Applied Physics,2016,49(33):335102. doi: 10.1088/0022-3727/49/33/335102
    [64] TABLERO C. Electronic and photon absorber properties of Cr-doped Cu2ZnSnS4[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23224-23230.
    [65] KHOSHSIRAT N, BRADFORD J, SHAHBAZI M, et al. Efficiency enhancement of Cu2ZnSnS4 thin film solar cells by chromium doping[J]. Solar Energy Materials and Solar Cells,2019,201:110057.
    [66] KAUR K, NISIKA, CHOWDHURY A H, et al. Nanoscale charge transport and local surface potential distribution to probe the defect passivation in Cr-substituted earth abundant CZTS absorber layer[J]. Journal of Alloys and Compounds,2021,28(15):157160.
    [67] LIE S, TAN J M R, LI W J, et al. Reducing the interfacial defect density of CZTSSe solar cells by Mn substitution[J]. Journal of Materials Chemistry A,2018,6(4):1540-1550. doi: 10.1039/C7TA09668B
    [68] CHEN L L, DENG H M, TAO J H, et al. Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique[J]. RSC Advances,2015,5(102):84295-84302. doi: 10.1039/C5RA14595C
    [69] CHEN L L, DENG H M, CUI J Y, et al. Composition dependence of the structure and optical properties of Cu2MnxZn1-xSnS4 thin films[J]. Journal of Alloys and Compounds,2015,627:388-392. doi: 10.1016/j.jallcom.2014.12.047
    [70] PRABHAKAR R R, SU Z H, ZENG X, et al. Photovoltaic effect in earth abundant solution processed Cu2MnSnS4 and Cu2MnSn(S, Se)4 thin films[J]. Solar Energy Materials and Solar Cells,2016,157:867-873. doi: 10.1016/j.solmat.2016.07.006
    [71] LI X L, HOU Z F, GAO S S, et al. Efficient optimization of the performance of Mn2+-doped kesterite solar cell: Machine learning aided synthesis of high efficient Cu2(Mn, Zn)Sn(S, Se)4 solar cells[J]. Solar RRL,2018,2(12):1800198. doi: 10.1002/solr.201800198
    [72] HE W J, SUI Y R, ZENG F C, et al. Enhancing the performance of aqueous solution-processed Cu2ZnSn(S, Se)4 photovoltaic materials by Mn2+ substitution[J]. Nanomaterials,2020,10(7):1250. doi: 10.3390/nano10071250
    [73] WANG Z W, HE W J, MA M L, et al. Insight into the role of selenization time for highly efficient Mn doped Cu2ZnSn(S, Se)4 thin film based solar cells[J]. Energy Reports, 2022, 8: 37-44.
    [74] GILLORIN A, BALOCCHI A, MARIE X, et al. Synthesis and optical properties of Cu2CoSnS4 colloidal quantum dots[J]. Journal of Materials Chemistry,2011,21(15):5615-5619. doi: 10.1039/c0jm03964k
    [75] ZHANG X Y, BAO N Z, LIN B P, et al. Colloidal synthesis of wurtzite Cu2CoSnS4 nanocrystals and the photoresponse of spray-deposited thin films[J]. Nanotechnology,2013,24(10):105706. doi: 10.1088/0957-4484/24/10/105706
    [76] MURALI B, KRUPANIDHI S B. Facile synthesis of Cu2CoSnS4 nanoparticles exhibiting red-edge-effect: Application in hybrid photonic devices[J]. Journal of Applied Physics,2013,114(14):144312-144319. doi: 10.1063/1.4825070
    [77] MURALI B, MADHURI M, KRUPANIDHI S B, et al. Solution processed Cu2CoSnS4 thin films for photovoltaic applications[J]. Crystal Growth & Design,2014,14(8):3685-3691. doi: 10.1021/cg500622f
    [78] ZHONG J S, WANG Q Y, CAI W. Rapid synthesis of flower-like Cu2CoSnS4 microspheres with nanoplates using a biomolecule-assisted method[J]. Materials Letters,2015,150:69-72. doi: 10.1016/j.matlet.2015.03.006
    [79] HUANG K L, HUANG C H, LIN W T, et al. Solvothermal synthesis and tunable bandgap of Cu2(Zn1-xCox)SnS4 and Cu2(Fe1-xCox)SnS4 nanocrystals[J]. Journal of Alloys and Compounds,2015,646:1015-1022. doi: 10.1016/j.jallcom.2015.05.176
    [80] PINTO A H, SHIN S W, SHARMA A, et al. Synthesis of Cu2(Zn1-xCox)SnS4 nanocrystals and formation of polycrystalline thin films from their aqueous dispersions[J]. Jour-nal of Materials Chemistry A,2018,6(3):999-1008. doi: 10.1039/C7TA06295H
    [81] 张倩. 钴掺杂对铜锌锡硫硒太阳能电池性能影响的研究[D]. 长春: 吉林大学, 2019.

    ZHANG Qian. The influence of Co doping on the performance of Cu2ZnSn(S, Se)4 soler cells[D]. Jilin: Jilin University, 2019(in Chinese).
    [82] ZHANG J Y, YANG Y C, CUI G N, et al. Enhancing electrical properties of Cu2ZnSn(S, Se)4 thin films via trace Co incorporation[J]. Materials Chemistry and Physics,2021,262:124318. doi: 10.1016/j.matchemphys.2021.124318
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  592
  • HTML全文浏览量:  268
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-07
  • 修回日期:  2023-04-24
  • 录用日期:  2023-05-04
  • 网络出版日期:  2023-05-15
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回