留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某T1000级碳纤维缠绕复合材料壳体承压特性

金书明 李德华 杨明 林天一 许辉 龚耀华 张烜维

金书明, 李德华, 杨明, 等. 某T1000级碳纤维缠绕复合材料壳体承压特性[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 金书明, 李德华, 杨明, 等. 某T1000级碳纤维缠绕复合材料壳体承压特性[J]. 复合材料学报, 2024, 42(0): 1-11.
JIN Shuming, LI Dehua, YANG Ming, et al. Pressure-sinkage characteristics of a T1000 carbon fiber wound composite case[J]. Acta Materiae Compositae Sinica.
Citation: JIN Shuming, LI Dehua, YANG Ming, et al. Pressure-sinkage characteristics of a T1000 carbon fiber wound composite case[J]. Acta Materiae Compositae Sinica.

某T1000级碳纤维缠绕复合材料壳体承压特性

详细信息
    通讯作者:

    杨明,硕士,高级工程师,研究方向为固体火箭发动机结构设计 E-mail: pj_yangm@163.com

  • 中图分类号: TB332

Pressure-sinkage characteristics of a T1000 carbon fiber wound composite case

  • 摘要: 为探究T1000级高压强复合材料壳体承压力学特性,本文开展了国产T1000级碳纤维复合材料宏观力学性能横向对比测试,并以此为基础完成复合壳体材料选型,根据工艺铺层信息,结合三次样条厚度预测方法及非测地线缠绕角计算方法,实现壳体的高保真有限元建模,并基于渐进损伤分析方法,对复合壳体封头应力应变响应、复合壳体损伤演化过程、失效模式及爆破压强进行预示,最终通过液压强度试验验证了计算模型的准确性。结果表明:国产T1000碳纤维性能与东丽T1000G相当,且拓展CCF1000S综合性能表现最佳;封头段由壳体与金属接头段刚度不连续引起的变形不协调使得该区域受弯曲、拉剪耦合作用,进而导致封头肩部应力水平明显高于两侧;基于三维Hashin损伤准则的渐进损伤模型能有效地描述壳体损伤与失效过程,更能准确地预测壳体爆破压强及破坏位置。

     

  • 图  1  试验测试过程

    Figure  1.  Experimental testing process

    图  2  标准壳体试后残骸

    Figure  2.  Test wreckage of composite cases

    图  3  螺旋缠绕层角度变化

    Figure  3.  Winding angle variable of helical winding layers

    图  4  有限元计算模型

    Figure  4.  Finite element model of the composite case

    图  5  有限元模型边界条件

    Figure  5.  Boundary conditions of the finite element model

    图  6  渐进损伤计算流程

    Figure  6.  Progressive damage calculation process

    图  7  碳纤维缠绕复合材料壳体在工作压力(25 MPa)作用下应力、应变计算结果

    Figure  7.  Strain/stress simulation results of carbon fiber wound composite case under working pressure (25 MPa)

    图  8  不同内压作用下复合材料壳体封头段应力计算结果

    Figure  8.  Simulation stress in the dome of composite case under different internal pressures

    图  9  复合材料壳体工作压强下(25 MPa)封头段位移计算结果

    Figure  9.  Displacement calculation under working pressure(25 MPa) of composite case dome part

    图  10  碳纤维缠绕复合材料壳体渐进损伤计算结果

    Figure  10.  Damage progressive analysis results of carbon fiber wound composite case

    图  11  壳体筒段特征点的内压-位移计算结果

    Figure  11.  Pressure-displacement calculation of the composite case cylinder characteristic points

    图  12  复合材料壳体应变测点分布

    Figure  12.  Distribution of strain gauges of composite case

    图  13  复合材料壳体液压加载曲线

    Figure  13.  Curve of hydraulic pressure of composite case

    图  14  复合材料壳体液压爆破结果

    Figure  14.  Results of hydraulic burst test of composite case

    图  15  复合材料壳体液压加载时时间-应变曲线

    Figure  15.  Time-strain curves of composite case under hydraulic loading

    图  16  复合材料壳体工作压强下应变计算-实测结果对比

    Figure  16.  Strain comparison between simulation and test results under working pressure of composite case

    表  1  碳纤维原丝性能

    Table  1.   Performance of T1000 carbon fiber precursor

    Parameter T1000GB CCF1000S HF50S
    Tensile strength/MPa 6370 6370 6500
    Tensile modulus/GPa 294 280 295
    Breaking elongation/% 2.2 1.8 2.0
    下载: 导出CSV

    表  2  碳纤维复丝性能(MPa)

    Table  2.   Performance of carbon fiber strands (MPa)

    SpecimensT1000 GBCCF1000 SHF50 S
    1#635264796127
    2#613263956333
    3#625667856586
    4#628566436221
    5#639266736109
    Average value628365956275
    Discrepancy1.5%2.4%3.1%
    下载: 导出CSV

    表  3  CR-160 H树脂浇筑体性能

    Table  3.   Performance of CR-160 H epoxy resin cast

    ParameterValue
    Tensile strength/MPa50.3
    Tensile modulus/GPa3.2
    Breaking elongation/%≥1.2
    下载: 导出CSV

    表  4  T1000复合材料/CR-160 H复合材料力学性能参数

    Table  4.   Mechanical properties of T1000/CR-160 H composite

    Parameter T1000GB CCF1000S HF50S
    Unidirectional composite laminates
    Tensile modulus,E1/GPa 168 154 150
    Transverse tensile modulus,E2=E3/GPa 9.8 7.9 7.8
    In-plane Poisson's ratio,µ12=µ13 0.33 0.31 0.34
    Out-plane Poisson's ratio,µ23 0.46
    In-plane shear modulus,G12=G13/GPa 5.52 4.61 4.53
    Inter laminar shear modulus,G23/GPa 2.91
    Longitudinal tensile strength,Xt/MPa 2830 2990 2740
    Longitudinal compressive strength,Xc/MPa 1035 1076 1127
    Transverse tensile strength,Yt/MPa 29.5 30 32
    Transverse compressive strength,Yc/MPa 132 120 129
    In-plane shear strength,S/MPa 83 84 94
    Fiber volume fraction,Vf/% 59.67 60.50 65.67
    NOL rings
    Tensile strength,Xt/MPa 3225 3415 3179
    Inter-laminar shear strength,S/MPa 58 48 56
    下载: 导出CSV

    表  5  标准壳体爆破结果/MPa

    Table  5.   Blasting results of standard case

    Composite casesT1000 GBCCF1000 SHF50 SSYT55
    1#3636.534.530.5
    2#36.5373631
    3#35.5373529
    Average value3636.835.230.2
    Discrepancy1.4%0.7%2.2%3.4%
    下载: 导出CSV

    表  6  缠绕层厚度估算结果

    Table  6.   Thickness prediction of filament winding layers

    ParameterValue
    Nominal value of helical winding angle,α/(°)30
    Thickness of winding layer/mm0.16
    Number of helical winding layers14
    Number of circumferential winding layers11
    下载: 导出CSV

    表  7  缠绕层工艺参数

    Table  7.   Process parameters of winding layer

    ParameterValue
    Winding angle of front equator,α/(°)20.6
    Winding angle of after equator,α/(°)42.6
    Thickness of helical winding layer/mm0.148
    Thickness of circular winding layer/mm0.121
    Number of helical winding layers16
    Number of circular winding layers16
    下载: 导出CSV

    表  8  材料性能

    Table  8.   Mechanical properties

    ParametersTC4SteelRubber
    Elastic modulus,E/GPa1231960.1
    Poisson's ratio,µ0.30.30.49
    Yield strength,σs/MPa825875-
    Tensile strength,σb/MPa895107014
    下载: 导出CSV

    表  9  CF8611/CR-160H材料性能

    Table  9.   Mechanical properties of CF8611/CR-160H

    ParametersValue
    Tensile modulus,Ex=Ey/GPa89.4
    Tensile modulus of thickness direction,Ez/GPa9.1
    Poisson's ratio,µxy0.32
    Poisson's ratio,µxz=µyz0.49
    Shear modulus,Gxy /GPa6.3
    Shear modulus,Gxz =Gyz/GPa3.7
    下载: 导出CSV

    表  10  材料性能退化准则

    Table  10.   Composite material degradation criteria

    Failure mode Degradation criterion
    E11 E22 E33 μ12 μ13 μ23 G12 G13 G23
    Tensile failure of matrix 1 0.2 0.2 0.2
    Compression failure of matrix 0.4 0.4 0.4
    Tensile failure of fiber 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
    Compression failure of fiber 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
    下载: 导出CSV

    表  11  复合材料壳体计算误差分析

    Table  11.   Calculation error analysis of composite case

    Measure points1#2#3#4#5#
    Circumferential strain/×10-6
    Simulation results4806126701177010470786
    Test results401811720107809960650
    Error/%19.618.119.185.1220.92
    Axial strain/×10-6
    Calculate value74124421422744596941
    Measured value69075465532048457495
    Deviation/%7.31-19.10-20.55-7.97-7.39
    下载: 导出CSV
  • [1] 武丹, 陈文杰, 司学龙, 等. 大型固体火箭发动机发展趋势及关键技术分析[J]. 武汉大学学报, 2021, 54(2): 102-107.

    WU Dan, CHEN Wenjie, SI Xuelong, et al. Research on development trend and key technologies of large solid rocket motor[J]. Journal of Wuhan University, 2021, 54(2): 102-107(in Chinese).
    [2] 向小波, 蒋永凡, 程勇. 聚丙烯腈基碳纤维及其在固体火箭发动机壳体上的应用[J]. 纤维复合材料, 2015, 32(3): 23-28. doi: 10.3969/j.issn.1003-6423.2015.03.006

    XIANG Xiaobo, JIANG Yongfan, CHENG Yong. Review of the Application of Polyacrylonitrile-baced Carbon Fiber in Solid Rocket Motor Cases[J]. Fiber Composites, 2015, 32(3): 23-28(in Chinese). doi: 10.3969/j.issn.1003-6423.2015.03.006
    [3] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6): 1629-1650.

    XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1629-1650(in Chinese).
    [4] 陆兆杰, 曾金芳, 刘新东, 等. T1000级碳纤维及其复合材料研究与应用进展[J]. 航天制造技术, 2022, 234(4): 50-56. doi: 10.3969/j.issn.1674-5108.2022.04.011

    LU Zhaojie, ZENG Jinfang, LIU Xindong, et al. Research and Application Progress of T1000 Grade Carbon Fiber and Composite Materials[J]. Aerospace Manufacturing Technology, 2022, 234(4): 50-56(in Chinese). doi: 10.3969/j.issn.1674-5108.2022.04.011
    [5] 谭婷婷. 高性能PAN基碳纤维微观结构与力学性能相关性研究[D]. 山东大学, 2013.

    Tan T T. Relationship between Microstructure and Mechanical Property of High Performance PAN-based Carbon Fibers [D]. Shandong University, 2013 (in Chinese)
    [6] 许桂阳, 博学金, 王中, 等. 国产T1000级碳纤维性能[J]. 固体火箭技术, 2020, 43(01): 78-83.

    XU Guiyang, BO Xuejin, WANG Zhong, et al. Performance of domestic T1000 grade carbon fiber[J]. Journal of Solid Rocket Technology, 2019, 43(01): 78-83. (in Chinese)
    [7] 陆兆杰. 国产T1000级碳纤维复合材料性能研究[D]. 航天动力技术研究院, 2023.

    LU Zaojie. Study on properties of domestic T1000 carbon fiber composites [D]. Aerospace Power Technology Academy, 2023. (in Chinese)
    [8] CUI Y Q , YIN ZW . Size Effect on the Mechanical Properties of CF Winding Composite[C]. 2017: 012021.
    [9] WANG, X J , LIANG, G Z , et al.[J]. Study on the property of T-1000 carbon fiber/epoxy resin composite. Journal of Physics: Conference Series, 2005, (13): 540-543.
    [10] Rudzei G F , Kalyuta A A . On the Possibility of Predicting the Fatigue Life of Structural Elements Made of Aviation Composite Materials and Alloys[J]. Russian Metallurgy (Metally), 2020, 2020(4): 470-476. DOI: 10.1134/S0036029520040242.
    [11] 李玉峰, 李玲丽, 潘宗友. 一种卫星用钛内衬-碳纤维缠绕复合材料气瓶特性研究[J]. 宇航学报, 2014, 35(11): 1318-1325. doi: 10.3873/j.issn.1000-1328.2014.11.014

    LI Yufeng, LI Lingli, PAN Zongyou. Characteristic Study on Titanium-Liner/Carbon-Fiber Overwrapped Vessels on the Satellite[J]. Journal of Astronautics, 2014, 35(11): 1318-1325(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.11.014
    [12] Bianchi S, Bonnet M, Trippi A, et al. Vega Launch Vehicle Propulsion Systems - An Overview of the 2004 Development Status [C] Joint Propulsion Conference& Exhibit. 2004. DOI: 10.2514/6.2004-4212.
    [13] 祖磊, 穆建桥, 王继辉, 等. 基于非测地线纤维缠绕压力容器线型设计与优化[J]. 复合材料学报, 2016, 33(5): 1125-1131.

    ZU Lei, MU Jianqiao, WANG Jihui, et al. Pattern design and optimization of filament winding pressure vessels based on non- geodesics[J]. Acta Materiae Compositae Sinica, 2016, 33(5): 1125-1131(in Chinese).
    [14] 郭凯特, 王春, 文立华, 等. 不等开口纤维增强树脂复合材料缠绕壳体非测地线线型设计[J]. 复合材料学报, 2019, 36(5): 1189-1199.

    Guo Kaite, WANG Chun, WEN Lihua, et al. Winding pattern design of fiber reinforced resin polymer composites winding vessels With unequal pola ropenings based on non - geodesic[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1189-1199(in Chinese).
    [15] 张行, 任明法, 王磊, 等. 纤维缠绕复合材料压力容器封头厚度的逐层预测方法[J/OL]. 复合材料学报: 1-6[2024-04-03]. https://doi.org/10.13801/j.cnki. fhclxb.20231020.001.

    Zhang Xing, Ren Mingfa, Wang Lei, et al. Layer-by-layer prediction method of dome thickness of fiber-winding composite pressure vessel [J]. Acta Materiae Compositae Sinica: 1-6 [2024-04-03]. https://doi.org/10.13801/j.cnki.fhclxb.20231020.001 (in Chinese).
    [16] 矫维成, 王荣国, 刘文博, 等. 纤维缠绕复合材料压力容器封头厚度预测[J]. 复合材料学报, 2010, 27(5): 116-121.

    JIAO Weicheng, WANG Rongguo, LIU Wenbo, et al. Dome thickness prediction of composite pressure vessels[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 116-121(in Chinese).
    [17] 喻琳峰, 任全彬, 张爱华, 等. 某大型固体发动机T800碳纤维壳体封头结构仿真分析和优化设计[J]. 固体火箭技术, 2023, 46(04): 611-620.

    YU Linfeng, REN Quanbin, ZHANG Aihua, et al. Simulation analysis and optimization design of domestic T800 carbon fiber composite case dome Of a large-scale SRM[J]. Journal of Solid Rocket Technology, 2019, 46(04): 611-620. (in Chinese)
    [18] 李靖, 马虎, 周长省, 等. 基于ANSYS ACP的固体火箭发动机复合材料壳体强度分析[J]. 固体火箭技术, 2023, 46(03): 383-391.

    LI Jing, MA Hu, ZHOY Changshen, et al. Strength analysis of SRM composite case based on ANSYS ACP[J]. Journal of Solid Rocket Technology, 2019, 46(03): 383-391. (in Chinese)
    [19] 颜勇, 牟星, 张骞, 等. 基于多尺度的固体火箭发动机复合材料壳体及其缠绕纤维强度精确预示[J]. 固体火箭技术, 2022, 45(06): 817-829.

    YAN Yong, MOU Xing, ZHANG Qian, et al. Accurate prediction of winding fibre strength of solid rocket motor composite case Based on multi-scale method[J]. Journal of Solid Rocket Technology, 2002, 45(06): 817-829. (in Chinese)
    [20] 侯晓, 秦谊, 丁文辉. 固体火箭发动机复合材料壳体承载力分析[J]. 复合材料学报, 2014, 31(5): 1343-1349.

    HOU Xiao, QIN Yi, DING Wenhui. The Load-bearing capacity analysis of composite case structure of solid rocket motor[J]. Acta Materiae Compositae Sinica, 2014, 31(5): 1343-1349(in Chinese).
    [21] 祖磊, 许辉, 张骞, 等. 基于多岛遗传算法的复合材料缠绕壳体封头分区补强优化[J]. 复合材料学报, 2022, 39(07): 3616-3628.

    ZU Lei, XU Hui, ZHANG Qian, et al. Sectionalization-based reinforcement optimization of composite-wound case dome through multi-island genetic algorithm[J]. Acta Materiae Compositae Sinica, 2022, 39: (07): 3616-3628. (in Chinese).
    [22] GB/T 3362-2005 碳纤维复丝拉伸性能测试方法[S].

    GB/T 3362-2005 Test methods for tensile properties of carbon fiber multifilament [S]. (in Chinese).
    [23] GB/T2567-2021 树脂浇筑体性能试验方法[S].

    GB/T2567-2021 Test methods for tensile properties of resin casting boby [S]. (in Chinese).
    [24] QJ 1392A-2005 固体火箭发动机燃烧室壳体内压试验方法[S].

    QJ 1392A-2005 Internal-pressure test methods for the chamber case of soild rocket motor [S]. (in Chinese).
    [25] 祖磊, 肖康, 张骞, 等. 不等极孔纤维缠绕线型轨迹及工艺研究[J]. 复合材料科学与工程, 2021, (330): 48-54.

    Zu Lei, Xiao Kang, Zhang Qian, et al. Research on filament winding line path and technology of unequal pole hole[J]. Composite Materials Science and Engineering, 2021, (330): 48-54(in Chinese).
    [26] Hashin Z. Failure criteria for unidirectional fiber compositer[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. doi: 10.1115/1.3153664
    [27] Camanho PP, Matthews FL. A progressvie damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials, 1999, 33(24): 2248-2280. doi: 10.1177/002199839903302402
  • 加载中
计量
  • 文章访问数:  168
  • HTML全文浏览量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 修回日期:  2024-03-21
  • 录用日期:  2024-03-22
  • 网络出版日期:  2024-04-24

目录

    /

    返回文章
    返回