Research progress on optimizing performance of Cu2ZnSnS4(Cu2ZnSn(S,Se)4) thin-film solar cells by bivalent cations doping
-
摘要:
背景 太阳能电池作为开发和利用清洁能源的技术之一,顺应当今社会可持续发展的理念,成为一个十分热门的研究方向,也产生很多分支。其中铜锌锡硫硒(CuZnSn(S,Se),简称CZTSSe)薄膜太阳能电池因其无毒和低成本的优势,越来越受研究者们的青睐。而CZTSSe所面临的开路电压低、缺陷密度大、带尾态严重等问题则限制了其电池器件的效率,所以解决开路电压亏损等问题就成为提高电池光电转化效率的重中之重。经过多年的研究探索,阳离子掺杂措施被认为是缓解这些问题的一种有效方法,其中一价和四价的金属阳离子可选择性相对较少,因此,本论文详细介绍了二价阳离子掺杂在优化铜锌锡硫(硒)(CZTS(Se))薄膜太阳能电池性能方面的研究进展。 方法 本论文通过文献调研法、归纳法和对比分析法从二价阳离子取代和额外添加两个方面详细介绍了二价阳离子掺杂措施在优化CZTS(Se)薄膜太阳能电池性能方面的研究进展。主要内容:本文以掺杂的二价阳离子是否进入CZTSSe内部占据晶格位点为标准,将掺杂的二价阳离子进入CZTS(Se)晶格内并占据Zn格位点和未进入晶格内分类为:二价阳离子的取代和二价阳离子的额外添加。根据目前的研究进展,二价阳离子掺杂措施在优化此类电池性能方面的主要作用有:(1)改善吸收层的结晶性,减少Cu-Zn反位缺陷,改善带尾态效应,例如Mg、Ba、Ca,但是此类元素掺杂量的最佳范围较窄,一旦超过这个最佳范围会造成吸收层晶格膨胀,或产生杂相;(2)调节吸收层和缓冲层的能带偏移,例如Cd、Ni、Co、Mn。其中,Cd的掺杂的效果最为明显,可以使CZTS器件效率达到12%以上,但是Cd元素的毒性却是限制其发展的重要因素。除此之外,Cr取代Zn,则是在吸收层中间插入一个中间带,扩大光子的跃迁路径,增强光子的吸收,有助于电池器件性能的提高,但其未实施在优化电池器件性能上,所以,未来可以进行更深入的探索,争取应用在优化电池器件性能上;Co和Mn元素不仅可以与Zn发生取代,还可以通过额外添加的方式,促进晶粒的生长,改善薄膜电学性能,但该类措施也没有应用在优化电池器件性能上,却为以后的电池器件性能优化提供新的途径。 结论 本文从二价阳离子的取代和额外添加两个部分分别介绍了二价阳离子掺杂措施在优化CZTS(Se)薄膜太阳能电池性能的研究进展。二价阳离子取代措施,如:Cd取代Zn等,主要是可以有效降低CZTS(Se)薄膜太阳能电池吸收层的缺陷密度,提高结晶质量,解决吸收层和缓冲层之间界面能带偏移值较大的问题,从而减少电池器件的开路电压亏损,提高器件效率;二价阳离子的额外添加,如:Co、Mn的额外添加,主要是优化薄膜的结晶性、帮助载流子的输运,提高吸收层薄膜的电学性能。最后,也总结两类阳离子掺杂措施的优缺点以及应用前景。 -
关键词:
- 铜锌锡硫 /
- 铜锌锡硫硒 /
- 薄膜太阳能电池 /
- 二价阳离子的取代 /
- 二价阳离子的额外添加
Abstract: Cations doping measures are considered as one of the effective measures to optimize the performance of Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells, and divalent cations doping measures are the most studied and widely applied in all cations doping measures. Here, the research progress of divalent cation measures in optimizing the performance of CZTS(Se) thin film solar cells is introduced from two aspects: cations substitution and extra cations addition. Divalent cations substitution measures, such as, substitution of Zn2+ with Cd2+, mainly reduce the defect density of the absorber layer of CZTS(Se) thin film solar cells, improve the crystalline quality, and solve the problem of large interface energy band offset between the absorber layer and buffer layer, which reduce the open voltage circuit loss of the device and improving its efficiency; the extra addition of divalent cations, such as, the extra addition of Co2+/Mn2+, optimize the crystallinity of the film, help the carrier transport, and improve the electrical properties of the absorber layer; finally, their advantages, disadvantages, and the application prospects are also summarized. -
图 5 CBTSe中本征缺陷在化学势点处的形成焓与费米能级的关系:(a) Cu-poor and Se-intermediate; (b) Cu-rich and Se-poor; (c) (Cu-poor and Se-rich)[53]
Figure 5. Calculated formation enthalpies of intrinsic defects in CBTSe as a function of Fermi level (EF) at the chemical potential points (a) (Cu-poor and Se-intermediate), (b) (Cu-rich and Se-poor), and (c) (Cu-poor and Se-rich)[53]
图 10 CZTS和Cu2(Zn0.96Cr0.04)SnS4薄膜能带图及价带(Ev)中间带(Ei)费米能级(EF)和导带(Ec)相对于真空能级(Evac)的位置[65]
Figure 10. Calculated band diagram of CZTS and Cu2(Zn0.96Cr0.04)SnS4 films and position of valence band (Ev), intermediate band states (Ei), fermi level (EF) and conduction band (Ec) with respect to vacuum level (Evac)[65]
表 1 不同二价阳离子掺杂措施所取得的最高铜锌锡硫硒薄膜(CZTS(Se))薄膜太阳能电池参数
Table 1. The paramaters of the hightest Cu2ZnSn(S,Se)4 CZTS(Se) thin-film solar cell by different divalent cation doping measures
Battery device name VOC/mV JSC/mA·cm−2 FF/% η/% Ref Cu2Mg0.0357Zn0.9643Sn(S,Se)4 400.15 33.45 57.93 7.76 [50] Cu2Ba0.01Zn0.9Sn(S,Se)4 424 32.3 66.8 9.14 [52] Cu2Ca0.02Zn0.8Sn(S,Se)4 417 35.84 58 8.73 [54] Cu2Zn0.6Cd0.4SnS4 640 27.8 71 12.6 [18] Cu2Ni0.05Zn0.95Sn(S,Se)4 351 33.62 45.05 5.32 [60] Cu2Zn0.96Cr0.04SnS4 568 14 49.8 3.96 [64] Cu2Mn0.05Zn0.95Sn(S,Se)4 418 33.7 63.3 8.9 [70] Cu2Co0.03Zn0.97Sn(S,Se)4 340 26.85 43.3 3.95 [71] Notes:VOC: open circuit voltage; JSC: short-circuit current density; FF: fill factor; η: light-to-electricity conversion efficiency absorber Optical Eg/eV PL Peak/eV Δ(Eg- PL Peak)/mV EUrbach/meV CZTS 1.54 1.37 ~170 65 CZCTS 1.38 1.31 ~70 45 Notes: Optical Eg: optical band gap; PL Peak: photoluminescence peak; Δ(Eg - PL Peak): the difference between the optical band gap and PL peak, correlated with the extent of band tailing; EUrbach: Urbach tail energy, is used to account for sub-band gap photon absorption and the characterized band tailing. -
[1] WANG J L, ZHOU J Z, XU X, et al. Ge bidirectional diffusion to simultaneously engineer back interface and bulk defects in the absorber for efficient CZTSSe solar cells[J]. Advanced Materials,2022,34(27):2202858. doi: 10.1002/adma.202202858 [2] DENG H, SUN Q Z, YANG Z Y, et al. Novel symmetrical bifacial flexible CZTSSe thin film solar cells for indoor photovoltaic applications[J]. Nature Communications,2021,12(1):3107. doi: 10.1038/s41467-021-23343-1 [3] LIU W C, GUO B L, MAK C L, et al. Facile synthesis of ultrafine Cu2ZnSnSe4 nanocrystals by hydrothermal method for use in solar cells[J]. Thin Solid Films,2013,535:39-43. doi: 10.1016/j.tsf.2012.11.073 [4] LIU T C, HU Y. Preparation and characterization of CZTSe films through electrochemical deposition route[J]. International Journal of Electrochemical Science,2014,9(6):2985-2992. [5] 崔国楠, 杨艳春, 李月敏, 等. 溶液法制备铜锌锡硫硒薄膜太阳能电池的研究进展[J]. 硅酸盐学报, 2021, 49(3):483-494. doi: 10.14062/j.issn.0454-5648.20200441CUI G N, YANG Y C, LI Y M, et al. Solution-processed Cu2ZnSn(S, Se)4 thin film solar cells[J]. Journal of the Chinese Ceramic Society,2021,49(3):483-494(in Chinese). doi: 10.14062/j.issn.0454-5648.20200441 [6] 张艳珠. CZTSSe吸光层结晶性的改善及其对电池效率的影响[D]. 郑州: 河南大学, 2016.ZHANG Y Z. Improving the crystallinity of the CZTSSe absorber and it’s impact on the solar cell efficiency[D]. Zhengzhou: Henan University, 2016(in Chinese). [7] 米亚金, 杨艳春, 王晓宁, 等. 部分阳离子取代优化铜锌锡硫硒薄膜太阳能电池性能研究进展[J]. 发光学报, 2022, 43(2):256-267. doi: 10.37188/CJL.20210340MI Y J, YANG Y C, WANG X N, et al. Research progress on optimizing performance of Cu2ZnSn(S, Se)4 thin film solar cells by partial cation substitutions[J]. Chinese Journal of Luminescence,2022,43(2):256-267(in Chinese). doi: 10.37188/CJL.20210340 [8] 沈韬, 柴鲜花, 孙淑红, 等. 微波法制备铜锌锡硫的研究进展[J]. 材料导报, 2019, 33(13):2159-2166. doi: 10.11896/cldb.18020033SHEN T, CHAI X H, SUN S H, et al. Research progress of Cu2ZnSnS4 prepared by microwave method[J]. Materials Reports,2019,33(13):2159-2166(in Chinese). doi: 10.11896/cldb.18020033 [9] 赵其琛, 郝瑞亭, 刘思佳, 等. 退火温度对分步溅射制备铜锌锡硫薄膜性能的影响[J]. 激光与光电子学进展, 2017, 54(9):091601-1-5. doi: 10.3788/LOP54.091601ZHAO Q C, HAO R T, LIU S J, et al. Influence of annealing temperature on properties of Cu2ZnSnS4 thin films prepared by step sputtering[J]. Laser and Optoelectronics Progress,2017,54(9):091601-1-5(in Chinese). doi: 10.3788/LOP54.091601 [10] 刘仪柯, 唐雅琴, 蒋良兴, 等. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 材料导报, 2018, 32A(9):1412-1416,1422. doi: 10.11896/j.issn.1005-023X.2018.09.003LIU Y K, TANG Y Q, JIANG L X, et al. Photovoltaic characteristics of Cu2ZnSn(SxSe1-x)4 thin films synthesized via the process of Cu-Zn-Sn presputtering and subsequent sulfurization(selenization) annealing[J]. Materials Reports,2018,32A(9):1412-1416,1422(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.09.003 [11] 宋思悦, 刘旭炜, 林鸿霄, 等. 电镀法在氧化铟锡上制备铜锌锡硫薄膜的光谱特征[J]. 光谱学与光谱分析, 2019, 39(9):2940-2945.SONG S Y, LIU X W, LIN H X, et al. Spectral characterization of electrodeposited Cu2ZnSnS4 thin films on fluorine-doped tin oxide[J]. Spectroscopy and Spectral Analysis,2019,39(9):2940-2945(in Chinese). [12] 张克智, 陶加华, 刘俊峰, 等. 简单的溶胶-凝胶法制备致密的铜锌锡硫硒薄膜[J]. 无机材料学报, 2014, 29(7):781-784.ZHANG K Z, TAO J H, LIU J F, et al. Compact Cu2ZnSn(S, Se)4 thin films fabricated by a simple sol-gel technique[J]. Journal of Inorganic Materials,2014,29(7):781-784(in Chinese). [13] 李桐, 张林睿, 杨炎翰, 等. 铜锌锡硫薄膜太阳能电池吸收层的银掺杂[J]. 材料工程, 2018, 46(12):95-100. doi: 10.11868/j.issn.1001-4381.2017.001238LI T, ZHANG L R, YANG Y H, et al. Ag incorporation in Cu2ZnSnS4 thin film solar cell absorbed layer[J]. Journal of Materials Engineering,2018,46(12):95-100(in Chinese). doi: 10.11868/j.issn.1001-4381.2017.001238 [14] 舒博, 凌武定, 韩奇峰. Cu2ZnSn(S, Se)4纳米晶薄膜太阳能电池的研究进展[J]. 上海师范大学学报(自然科学版), 2015, 44(4):447-460.SHU B, LING W D, HAN Q F. Research progress of Cu2ZnSn(S, Se)4 nanocrystalline thin film solar cells[J]. Journal of Shanghai Normal University (Natural Science edition),2015,44(4):447-460(in Chinese). [15] 阎森飚, 徐键. CZTS薄膜太阳能电池无镉缓冲层材料的研究进展[J]. 材料导报, 2020, 34(7):7045-7052. doi: 10.11896/cldb.19020106YAN S B, XU J. Development of Cd-free buffer materials for CZTS thin-film solar cells[J]. Materials Reports,2020,34(7):7045-7052(in Chinese). doi: 10.11896/cldb.19020106 [16] 黄晓梦, 徐佳雄. 周期性前驱体的预硫化处理对Cu2ZnSnS4薄膜的影响[J]. 材料工程, 2020, 48(3):155-162. doi: 10.11868/j.issn.1001-4381.2018.000990HUANG X M, XU J X. Effect of pre-sulfurization treatment of periodic precursor on Cu2ZnSnS4 thin film[J]. Journal of Materials Engineering,2020,48(3):155-162(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000990 [17] 李新毓, 张道永, 李祥, 等. 磁控溅射制备Cu2ZnSnS4薄膜太阳能电池[J]. 硅酸盐学报, 2022, 50(5):1257-1262.LI X Y, ZHANG D Y, LI X, et al. Preparation of Cu2ZnSnS4 thin film solar cells based on magnetron sputtering[J]. Journal of the Chinese Ceramic Society,2022,50(5):1257-1262(in Chinese). [18] SU Z H, LIANG G X, FAN P, et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Advanced Materials,2020,32(32):2000121. doi: 10.1002/adma.202000121 [19] GREEN M A. , DUNLOP E D., EBINGER-H J, et al. Solar cell efficiency tables (Version 60)[J]. Progress in Photovoltaics,2022,30(7):687-701. doi: 10.1002/pip.3595 [20] MARC S, RABIE D, LEVENT G, et al. Direct synthesis of single-phase p-type SnS by electrodeposition from a dicyanamide ionic liquid at high temper-ature for thin film solar cells[J]. The Journal of Physical Chemistry C,2013,117(9):4383-4393. doi: 10.1021/jp311552g [21] PRICE L S, PARKIN I P, HARDY A M E, et al. Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass[J]. Chemistry Materials,1999,11(7):1792-1799. doi: 10.1021/cm990005z [22] SUI Y R, WU Y J, ZHANG Y, et al. Indium effect on structural, optical and electrical properties of Cu2InxZn1-xSnS4 alloy thin films for solar cell[J]. Superlattices and Microstructures,2017,111:579-590. doi: 10.1016/j.spmi.2017.07.015 [23] CUI G N, YANG Y C, CHEN R L, et al. Influence of extra trace Mn-doping on the properties of Cu2ZnSn(S, Se)4 absorber layer[J]. Optical Materials,2021,111:110707. doi: 10.1016/j.optmat.2020.110707 [24] 马骕驭, 马传贺, 卢小双, 等. 铜锌锡硫带边电子结构及缺陷态的光学表征[J]. 红外与毫米波学报, 2020, 39(1):92-98. doi: 10.11972/j.issn.1001-9014.2020.01.013MA S Y, MA C H, LU X S, et al. Optical characterization of band edge electronic structure and defect states in Cu2ZnSnS4[J]. Journal of Infrared and Millimeter Waves,2020,39(1):92-98(in Chinese). doi: 10.11972/j.issn.1001-9014.2020.01.013 [25] DUAN B W, Shi J J, Li D M, et al. Underlying mechanism of the efficiency loss in CZTSSe solar cells: Disorder and deep defects[J]. Science China-Materials,2020,63(12):2371-2396. doi: 10.1007/s40843-020-1385-0 [26] KRAUT E A, GRANT R W, WALDROP J R, et al. Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurement of semiconductor interface potentials[J]. Physical Review Letters,1980,44(24):1620. doi: 10.1103/PhysRevLett.44.1620 [27] ZHAO Y H, ZHAO X Y, KOU D X, et al. Local Cu component engineering to achieve continuous carrier transport for enhanced kesterite solar cells[J]. ACS Applied Materials & Interfaces,2021,13(1):795-805. [28] ZHANG X, ZHOU Z J, CAO L, et al. Suppressed interface defects by GeSe2 post-deposition treatment enables high-efficiency kesterite solar cells[J]. Advanced Functional Materials,2023,33(8):2211315. doi: 10.1002/adfm.202211315 [29] CHEN S Y, WALSH A, GONG G X, et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers[J]. Advanced Materials,2013,25(11):1522-1539. doi: 10.1002/adma.201203146 [30] CUI C C, KOU D X, ZHOU W H, et al. Surface defect ordered Cu2ZnSn(S, Se)4 solar cells with efficiency over 12% via manipulating local substitution[J]. Journal of Energy Chemistry,2022,67:555-562. doi: 10.1016/j.jechem.2021.10.035 [31] ZHOU J Z, XU X, DUAN B W, et al. Regulating crystal growth via organic lithium salt additive for efficient kesterite solar cells[J]. Nano Energy,2021,89(B):106405. [32] GONG Y C, ZHU Q, LI B Y, et al. Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells[J]. Nature Energy,2022,7(10):966-977. doi: 10.1038/s41560-022-01132-4 [33] CHEN S Y, WALSH A, YANG J H, et al. Compositional dependence of structural and electronic properties of Cu2ZnSn(S, Se)4 alloys for thin film solar cells[J]. Physical Review B,2011,83(12):125201-1-5. doi: 10.1103/PhysRevB.83.125201 [34] PAIER J, ASAHI R, NAGOYA A, et al. Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study[J]. Physical Review B,2009,79(11):115126-1-8. doi: 10.1103/PhysRevB.79.115126 [35] SUN Y L, QIU P F, YU W, et al. N-type surface design for p-type CZTSSe thin film to attain high efficiency[J]. Advanced Materials,2021,33(49):2104330. doi: 10.1002/adma.202104330 [36] NAGAI T, SHIMAMURA T, TANIGAWA K, et al. Band alignment of the CdS/Cu2Zn(Sn1-xGex)Se4 heterointerface and electronic properties at the Cu2Zn(Sn1-xGex)Se4 surface: x = 0, 0.2, and 0.4[J]. ACS Applied Materials & Interfaces,2019,11(4):4637-4648. [37] SURESH K M, SREEJITH P M, ATHIMOTLY R R, et al. Barium (Ba) substitution in kesterite Cu2ZnSnS4: Cu2Zn1-xBaxSnS4(CZBTS) quinary alloy thin films for efficient solar energy harvesting[J]. American Chemical Society,2020,20(7):4387-4394. [38] SUI Y R, ZHANG Y, JIANG D Y, et al. Investigation of optimum Mg doping content and annealing parameters of Cu2MgxZn1-xSnS4 thin films for solar cells[J]. Nanomaterials,2019,9(7):955. doi: 10.3390/nano9070955 [39] YANG Y C, HUANG L J, PAN D C. New insight of Li-doped Cu2ZnSn(S, Se)4 thin films: Li-induced Na diffusion from soda lime glass by a cation-exchange reaction[J]. ACS Applied Materials & Interfaces,2017,9(28):23878-23883. [40] QI Y F, TIAN Q W, MENG Y N, et al. Elemental precursor solution processed (Cu1-xAgx)2ZnSn(S, Se)4 photovoltaic devices with over 10% efficiency[J]. ACS Applied Materials & Interfaces,2017,9(25):21243-21250. [41] GUO H F, LI Y, GUO X H, et al. Effect of silicon doping on electrical and optical properties of stoichiometric Cu2ZnSnS4 solar cells[J]. Physica B-Condensed Matter,2018,531:9-15. doi: 10.1016/j.physb.2017.12.016 [42] DENG Y Q, ZHOU Z J, ZHANG X, et al. Adjusting the SnZn defects in Cu2ZnSn(S, Se)4 absorber layer via Ge4+ implanting for efficient kesterite solar cells[J]. Journal of Energy Chemistry,2021,61:1-7. doi: 10.1016/j.jechem.2021.02.011 [43] TIAN Q W, LIU S Z. Defect suppression in multinary $ {M}_{2}^{\text{I}}-{M}^{Ⅱ}-{M}^{Ⅳ}-{Ch}_{4} $ chalcogenide photovoltaic materials derived from kesterite: progress and outlook[J]. Journal of Materials Chemistry A,2020,8(47):24920-24942. doi: 10.1039/D0TA08202C[44] WEI M, DU Q Y, WANG R, et al. Synthesis of new earth-abundant kesterite Cu2MgSnS4 nanoparticles by hot-injection method[J]. Chemistry Letters,2014,43(7):1149-1151. doi: 10.1246/cl.140208 [45] LIU K S, YAO B, LI Y F, et al. Fabrication of Cu2MSnS4(M = Co2+, Ni2+) nanocrystal thin films and their application in photodetectors[J]. New Journal of Chemistry,2017,41(2):685-691. doi: 10.1039/C6NJ02576E [46] ZHONG G H, TSE K, ZHANG Y, et al. Induced effects by the substitution of Zn in Cu2ZnSnX4(X = S and Se)[J]. Thin Solid Films,2016,603:224-229. doi: 10.1016/j.tsf.2016.02.005 [47] CABALLERO R, HAASS S G, ANDRES C, et al. Effect of magnesium incorporation on solution-processed kesterite solar cells[J]. Frontiers Chemistry,2018,6:5. doi: 10.3389/fchem.2018.00005 [48] ZHANG Y, JIANG D Y, SUI Y R, et al. Synthesis and investigation of environmental protection and earth-abundant kesterite Cu2MgxZn1-xSn(S, Se)4 thin films for solar cells[J]. Ceramics International,2018,44(13):15249-15255. doi: 10.1016/j.ceramint.2018.05.167 [49] WANG Y P, HAO R T, GUO J, et al. Effect of Mg doping on Cu2ZnSnS4 solar cells prepared by DMF-based solution method[J]. Optical Materials,2021,117:111211. doi: 10.1016/j.optmat.2021.111211 [50] WANG Y M, YANG Y C, ZHU C J, et al. Boosting the electrical properties of Cu2ZnSn(S, Se)4 solar cells via low amounts of Mg substituting Zn[J]. ACS Applied Energy Materials,2020,3(11):11177-11182. doi: 10.1021/acsaem.0c02121 [51] KHATTAK Y H, BAIG F, TOURA H, et al. Efficiency enhancement of Cu2BaSnS4 experimental thin-film solar cell by device modeling[J]. Journal of Materials Science,2019,54:14787-14796. doi: 10.1007/s10853-019-03942-6 [52] GUO J J, MAO Y, ZHANG Z J, et al. Enhancing the photovoltaic performance of Cu2ZnSn(S, Se)4 solar cells with Ba trace doping: large chemical mismatch cation incorporation[J]. Solar RRL,2021,5(11):2100607. doi: 10.1002/solr.202100607 [53] XIAO Z W, MENG W W, LI J V. , et al. Distant-atom mutation for better earth-abundant light absorbers: A case study of Cu2BaSnSe4[J]. ACS Energy Letters,2017,2(1):29-35. doi: 10.1021/acsenergylett.6b00577 [54] CHEN R Z, PERSSON C. Electronic and optical properties of Cu2XSnS4(X=Be, Mg, Ca, Mn, Fe, and Ni) and the impact of native defect pairs[J]. Journal of Applied Physics,2017,121(20):203104. doi: 10.1063/1.4984115 [55] WANG Y M, YANG Y C, LUAN H M, et al. Optimizing the properties of Cu2ZnSn(S, Se)4 solar cells via cationic substitution with trace Ca[J]. Journal of Alloys and Compounds,2022,921:166070. doi: 10.1016/j.jallcom.2022.166070 [56] SU Z H, TAN J M R, LI X L, et al. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency[J]. Advanced Energy Materials,2015,5(19):1500682. doi: 10.1002/aenm.201500682 [57] FU J, TIAN Q W, ZHOU Z J, et al. Improving the performance of solution-processed Cu2ZnSn(S, Se)4 photovoltaic materials by Cd2+ substitution[J]. Chemistry of Materials,2016,28(16):5821-5828. doi: 10.1021/acs.chemmater.6b02111 [58] YAN C, SUN K W, HUANG J L, et al. Beyond 11% efficient sulfide kesterite Cu2ZnxCd1-xSnS4 solar cell: Effects of cadmium alloying[J]. ACS Energy Letters,2017,2(4):930-936. doi: 10.1021/acsenergylett.7b00129 [59] LUAN H M, YAO B, LI Y F, et al. Mechanism of enhanced power conversion efficiency of Cu2ZnSn(S, Se)4 solar cell by cadmium surface diffusion doping[J]. Journal of Alloys and Compounds,2021,876:160160. doi: 10.1016/j.jallcom.2021.160160 [60] GUO H L, MENG R T, WANG G, et al. Band-gap-graded Cu2ZnSn(S, Se)4 drives highly efficient solar cells[J]. Energy & Environmental Science,2022,15(2):693-704. [61] ZENG F C, SUI Y Ri, MA M L, et al. Strengthening the properties of earth-abundant Cu2ZnSn(S, Se)4 photovoltaic materials via cation incorporation with Ni[J]. ACS Applied Energy Materials,2022,5(1):1271-1281. doi: 10.1021/acsaem.1c03687 [62] 杨艳春. 碱金属(Li+, Na+)对Cu2ZnSn(S, Se)4 薄膜太阳能电池性能的影响研究[D]. 长春: 中国科学院长春应用化学研究所, 2017.YANG Y C. Effects of alkali metal (Li+, Na+) on performance of Cu2ZnSn(S, Se)4 thin film solar cells[D]. Changchun: Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 2017( in Chinese) [63] CHEN H J, FU S W, WU S H, et al. Structural and photoelectron spectroscopic studies of band alignment at the Cu2ZnSnS4/CdS heterojunction with slight Ni doping in Cu2ZnSnS4[J]. Journal of Physics D-Applied Physics,2016,49:335102. doi: 10.1088/0022-3727/49/33/335102 [64] TABLERO C. Electronic and photon absorber properties of Cr-doped Cu2ZnSnS4[J]. The Journal of Physical Chemistry C, 2012, 2012 116 (44): 23224-23230. [65] KHOSHSIRATA N, BRADFORDA J, SHAHBAZI M, et al. Efficiency enhancement of Cu2ZnSnS4 thin film solar cells by chromium doping[J]. Solar Energy Materials and Solar Cells,2019,201:11005. [66] KUAR K, NISIKA, CHOWDHURY A H, et al. Nanoscale charge transport and local surface potential distribution to probe the defect passivation in Cr-substituted earth abundant CZTS absorber layer[J]. Journal of Alloys and Compounds,2021,28(15):157160. [67] LIE S, TAN J M R, LI W, et al. Reducing the interfacial defect density of CZTSSe solar cells by Mn substitution[J]. Journal of Materials Chemistry A,2018,6(4):1540-1550. doi: 10.1039/C7TA09668B [68] CHEN L L, DENG H M, TAO J H, et al. Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique[J]. RSC Advances,2015,5(102):84295-84302. doi: 10.1039/C5RA14595C [69] CHEN L L, DENG H M, CUI J Y, et al. Composition dependence of the structure and optical properties of Cu2MnxZn1-xSnS4 thin films[J]. Journal of Alloys Compounds,2015,627:388-392. doi: 10.1016/j.jallcom.2014.12.047 [70] RAJIV R P, SU Z H, ZENG X, et al. Photovoltaic effect in earth abundant solution processed Cu2MnSnS4 and Cu2MnSn(S, Se)4 thin films[J]. Solar Energy Materials and Solar Cells,2016,157:867-873. doi: 10.1016/j.solmat.2016.07.006 [71] LI X L, HOU Z F, GAO S S, et al. Efficient optimization of the performance of Mn2+ doped kesterite solar cell: Machine learning aided synthesis of high efficient Cu2(Mn, Zn)Sn(S, Se)4 solar cells[J]. Solar RRL,2018,2(12):1800198. doi: 10.1002/solr.201800198 [72] HE W J, SUI Y R, ZENG F C, et al. Enhancing the performance of aqueous solution-processed Cu2ZnSn(S, Se)4 photovoltaic materials by Mn2+ substitution[J]. Nanomaterials,2020,10(7):1250. doi: 10.3390/nano10071250 [73] WANG Z W, HE W J, MA M L, et al, Insight into the role of selenization time for highly efficient Mn doped Cu2ZnSn(S, Se)4 thin film based solar cells[J]. Energy Reports, 2022, 8: 37-44. [74] GILLORIN A, BALOCCHI A, MARIE X, et al. Synthesis and optical properties of Cu2CoSnS4 colloidal quantum dots[J]. Journal of Materials Chemistry,2011,21(15):5615-5619. doi: 10.1039/c0jm03964k [75] ZHANG X Y, BAO N Z, LIN B P, et al. Colloidal synthesis of wurtzite Cu2CoSnS4 nanocrystals and the photoresponse of spray-deposited thin films[J]. Nanotechnology,2013,24(10):105706. doi: 10.1088/0957-4484/24/10/105706 [76] MURALI B, KRUPANIDHI S B. Facile synthesis of Cu2CoSnS4 nanoparticles exhibiting red-edge-effect: Application in hybrid photonic devices[J]. Journal Applied Physics,2013,114:144312-144319. doi: 10.1063/1.4825070 [77] MURALI B, MADHURI M, KRUPANIDHI S B, et al. Solution processed Cu2CoSnS4 thin films for photovoltaic applications[J]. Crystal Growth Design,2014,14(8):3685-3691. doi: 10.1021/cg500622f [78] ZHONG J S, WANG Q Y, CAI W. Rapid synthesis of flower-like Cu2CoSnS4 microspheres with nanoplates using a biomolecule-assisted method[J]. Materials Letters,2015,150:69-72. doi: 10.1016/j.matlet.2015.03.006 [79] HUANG K L, HUANG C H, W. T. LIN W T, et al. Solvothermal synthesis and tunable bandgap of Cu2(Zn1-xCox)SnS4 and Cu2(Fe1-xCox)SnS4 nanocrystals[J]. Journal of Alloys and Compounds,2015,646:1015-1022. doi: 10.1016/j.jallcom.2015.05.176 [80] PINTO A H, SHIN S W, SHARMA A, et al. Synthesis of Cu2(Zn1-xCox)SnS4 nanocrystals and formation of polycrystalline thin films from their aqueous dispersions[J]. Journal of Materials Chemistry A,2018,6(3):999-1008. doi: 10.1039/C7TA06295H [81] 张倩. 钴掺杂对铜锌锡硫硒太阳能电池性能影响的研究. 吉林: 吉林大学, 2019.ZHANG Q. The influence of Co doping on the performance of Cu2ZnSn(S, Se)4 soler cells[D]. JiLin Jilin University, 2019(in Chinese). [82] ZHANG J Y, YANG Y C, CUI G N, et al. Enhancing electrical properties of Cu2ZnSn(S, Se)4 thin films via trace Co incorporation[J]. Materials Chemistry and Physics,2021,262:124318. doi: 10.1016/j.matchemphys.2021.124318 [83] CUI G N, YANG Y C, CHEN R L, et al. Influence of extra trace Mn-doping on the properties of Cu2ZnSn(S, Se)4 absorber layer[J]. Optical Materials,2021,111:110707. doi: 10.1016/j.optmat.2020.110707 -

计量
- 文章访问数: 60
- HTML全文浏览量: 21
- 被引次数: 0