留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米银/纳米纤维素复合抗菌应变响应性水凝胶

王钦雯 王雯君 陈玟锦 唐爱民

王钦雯, 王雯君, 陈玟锦, 等. 纳米银/纳米纤维素复合抗菌应变响应性水凝胶[J]. 复合材料学报, 2023, 42(0): 1-11.
引用本文: 王钦雯, 王雯君, 陈玟锦, 等. 纳米银/纳米纤维素复合抗菌应变响应性水凝胶[J]. 复合材料学报, 2023, 42(0): 1-11.
WANG Qinwen, WANG Wenjun, CHEN Wenjin, et al. Silver nanoparticle/nanocellulose composites antibacterial strain-responsive hydrogels[J]. Acta Materiae Compositae Sinica.
Citation: WANG Qinwen, WANG Wenjun, CHEN Wenjin, et al. Silver nanoparticle/nanocellulose composites antibacterial strain-responsive hydrogels[J]. Acta Materiae Compositae Sinica.

纳米银/纳米纤维素复合抗菌应变响应性水凝胶

基金项目: 国家自然科学基金 (51875214)
详细信息
    通讯作者:

    王钦雯,博士,副教授,硕士生导师,研究方向为纸张及其他承印材料的印刷适性、适用于喷墨印刷的纳米纤维素油墨及环保型印刷油墨的开发及应用 E-mail: qwwang@scut.edu.cn

  • 中图分类号: TB332

Silver nanoparticle/nanocellulose composites antibacterial strain-responsive hydrogels

Funds: National Natural Science Foundation of China (No.51875214).
  • 摘要: 基于纳米银颗粒(AgNPs)的抗菌导电水凝胶在可穿戴设备、电子皮肤、生物传感器等领域有重要应用,其绿色制造是目前的研究热点之一。纳米纤维素(CNF)因其独特的物理化学性质,在智能水凝胶的制备与应用中得到越来越多的关注。将 AgNPs 与 CNF 复合并应用到水凝胶中,有望制备具有良好机械性能的抗菌水凝胶,对水凝胶在智能可穿戴领域中的应用具有重要的指导意义。本研究首先以羧基改性的纳米纤维素(TOCNF)为复合基材,硝酸银(AgNO3)为银源,通过水热法原位复合制备纳米银/纳米纤维素复合材料(Ag-CNF)。随后,将 Ag-CNF 和 单宁酸(TA) 作为功能性添加剂引入聚丙烯酰胺(PAM)水凝胶中,制备了具有良好拉伸性能、粘附性、抗菌性和紫外屏蔽性的 Ag-CNF/PAM 水凝胶(AP 水凝胶),并将 AP 水凝胶封装制备成应变响应传感设备,研究其电学和传感性能。AP 水凝胶在 100% 的应变循环下能够保持稳定重复的电信号输出,也能够用于手腕动作和头部动作的动作检测,在应变响应传感领域具有良好的应用前景。

     

  • 图  1  AgNO3、羧基改性的纳米纤维素(TOCNF)、AgNO3-TOCNF和 Ag-CNF 的 UV-vis 吸收光谱

    Figure  1.  Absorption spectra of AgNO3 solution, TEMPO-oxidized nanocellulose (TOCNF), AgNO3-TOCNF and Ag-CNF

    图  2  TOCNF(a)和 Ag-CNF(b)的 AFM 图像以及 TOCNF 长度统计(c)和 AgNPs 的粒径统计(d)

    Figure  2.  AFM images of TOCNF (a) and Ag-CNF (b), the length statistic of TOCNF (c) and the particle size statistics of AgNPs(d)

    图  3  聚丙烯酰胺(PAM)和 AP (Ag-CNF/PAM)水凝胶的制备示意图

    Figure  3.  Schematic representation of the preparation of polyacrylamide (PAM) and AP (Ag-CNF/PAM) hydrogels

    图  4  AP 水凝胶(a)扭转(b)、打结(c)以及承重(d)的实物图

    Figure  4.  Real picture of AP hydrogel (a) twisting (b), knotting (c), and bearing (d)

    图  5  TOCNF,AM、TA、PAM 和 AP 水凝胶红外谱图

    Figure  5.  FTIR spectrums of TOCNF, AM, TA, PAM and AP hydrogels

    图  6  AP 水凝胶的表面(a, b)和横截面(c, d)的 SEM 图片

    Figure  6.  SEM images of surface (a, b) and cross-sections (c, d) of AP hydrogels

    图  7  AP 水凝胶对不同基材的粘附图片

    Figure  7.  Images of AP hydrogel adhesion to different substrates

    图  8  不同 AM 含量和 TA 含量的 AP 水凝胶对纸张的粘附剪切应力对比

    Figure  8.  Comparison of adhesive shear stress of AP hydrogels with different AM and TA contents on paper

    图  9  AP 水凝胶对不同基底的重复粘附测试

    Figure  9.  Repeated adhesion test of AP hydrogel to different substrates

    图  10  不同 单宁酸(TA) 含量的 AP 水凝胶的应力-应变曲线(a)和对应的性能参数(b)

    Figure  10.  Stress-strain curves (a) and corresponding performance parameters (b) of AP hydrogels with different tannic acid (TA) contents

    图  11  AP 水凝胶对大肠杆菌和金黄色葡萄球菌的接触抗菌效果

    Figure  11.  Contact antibacterial effect of AP hydrogels on E. coli and S. aureus

    图  12  PAM 和 AP 水凝胶的 UV-vis 透射率光谱

    Figure  12.  The UV-vis transparent spectrum of PAM and AP hydrogels

    图  13  基于 AP 水凝胶的应变响应传感器在不同应变(0-500%)下(a, b)的相对电阻变化;应变响应传感器的应变系数(c)

    Figure  13.  Changes in the relative resistance of AP hydrogel-based strain-responsive sensors at different strains (0-500%) (a, b); gauge factor of the strain-response sensors (c)

    图  14  基于 AP 水凝胶的应变响应传感器在 100%应变循环加载-卸载过程中的相对电阻变化

    Figure  14.  Changes in relative resistance of AP hydrogel-based strain-responsive sensors during 100% strain cyclic loading-unloading

    图  15  基于 AP 水凝胶的应变响应传感器在手指动作检测中(a, b)的相对电阻变化

    Figure  15.  Changes in relative resistance of AP hydrogel-based strain-responsive sensors during finger-action detection (a, b).

  • [1] 齐钰, 鲁洋, 周青青, 等. 高性能水凝胶在可穿戴传感器中的应用进展[J]. 分析化学, 2022, 50(11): 1699-1711.

    QI Yu, LU Yang, ZHOU Qing-Qing, et al. Application of high performance hydrogels in wearable sensors[J]. Chinese Journal of Analytical Chemistry, 2022, 50(11): 1699-1711(in Chinese).
    [2] REN Yanzhi, ZHENG Zhourong, XU Sibo, et al. User Identification Leveraging Whispered Sound for Wearable Devices[J]. IEEE Transactions on Mobile Computing, 2023, 22(3): 1841-1855.
    [3] MEENA Jagan Singh, CHOI Su Bin, JUNG Seung-Boo, et al. Electronic textiles: New age of wearable technology for healthcare and fitness solutions[J]. Materials Today Bio, 2023, 19: 100565. doi: 10.1016/j.mtbio.2023.100565
    [4] MARKSTEDT Kajsa, ESCALANTE Alfredo, TORIZ Guillermo, et al. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40878-40886.
    [5] MENDOZA Llyza, BATCHELOR Warren, TABOR Rico F, et al. Gelation mechanism of cellulose nanofibre gels: A colloids and interfacial perspective[J]. Journal of Colloid and Interface Science, 2018, 509: 39-46. doi: 10.1016/j.jcis.2017.08.101
    [6] 江文静, 廖静文, 张雪慧, 等. 导电复合水凝胶的分类及其在柔性可穿戴设备中的应用[J]. 复合材料学报, 2023, 40(4): 1879-1895.

    JIANG Wenjing, LIAO Jingwen, ZHANG Xuehui, et al. Classification of conductive composite hydrogels and their application in flexible wearable devices[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1879-1895(in Chinese).
    [7] YANG Peihua, YANG Jin-Lin, LIU Kang, et al. Hydrogels Enable Future Smart Batteries[J]. ACS Nano, 2022, 16(10): 15528-15536. doi: 10.1021/acsnano.2c07468
    [8] WANG Yilei, LIU Hao, XIE Hui, et al. An Autofluorescent Hydrogel with Water-Dependent Emission for Dehydration-Visualizable Smart Wearable Electronics[J]. Advanced Functional Materials, 2023: 2213545.
    [9] QIN Miao, YUAN Wenfeng, ZHANG Xiumei, et al. Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor[J]. Colloids and Surfaces B:Biointerfaces, 2022, 214: 112482. doi: 10.1016/j.colsurfb.2022.112482
    [10] SHIN Minkyu, LIM Joungpyo, AN Joohyun, et al. Nanomaterial-based biohybrid hydrogel in bioelectronics[J]. Nano Convergence, 2023, 10(1): 8. doi: 10.1186/s40580-023-00357-7
    [11] DENG Zexing, GUO Yi, ZHAO Xin, et al. Poly(N-Isopropylacrylamide) Based Electrically Conductive Hydrogels and Their Applications[J]. Gels, 2022, 8(5): 280. doi: 10.3390/gels8050280
    [12] KAILASA Suresh Kumar, JOSHI Dharaben J, KATESHIYA Mehul R, et al. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels[J]. Materials Today Chemistry, 2022, 23: 100746. doi: 10.1016/j.mtchem.2021.100746
    [13] LUO Qiguan, SHEN Huimin, ZHOU Guofu, et al. A mini-review on the dielectric properties of cellulose and nanocellulose-based materials as electronic components[J]. Carbohydrate Polymers, 2023, 303: 120449. doi: 10.1016/j.carbpol.2022.120449
    [14] 杜宏, 程正柏, 刘莹莹, 等. 纳米纤维素复合导电水凝胶的制备及其在传感器方面应用的研究进展 J][J]. 中国造纸学报, 2023, 38(3): 30-38.

    DU Hong, CHENG Zhengbai, LIU Yingying, et al. Recent Advances on the Preparation of Nanocellulose Composite Conductive Hydrogels and Their Applications in Sensors[J]. Transactions of China Pulp and Paper, 2023, 38(3): 30-38(in Chinese).
    [15] LIU Wei, LIU Kun, DU Haishun, et al. Cellulose Nanopaper: Fabrication, Functionalization, and Applications[J]. Nano-Micro Letters, 2022, 14(1): 104. doi: 10.1007/s40820-022-00849-x
    [16] PUPPALA Navinchandra V, DODDIPATLA Purnima, MOHANNATH Gireesha. Use of nanocellulose in the intracellular delivery of biological and non-biological drugs: a review[J]. Cellulose, 2023, 30(3): 1335-1354. doi: 10.1007/s10570-022-04977-w
    [17] DENG Yuqing, XI Jianfeng, MENG Liucheng, et al. Stimuli-Responsive nanocellulose Hydrogels: An overview[J]. European Polymer Journal, 2022, 180: 111591. doi: 10.1016/j.eurpolymj.2022.111591
    [18] POURJAVADI A. , AYYARI M. , AMINI-FAZL M. S. Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel[J]. European Polymer Journal, 2008, 44(4): 1209-1216.
    [19] ELKHOURY Kamil, MORSINK Margaretha, SANCHEZ-GONZALEZ Laura, et al. Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications[J]. Bioactive Materials, 2021, 6(11): 3904-3923. doi: 10.1016/j.bioactmat.2021.03.040
    [20] FAN Hailong, GONG Jian Ping. Fabrication of Bioinspired Hydrogels: Challenges and Opportunities[J]. Macromolecules, 2020, 53(8): 2769-2782. doi: 10.1021/acs.macromol.0c00238
    [21] KALWAR Kaleemullah, XI Juqun, REN Chuanli, et al. Coating of Au@Ag on electrospun cellulose nanofibers for wound healing and antibacterial activity[J]. Korean Journal of Chemical Engineering, 2022, 39(8): 2165-2171. doi: 10.1007/s11814-021-1023-x
    [22] LI Hui, YOU Qixiu, FENG Xiaoyan, et al. Effective treatment of Staphylococcus aureus infection with silver nanoparticles and silver ions[J]. Journal of Drug Delivery Science and Technology, 2023, 80: 104165. doi: 10.1016/j.jddst.2023.104165
    [23] HUQ Md Amdadul, ASHRAFUDOULLA Md, RAHMAN M Mizanur, et al. Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review[J]. Polymers (Basel), 2022, 14(4): 742. doi: 10.3390/polym14040742
    [24] 许雨芩, 张毅倩, 杨建军, 等. 还原氧化石墨烯负载纳米银/聚乙烯醇型抗菌水凝胶的制备与性能[J]. 精细化工, 2023, 40(01): 69-74.

    XU Yuqin, ZHANG Yiqian, YANG Jianjun, et al. Preparation and properties of nano silver-loaded reduced graphene oxide/polyvinyl alcohol antibacterial hydrogels[J]. Fine Chemicals, 2023, 40(01): 69-74(in Chinese).
    [25] SHIN Ji Un, GWON Jaegyoung, LEE Sun-Young, et al. Silver-Incorporated Nanocellulose Fibers for Antibacterial Hydrogels[J]. ACS Omega, 2018, 3(11): 16150-16157. doi: 10.1021/acsomega.8b02180
    [26] SHAHEEN Tharwat I, EL-GAMAL Mamdouh S, DESOUKY Said E, et al. Benign Production of AgNPs/Bacterial Nanocellulose for Wound Healing Dress: Antioxidant, Cytotoxicity and In Vitro Studies[J]. Journal of Cluster Science, 2022, 33(6): 2735-2751. doi: 10.1007/s10876-021-02190-6
    [27] SZYMAŃSKA-CHARGOT Monika, CHYLIŃSKA Monika, PIECZYWEK Piotr M. , et al. Evaluation of Nanocomposite Made of Polylactic Acid and Nanocellulose from Carrot Pomace Modified with Silver Nanoparticles[J]. Polymers, 2020, 12(4): 812. doi: 10.3390/polym12040812
    [28] PAWCENIS Dominika, CHLEBDA Damian K. , JĘDRZEJCZYK Roman J. , et al. Preparation of silver nanoparticles using different fractions of TEMPO-oxidized nanocellulose[J]. European Polymer Journal, 2019, 116: 242-255.
    [29] NAFICY SINA Brown Hugh R. Razal. Progress Toward Robust Polymer Hydrogels[J]. Australian Journal of Chemistry, 2011, 64: 1007-1025. doi: 10.1071/CH11156
    [30] 中国国家标准化管理委员会(标准制定单位). 微生物源抗生素类次生代谢产物抗细菌活性测定 抑菌圈法: GB/T 20944.3-2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Textiles—Evaluation for antibacterial activity—Part 3: Shake flask method: GB/T 20944.3-2008 [S]. Beijing: China Standards Press, 2008(in Chinese).
    [31] FAN Hailong, WANG Le, FENG Xunda, et al. Supramolecular Hydrogel Formation Based on Tannic Acid[J]. Macromolecules, 2017, 50(2): 666-676. doi: 10.1021/acs.macromol.6b02106
    [32] FAN Hailong, WANG Jiahui, ZHANG Qiuya, et al. Tannic Acid-Based Multifunctional Hydrogels with Facile Adjustable Adhesion and Cohesion Contributed by Polyphenol Supramolecular Chemistry[J]. ACS Omega, 2017, 2(10): 6668-6676. doi: 10.1021/acsomega.7b01067
    [33] 蔡祥春. 海藻酸钠-壳聚糖-单宁酸复合水凝胶微球促进成骨分化的体内外实验研究 [D]. 江西: 南昌大学, 2023.

    CAI Xiangchun. Sodium alginate/chitosan/Tannic acid composite hydrogel microspheres promote osteogenic differentiation in vitro and in vivo [D]. Jiangxi: Nanchang University, 2023(in Chinese)
    [34] WEI Jingjing, ZHANG Xiaohui, WANG Fang, et al. One-step preparation of highly viscoelastic, stretchable, antibacterial, biocompatible, wearable, conductive composite hydrogel with extensive adhesion[J]. Composites Science and Technology, 2023, 231: 109793. doi: 10.1016/j.compscitech.2022.109793
  • 加载中
计量
  • 文章访问数:  164
  • HTML全文浏览量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-14
  • 修回日期:  2023-12-11
  • 录用日期:  2023-12-18
  • 网络出版日期:  2024-01-02

目录

    /

    返回文章
    返回