留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型耐高温树脂—含二氮杂萘酮结构聚醚砜酮的拉伸力学行为

郭贺阳 孙凯 张博宇 孔令满 张灿宝 蹇锡高

郭贺阳, 孙凯, 张博宇, 等. 新型耐高温树脂—含二氮杂萘酮结构聚醚砜酮的拉伸力学行为[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 郭贺阳, 孙凯, 张博宇, 等. 新型耐高温树脂—含二氮杂萘酮结构聚醚砜酮的拉伸力学行为[J]. 复合材料学报, 2024, 42(0): 1-11.
GUO Heyang, SUN Kai, ZHANG Boyu, et al. Tensile Mechanical Behavior of a New High-Temperature Resin, Polyethersulfone Ketones with Diazanone Structure[J]. Acta Materiae Compositae Sinica.
Citation: GUO Heyang, SUN Kai, ZHANG Boyu, et al. Tensile Mechanical Behavior of a New High-Temperature Resin, Polyethersulfone Ketones with Diazanone Structure[J]. Acta Materiae Compositae Sinica.

新型耐高温树脂—含二氮杂萘酮结构聚醚砜酮的拉伸力学行为

基金项目: 国家自然科学基金青年科学基金项目(52005077);辽宁省自然科学基金项目(2022-BS-090);中央高校基本科研业务费(DUT23RC(3)010)
详细信息
    通讯作者:

    张博宇,研究生,副研究员,博士生导师,研究方向为热塑性复合材料构件高质量自动化制造技术与装备 E-mail: zhangboyu@dlut.edu.cn

    蹇锡高,研究生,中国工程院院士,博士生导师,研究方向为高性能树脂基复合材料 E-mail: jian4616@dlut.edu.cn

  • 中图分类号: TQ322.3; TB332

Tensile Mechanical Behavior of a New High-Temperature Resin, Polyethersulfone Ketones with Diazanone Structure

Funds: National Natural Science Foundation for Young Scholars of China (No. 52005077); Natural Science Foundation of Liaoning Province (No. 2022-BS-090); the Fundamental Research Funds for the Central Universities (No. DUT23RC(3)010)
  • 摘要: 为探索新型耐高温树脂——含二氮杂萘酮结构的聚醚砜酮(简称“PPESK”)的拉伸力学行为,本文采用对比实验的方式,以典型商用树脂——聚醚醚酮(简称“PEEK”)为参照,从耐热性、拉伸性能对拉伸速率变化的敏感性、拉伸变形-断裂行为三个层面详细分析了PPESK力学行为的特殊之处。研究表明,PPESK的耐热性远优于PEEK,且强度和模量对拉伸速率变化更敏感。在室温至250℃时,形变量在6%以内,发生脆性断裂;仅当温度达260℃及以上时,PPESK才出现较大变形,发生韧性断裂,这与各种条件下均产生大变形且韧性断裂的PEEK截然不同。上述特殊力学行为的产生,与PPESK结构中扭曲、非共平面的杂萘环以及强极性的砜基、羰基有关。这些基团使PPESK为无定形形态,且分子链刚性增大、分子间作用力增强,进而引起玻璃化转变温度升高、分子运动能力下降,导致PPESK更耐热、拉伸性能对拉伸速率变化更敏感,断裂形式以伴随主链断裂的脆性断裂为主。

     

  • 图  1  PPESK与PEEK的分子结构

    Figure  1.  Molecular structure of PPESK and PEEK

    图  2  拉伸试样制备过程

    Figure  2.  Tensile specimen preparation process

    图  3  ISO-527拉伸试样[30]

    Figure  3.  ISO-527 tensile spline[30]

    图  4  试样拉伸曲线

    Figure  4.  Specimen tensile curve

    图  5  不同温度下PPESK与PEEK强度和模量对比结果:(a)强度;(b)弹性模量

    Figure  5.  Comparison results of strength and modulus of PPESK and PEEK at different temperatures: (a) strength; (b) elastic modulus

    图  6  PPESK与PEEK的DMA曲线:(a)损耗模量;(b)储能模量

    Figure  6.  DMA curve of PPESK and PEEK: (a) loss modulus; (b) energy storage modulus

    图  7  PPESK与PEEK在不同温度下拉伸时的应力-应变曲线:(a)PPESK;(b)PEEK

    Figure  7.  Stress-strain curves of PPESK and PEEK at different stretching temperatures: (a) PPESK; (b) PEEK

    图  8  PPESK试样与PEEK试样变形-破坏过程照片

    Figure  8.  Photographs of the deformation and destruction process of PPESK and PEEK specimens.

    图  9  PPESK与PEEK的X射线衍射图

    Figure  9.  X-ray diffraction pattern of PPESK and PEEK

    图  10  PPESK试样与PEEK试样断口的微观形貌

    Figure  10.  Microscopic morphology of fracture of PPESK and PEEK specimens

    图  11  PPESK试样与PEEK试样的断口尺寸对比

    Figure  11.  Comparison of fracture size between PPESK and PEEK specimens

    图  12  PPESK与PEEK在不同速率下拉伸时的应力-应变曲线:(a)PPESK;(b)PEEK

    Figure  12.  Stress-strain curves of PPESK and PEEK at different rates of stretching: (a) PPESK; (b) PEEK

    图  13  PPESK与PEEK模量和强度随拉伸速率的变化趋势:(a)强度;(b)弹性模量

    Figure  13.  Trends of PPESK and PEEK modulus and strength with tensile rate: (a) strength; (b) elastic modulus

    表  1  拉伸性能测试条件

    Table  1.   Tensile properties test conditions

    Tensile temperature Tensile speed
    0.5 mm/min 5 mm/min 50 mm/min 500 mm/min
    25℃ PPESK/PEEK PPESK/PEEK PPESK/PEEK PPESK/PEEK
    80℃ / PPESK/PEEK / /
    130℃ / PPESK/PEEK / /
    150℃ / PEEK / /
    180℃ / PPESK/PEEK / /
    230℃ / PPESK / /
    240℃ / PPESK / /
    250℃ / PPESK / /
    260℃ / PPESK / /
    下载: 导出CSV
  • [1] YANG G, PARK M, PARK S J. Recent progresses of fabrication and characterization of fibers-reinforced composites: A review[J]. Composites Communications, 2019, 14: 34-42. doi: 10.1016/j.coco.2019.05.004
    [2] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6): 1629-1650.

    XIONG Jian, LI Zhibin, LIU Huibin et al. Research progress on aerospace lightweight composite shell structure[J]. Journal of Composite Materials, 2021, 38(6): 1629-1650(in Chinese).
    [3] 李雪芹, 陈科, 刘刚. 基于ANSYS的复合材料螺旋桨叶片有限元建模与分析[J]. 复合材料学报, 2017, 34(4): 591-598.

    LI Xueqin, CHEN Ke, LIU Gang. Finite element modeling and analysis of composite propeller blade based on ANSYS[J]. Journal of Composite Materials, 2017, 34(4): 591-598(in Chinese).
    [4] 谭伟, 那景新, 任俊铭等. 高温环境下碳纤维增强树脂复合材料的层间力学性能老化行为与失效预测[J]. 复合材料学报, 2020, 37(4): 859-868.

    TAN Wei, Na Jingxin, REN Junming, et al. Aging behavior and failure prediction of interlaminar mechanical properties of carbon fiber reinforced resin composites under high temperature environment[J]. Journal of Composite Materials, 2020, 37(4): 859-868(in Chinese).
    [5] 蹇锡高, 王锦艳. 含二氮杂萘酮联苯结构高性能工程塑料研究进展[J]. 中国材料进展, 2012, 31(2): 16-23. doi: 10.7502/j.issn.1674-3962.2012.02.03

    JIAN Xigao, WANG Jinyan. Progress of high-performance engineering plastics containing diazanaphthone biphenyl structure[J]. China Materials Progress, 2012, 31(2): 16-23(in Chinese). doi: 10.7502/j.issn.1674-3962.2012.02.03
    [6] WEI H E, LIAO G X, JIAN X G, et al. Thermal and dynamic mechanical properties of PPESK/PTFE blends[J]. Acta Polymerica Sinica, 2005, 006(1): 108-112.
    [7] ZHU T Q, REN Z Y, XU J , et al. Damage evolution model and failure mechanism of continuous carbon fiber-reinforced thermoplastic resin matrix composite materials[J]. Composites Science and Technology, 2023, 244: 110300.
    [8] 王子健, 周晓东. 连续纤维增强热塑性复合材料成型工艺研究进展[J]. 复合材料科学与工程, 2021, (10): 120-128.

    WANG Zijian, ZHOU Xiaodong. Research progress of continuous fiber reinforced thermoplastic composites[J]. Composites Science and Engineering, 2021, (10): 120-128(in Chinese).
    [9] 王孟, 刘程, 张玉, 等. 成型温度对CF/PPEK复合材料的缺陷和力学性能影响[J/OL]. 复合材料科学与工程: 1-9[2024-01-18]. http://kns.cnki.net/kcms/detail/10.1683.TU.20230713.1714.012.html.

    WANG Meng, LIU Cheng, ZHANG Yu, et al. Effect of molding temperature on defects and mechanical properties of CF/PPEK composites[J/OL]. Composites Science and Engineering: 1-9[2024-01-18]. http://kns.cnki.net/kcms/detail/10.1683.TU.20230713.1714.012.html.(in Chinese)
    [10] 顾轶卓, 张佐光, 李敏, 等. 复合材料变厚层板热压成型缺陷类型与成因实验研究[J]. 复合材料学报, 2008, (2): 41-46. doi: 10.3321/j.issn:1000-3851.2008.02.008

    GU Yizhuo, ZHANG Zoguang, LI Min, et al. Experimental study on the types and causes of defects in hot compression molding of composite variable-thickness laminates[J]. Journal of Composite Materials, 2008, (2): 41-46(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.02.008
    [11] 龚颖, 张佐光, 顾轶卓, 等. 热压工艺参数对单向复合材料层板密实状态的影响[J]. 复合材料学报, 2006, (1): 12-16. doi: 10.3321/j.issn:1000-3851.2006.01.002

    GONG Ying, ZHANG Zoguang, GU Yizhuo, et al. Influence of hot pressing process parameters on the compact state of unidirectional composite laminates[J]. Journal of Composite Materials, 2006, (1): 12-16(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.01.002
    [12] 刘新宇. 杂萘联苯聚芳醚复合材料单向板的制备与性能[D]. 辽宁: 大连理工大学, 2015.

    LIU XY. Preparation and properties of unidirectional plates of heteronaphthalene biphenyl polyaryl ether composites [D]. Liaoning: Dalian University of Technology, 2015. (in Chinese)
    [13] FUJIHARA K, HUANG Z-M, RAMAKRISHNA S, et al. Influence of processing conditions on bending property of continuous carbon fiber reinforced PEEK composites[J]. Composites Science and Technology, 2004, 64(16): 2525-2534. doi: 10.1016/j.compscitech.2004.05.014
    [14] XU Z, ZHANG M, GAO S, et al. Study on mechanical properties of unidirectional continuous carbon fiber-reinforced PEEK composites fabricated by the wrapped yarn method[J]. Polymer Composites, 2019, 40(1): 56-69. doi: 10.1002/pc.24600
    [15] SALEK M H. Effect of processing parameters on the mechanical properties of Carbon/PEKK thermoplastic composite materials[D]. Concordia University, 2005.
    [16] 赵亮, 肖纳敏. 先进树脂基复合材料成型工艺仿真软件研发综述[J]. 软件导刊, 2021, 20(10): 1-6.1 doi: 10.11907/rjdk.212032

    ZHAO Liang, XIAO Na min. Overview of the research and development of simulation software for advanced resin matrix composites molding process[J]. Software Guide, 2021, 20(10): 1-6.1(in Chinese) doi: 10.11907/rjdk.212032
    [17] TRENDE A , ASTROM B T. Heat Transfer in Compression Molding of Thermoplastic Composite Laminates and Sandwich Panels[J]. Journal of Thermoplastic Composite Materials, 2002, 15(1): 43-63.
    [18] LI X, HAN X, DUAN S, et al. A Two-Stage Genetic Algorithm for Molding Parameters Optimization for Minimized Residual Stresses in Composite Laminates During Curing[J]. Applied Composite Materials, 2021, 28(4): 1315-1334. doi: 10.1007/s10443-021-09912-z
    [19] TAO Q, PINTER G, ANTRETTER T, et al. Model free kinetics coupled with finite element method for curing simulation of thermosetting epoxy resins[J]. Journal of Applied Polymer Science, 2018, 135(27): 46408. doi: 10.1002/app.46408
    [20] HAOZHEN L, XXINGZHI X, WENHE L, et al. Numerical Simulation and Experimental Study Regarding the Cross-Sectional Morphology of PEEK Monofilament Deposition During FDM-Based 3D Printing.[J]. Langmuir : the ACS journal of surfaces and colloids, 2023, 39(37): 13287-13295.
    [21] XUDA Q, XIAOZHONG W, HAO L, et al. Numerical and experimental investigation of orthogonal cutting of carbon fiber-reinforced polyetheretherketone (CF/PEEK)[J]. The International Journal of Advanced Manufacturing Technology, 2021, 119(1-2): 1003-1017.
    [22] ZHU L, ZHANG H, GUO J, et al. Axial compression experiments and finite element analysis of basalt fiber/epoxy resin three-dimensional tubular woven composites[J]. Materials, 2020, 13(11): 2584. doi: 10.3390/ma13112584
    [23] ZAL V, NAEINI H M, SINKE J, et al. A new procedure for Finite Element simulation of forming process of non-homogeneous composite laminates and FMLs[J]. Composite Structures, 2016, 163(MAR.): 444-453.
    [24] LIANG Q Q, WU X Q. Research Status of Carbon Fibre-Reinforced PEEK Composites[J]. Advanced Materials Research, 2014, 834: 225-228.
    [25] 常保宁. 碳纤维增强高性能热塑性复合材料本构模型与增材制造工艺研究[D]. 辽宁: 大连理工大学, 2022.

    Chang Baoning. Research on the intrinsic model and additive manufacturing process of carbon fiber reinforced high performance thermoplastic composites[D]. Liaoning: Dalian University of Technology, 2022. (in Chinese)
    [26] El-QOUBAA Z, OTHMAN R. Strain rate sensitivity of polyetheretherketone's compressive yield stress at low and high temperatures[J]. Mechanics of Materials, 2016, 95(Apr.): 15-27.
    [27] 庄靖东. 聚醚醚酮板材热成型性能研究[D]. 湖北: 华中科技大学, 2017.

    Zhuang Jingdong. Research on thermoforming properties of polyetheretherketone sheet[D]. Hubei: Huazhong University of Science and Technology, 2017. (in Chinese)
    [28] 蹇锡高, 陈平, 廖功雄, 等. 含二氮杂荼酮结构新型聚芳醚系列高性能聚合物的合成与性能[J]. 高分子学报, 2003, (4): 469-475. doi: 10.3321/j.issn:1000-3304.2003.04.002

    JIAN Xigao, CHEN Ping, LIAO Gongxiong, et al. Synthesis and properties of novel polyarylether series high-performance polymers containing diazepinone structure[J]. Acta Macropolymers, 2003, (4): 469-475(in Chinese). doi: 10.3321/j.issn:1000-3304.2003.04.002
    [29] 蹇锡高, 朱秀玲, 陈连周. 二甲基取代杂环联苯聚芳醚的合成与性能[J]. 高等学校化学学报, 2001, (11): 1932-1935. doi: 10.3321/j.issn:0251-0790.2001.11.028

    JIAN Xigao, ZHU Xiuling, CHEN Lianzhou. Synthesis and properties of dimethyl-substituted heterocyclic biphenyl polyarylether[J]. chemical journal of chinese universities, 2001, (11): 1932-1935(in Chinese). doi: 10.3321/j.issn:0251-0790.2001.11.028
    [30] 欧洲标准协会. 塑料制品. 拉伸性能的测定. 第2部分: 模塑和挤塑制品的试验条件: ISO 527-2 [S]. 欧洲: 欧洲标准协会, 2012.

    European Standards Institute. Plastic products. Determination of tensile properties. Part 2: Test conditions for molded and extruded products: ISO 527-2[S]. Europe: European Standards Institute, 2012. (in Chinese)
    [31] 何曼君, 张红东, 陈维孝, 等编著. 高分子物理 第3版[J]. 上海: 复旦大学出版社, 2019, 03: 210.

    Manjun He, Hongdong Zhang, Weixiao Chen, et al. eds[J]. Polymer physics 3rd edition[M]. Shanghai: Fudan University Press, 2019, 03: 210(in Chinese).
  • 加载中
计量
  • 文章访问数:  173
  • HTML全文浏览量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-23
  • 修回日期:  2024-03-18
  • 录用日期:  2024-03-30
  • 网络出版日期:  2024-04-28

目录

    /

    返回文章
    返回