留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卡拉胶/聚(N-异丙基丙烯酰胺)基热致变色凝胶的构建与应用

刘洋 林振辉 陶涛 苗庆显 李建国

刘洋, 林振辉, 陶涛, 等. 卡拉胶/聚(N-异丙基丙烯酰胺)基热致变色凝胶的构建与应用[J]. 复合材料学报, 2022, 39(12): 5966-5972. doi: 10.13801/j.cnki.fhclxb.20211230.002
引用本文: 刘洋, 林振辉, 陶涛, 等. 卡拉胶/聚(N-异丙基丙烯酰胺)基热致变色凝胶的构建与应用[J]. 复合材料学报, 2022, 39(12): 5966-5972. doi: 10.13801/j.cnki.fhclxb.20211230.002
LIU Yang, LIN Zhenhui, TAO Tao, et al. Construction and application of carrageenan/poly(N-isopropylacrylamide)-based thermochromic gel[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5966-5972. doi: 10.13801/j.cnki.fhclxb.20211230.002
Citation: LIU Yang, LIN Zhenhui, TAO Tao, et al. Construction and application of carrageenan/poly(N-isopropylacrylamide)-based thermochromic gel[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5966-5972. doi: 10.13801/j.cnki.fhclxb.20211230.002

卡拉胶/聚(N-异丙基丙烯酰胺)基热致变色凝胶的构建与应用

doi: 10.13801/j.cnki.fhclxb.20211230.002
基金项目: 国家自然科学基金(31770633;31971612);国家重点研发计划(2019YFC1905903)
详细信息
    通讯作者:

    苗庆显,博士,副教授,硕士生导师,研究方向为植物资源化学与新材料 E-mail: miaoqingxian@163.com

    李建国,博士,副教授,硕士生导师,研究方向为高性能纤维素纤维制备及其应用 E-mail: jianguolicn@fafu.edu.cn

  • 中图分类号: TB332

Construction and application of carrageenan/poly(N-isopropylacrylamide)-based thermochromic gel

  • 摘要: 刺激变色材料的动态透明-不透明转变行为使其具有太阳光调制能力,可以降低建筑物的能源消耗。然而,这些材料通常涉及高生产成本、操作复杂性及额外电能消耗等问题。在此,通过分散聚(N-异丙基丙烯酰胺)(PNIPAM)凝胶微球到卡拉胶(KCA)基质中,制备一种低成本且具有优异太阳光调制能力和高稳定性的复合凝胶(KCA/PNIPAM)。其中,KCA具有多孔的3D网络结构,可以有效管控PNIPAM微球,实现PNIPAM在凝胶体系中的均匀分散,并能够抑制PNIPAM微球的团聚沉降行为。KCA/PNIPAM凝胶展示出优异的太阳光调制能力(ΔT=86%,不同温度下透光率之差),在暴露到氙灯和太阳光照射中,KCA/PNIPAM智能窗较普通玻璃窗可分别降低温度5℃和4℃。总之,KCA/PNIPAM具有响应温度低(31.7℃)、太阳光调制能力优异、稳定性持久、成本低及制造简单等优点,使之能够成为节能建筑材料的潜在候选者。

     

  • 图  1  聚(N-异丙基丙烯酰胺)(PNIPAM) (a)、卡拉胶(KCA) (b) 和KCA/PNIPAM (c) 的形貌图;(d) NIPAM、PNIPAM、KCA和KCA/PNIPAM的FTIR图谱

    Figure  1.  Morphologies of poly(N-isopropylacrylamide) (PNIPAM) (a), carrageenan (KCA) (b) and KCA/PNIPAM (c); (d) FTIR spectra of NIPAM, PNIPAM, KCA and KCA/PNIPAM

    NIPAM—N-isopropylacrylamide

    图  2  (a) KCA/PNIPAM的DSC曲线;(b) KCA/PNIPAM的透光率-温度曲线

    Figure  2.  (a) DSC curve of the pristine KCA/PNIPAM; (b) Dynamic transmittance-temperature curves of KCA/PNIPAM

    图  3  (a) 室内氙灯照射模拟;(b) 室外太阳照射模拟

    Figure  3.  (a) Indoor xenon lamp simulation; (b) Outdoor simulation under the sun

    图  4  KCA/PNIPAM (a) 和PNIPAM水分散液 (b) 的稳定性;(c) PNIPAM在不同状态时的粒径分布

    Figure  4.  Stability of KCA/PNIPAM (a) and PNIPAM water dispersion (b); (c) Particle size distribution of PNIPAM in different states

    Cool state—25℃; Hot state—50℃

  • [1] LI Tian, ZHAI Yao, HE Shuaiming, et al. A radiative cooling structural material[J]. Science,2019,364(6442):860-763.
    [2] YANG Luyao, FENG Changping, BAI Lu, et al. Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management[J]. Chemical Engineering Journal,2021,425:131466.
    [3] CAO Xiaodong, DAI Xilei, LIU Junjie. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade[J]. Energy and Buildings,2016,128:198-213. doi: 10.1016/j.enbuild.2016.06.089
    [4] HEE W J, ALGHOUL M A, BAKHTYAR B, et al. The role of window glazing on daylighting and energy saving in Buildings[J]. Renewable and Sustainable Energy Reviews,2015,42:323-343. doi: 10.1016/j.rser.2014.09.020
    [5] ZHOU Yang, WANG Shancheng, PENG Jinqing, et al. Liquid thermo-responsive smart window derived from hydrogel[J]. Joule,2020,4(11):2458-2474. doi: 10.1016/j.joule.2020.09.001
    [6] JIANG Feng, LIU He, LI Yiyu, et al. Lightweight, Mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation[J]. ACS Applied Materials & Interfaces,2018,10(1):1104-1112. doi: 10.1021/acsami.7b15125
    [7] ZHAO Xinpeng, HUANG Caoxing, XIAO Daming, et al. Melanin-inspired design: Preparing sustainable photothermal materials from lignin for energy generation[J]. ACS Applied Materials & Interfaces,2021,13(6):7600-7607. doi: 10.1021/acsami.0c21256
    [8] WANG Jiaqi, MENG Cuiling, GU Qian, et al. Normally transparent tribo-induced smart window[J]. ACS Nano,2020,14(3):3630-3639. doi: 10.1021/acsnano.0c00107
    [9] MOSER M L, LI G, CHEN M, et al. Fast electrochromic device based on single-walled carbon nanotube thin films[J]. Nano Letters,2016,16(9):5386-5393. doi: 10.1021/acs.nanolett.6b01564
    [10] WANG Mi, GAO Yanfeng, CAO Chuanxiang, et al. Binary solvent colloids of thermosensitive poly(N-isopropylacrylamide) microgel for smart windows[J]. Industrial & Engi-neering Chemistry Research,2014,53(48):18462-18472.
    [11] LI H, ZHANG W, ELEZZABI A Y. Transparent zinc-mesh electrodes for solar-charging electrochromic windows[J]. Advanced Materials,2020,32(43):e2003574. doi: 10.1002/adma.202003574
    [12] WU L, ZHAO Q, HUANG H, et al. Sol-gel based photochromic coating for solar responsive smart window[J]. Surface and Coatings Technology,2017,320:601-607. doi: 10.1016/j.surfcoat.2016.10.074
    [13] KE Y, BALIN I, WANG N, et al. Two-dimensional SiO2/VO2 photonic crystals with statically visible and dynamically infrared modulated for smart window deployment[J]. ACS Applied Materials & Interfaces,2016,8(48):33112-33120. doi: 10.1021/acsami.6b12175
    [14] ZHAO Zhengjing, LIU Yi, YU Zhinong, et al. Sn-W co-doping improves thermochromic performance of VO2 films for smart windows[J]. ACS Applied Energy Materials,2020,3(10):9972-9979. doi: 10.1021/acsaem.0c01651
    [15] TIAN Jing, PENG Huayun, DU Xiaosheng, et al. Hybrid thermochromic microgels based on UCNPs/PNIPAm hydrogel for smart window with enhanced solar modulation[J]. Journal of Alloys and Compounds,2021,858:157725.
    [16] LEE S J, LEE S H, KANG H W, et al. Flexible electrochromic and thermochromic hybrid smart window based on a highly durable ITO/graphene transparent electrode[J]. Chemical Engineering Journal,2021,416:129028.
    [17] ZHAO X, MOFID S A, JELLE B P, et al. Optically-switchable thermally-insulating VO2-aerogel hybrid film for window retrofits[J]. Applied Energy,2020,278:115663. doi: 10.1016/j.apenergy.2020.115663
    [18] 秦成远, 高迎, 王程, 等. 二氧化钒-1, 4-双(苯并噁唑-2-基)萘复合薄膜及其热致变色和发光性能[J]. 复合材料学报, 2021, 38(10): 3412-3423.

    QIN Chengyuan, GAO Ying, WANG Cheng, et al. Vanadium dioxide-1, 4-bis(benzoxazol-2-yl)naphthalene composite films and their thermochromic and photoluminescent property[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3412-3423(in Chinese).
    [19] YANG Chenxi, CHEN Jianfeng, ZENG Xiaofei, et al. Design of the alkali-metal-doped WO3 as a near-infrared shielding material for smart window[J]. Industrial & Engineering Chemistry Research,2014,53(46):17981-17988.
    [20] XIE Sijie, CHEN Yongbo, BI Zhijie, et al. Energy storage smart window with transparent-to-dark electrochromic behavior and improved pseudocapacitive performance[J]. Chemical Engineering Journal,2019,370:1459-1466. doi: 10.1016/j.cej.2019.03.242
    [21] MA S, TING H, MA Y, et al. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers[J]. AIP Advances, 2015, 5(5): 057154.
    [22] WANG Y, RUNNERSTROM E L, MILLIRON D J. Switchable materials for smart windows[J]. Annual Review of Che-mical and Biomolecular Engineering,2016,7(1):283-304. doi: 10.1146/annurev-chembioeng-080615-034647
    [23] XU Jingwen, ZHANG Yong, ZHAI Tingting, et al. Electrochromic-tuned plasmonics for photothermal sterile window[J]. ACS Nano,2018,12(7):6895-6903. doi: 10.1021/acsnano.8b02292
    [24] WU Mengchun, SHI Yusu, LI Renyuan, et al. Spectrally selective smart window with high near-infrared light shielding and controllable visible light transmittance[J]. ACS Applied Materials & Interfaces,2018,10(46):39819-39827. doi: 10.1021/acsami.8b15574
    [25] TANG Lin, WANG Ling, YANG Xiao, et al. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications[J]. Progress in Materials Science,2021,115:100702. doi: 10.1016/j.pmatsci.2020.100702
    [26] 刘凯. PNIPAM温敏水凝胶的制备及其热致变色特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    LIU Kai. Preparation of PNIPAM thermosensitive hydrogel and its thermochromic properties[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [27] LEE H Y, CAI Y, BI S, et al. A dual-responsive nanocompo-site toward climate-adaptable solar modulation for energy-saving smart windows[J]. ACS Applied Materials & Interfaces,2017,9:6054-6063. doi: 10.1021/acsami.6b15065
    [28] TANG Lin, WANG Lin, YANG Xiao, et al. Thermoresponsive three-stage optical modulation of a self-healing composite hydrogel[J]. Macromolecular Chemistry and Physics,2018,219:1800329. doi: 10.1002/macp.201800329
    [29] 孙瑞鸿, 韦雄雄, 胡晓霞, 等. 基于PNIPAM微凝胶的复合水凝胶制备及其性能研究[J]. 现代化工, 2019, 39(9):147-151.

    SUN R H, WEI X X, HU X X, et al. Synthesis and property of composite hydrogel based on PNIPAM microgels[J]. Modern Chemical Industry,2019,39(9):147-151(in Chinese).
    [30] 姜芮, 王玲, 吴迪, 等. 含纳米金聚乙烯基吡咯烷酮/聚(N-异丙基丙烯酰胺)智能杂化微凝胶的合成[J]. 当代化工, 2021, 50(4):858-862. doi: 10.3969/j.issn.1671-0460.2021.04.025

    JIANG Rui, WANG Ling, WU Di, et al. Synthesis of polyvinylpyrrolidone/poly(N-isopropylacrylamide) intelligent hybrid microgel containing nano-gold[J]. Contemporary Chemical Industry,2021,50(4):858-862(in Chinese). doi: 10.3969/j.issn.1671-0460.2021.04.025
    [31] 张雁飞, 孟繁蓉, 郭艺伟, 等. 食品包装用卡拉胶-甲基纤维素膜的制备及表征[J]. 食品科技, 2017, 42(11):62-66.

    ZHANG Yanfei, MENG Fanrong, GUO Yiwei, et al. Preparation and characterization of carrageenan-methylcellulose film for food packaging[J]. Food Science and Technology,2017,42(11):62-66(in Chinese).
  • 加载中
图(4)
计量
  • 文章访问数:  1111
  • HTML全文浏览量:  477
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 修回日期:  2021-11-25
  • 录用日期:  2021-12-17
  • 网络出版日期:  2021-12-30
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回