留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯醇-炭黑/空心球泡沫复合吸声材料的制备与性能

周潇 张良苗 王力 高彦峰

周潇, 张良苗, 王力, 等. 聚乙烯醇-炭黑/空心球泡沫复合吸声材料的制备与性能[J]. 复合材料学报, 2023, 40(7): 3998-4007. doi: 10.13801/j.cnki.fhclxb.20221102.002
引用本文: 周潇, 张良苗, 王力, 等. 聚乙烯醇-炭黑/空心球泡沫复合吸声材料的制备与性能[J]. 复合材料学报, 2023, 40(7): 3998-4007. doi: 10.13801/j.cnki.fhclxb.20221102.002
ZHOU Xiao, ZHANG Liangmiao, WANG Li, et al. Preparation and properties of polyvinyl alcohol-carbon black/hollow sphere foam sound absorption composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3998-4007. doi: 10.13801/j.cnki.fhclxb.20221102.002
Citation: ZHOU Xiao, ZHANG Liangmiao, WANG Li, et al. Preparation and properties of polyvinyl alcohol-carbon black/hollow sphere foam sound absorption composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3998-4007. doi: 10.13801/j.cnki.fhclxb.20221102.002

聚乙烯醇-炭黑/空心球泡沫复合吸声材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20221102.002
基金项目: 国家自然科学基金 (51702208);上海市浦江人才计划项目(21 PJD023);上海市教委创新项目(2019-01-07-00-09-E00020)
详细信息
    通讯作者:

    张良苗,博士,副研究员,博士生导师,研究方向为光热调制材料 E-mail: lmzhang@shu.edu.cn

    高彦峰,博士,教授,博士生导师,研究方向为光热调制材料 E-mail: yfgao@shu.edu.cn

  • 中图分类号: TQ174;TB332

Preparation and properties of polyvinyl alcohol-carbon black/hollow sphere foam sound absorption composites

Funds: National Natural Science Foundation of China (51702208); Shanghai Pujiang Program (21 PJD023); Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-09-E00020)
  • 摘要: 噪声污染影响人类心理和生理健康。多孔材料在中高频段吸声性能较好,但在低频段较差。本文以粉煤灰空心球和水玻璃等为原料,采用两次固化成型工艺制备了空心球泡沫多孔基体材料,再通过真空浸渍、普通热干燥或冷冻干燥等方法在多孔材料中引入柔性聚乙烯醇-炭黑(PVA-C)第二相,最终制得了PVA-C/空心球泡沫复合吸声材料。结果表明:所制备的多孔复合吸声材料的抗压强度达到1.65 MPa,吸声性能相比空心球泡沫多孔材料基体在低频100~1000 Hz提高了35.2%,降噪系数达到0.523,提高了10.1%。研究结果为多孔吸声材料的吸声性能改善和实际应用提供了依据。

     

  • 图  1  PVA∶C不同比例分散液的光学显微镜照片:(a) 5∶1;(b) 10∶1;(c) 20∶1;(d) 50∶1;(e) PVA-C复合薄膜与PVA-C悬浮液照片

    Figure  1.  Optical microscope photographs of dispersions with different PVA∶C ratios: (a) 5∶1; (b) 10∶1; (c) 20∶1; (d) 50∶1; (e) Photographs of PVA-C film and dispersions

    图  2  多孔材料基体((a), (b))、普通热干燥((c), (d))和冷冻干燥((e), (f))处理后附着在基体内孔壁的PVA-C (10∶1)复合薄膜的SEM图像

    Figure  2.  SEM images of porous matrix ((a), (b)), PVA-C (10∶1) composite film adhered to the innerwall of the matrix pore after heat treatment ((c), (d)) and freeze drying ((e), (f))

    图  3  不同PVA-C复合薄膜的XRD图谱

    Figure  3.  XRD patterns of different PVA-C composite films

    图  4  不同PVA-C复合薄膜的FTIR图谱

    Figure  4.  FTIR spectra of different PVA-C composite films

    图  5  不同PVA-C复合薄膜的TG分析曲线(a)及其局部放大图(b)

    Figure  5.  TG analysis curves (a) of different PVA-C composite films and partial enlarged figure (b)

    图  6  不同PVA∶C比例下空心球泡沫多孔复合材料的吸声系数曲线(热干燥) (a)和曲线的局部放大图 (b)

    Figure  6.  Sound absorption coefficients of porous composites with different PVA∶C ratios obtianed by heating drying (a) and its partial enlarged figure (b)

    图  7  多孔材料基体与两种干燥方法处理后所得PVA-C/空心球泡沫多孔复合材料的吸声系数曲线(a)和曲线的局部放大图 (b)

    Figure  7.  Sound absorption coefficients of porous marix and PVA-C/hollow sphere foam composites obtained by two different drying methods (a) and its partial enlarged figure (b)

    图  8  3种多孔吸声材料声波传播示意图

    Figure  8.  Schematic diagram of sound wave propagation of three porous sound absorbing materials

    图  9  近年来文献报道的多孔吸声材料吸声性能比较:(a) 不同试样厚度与500 Hz处吸声系数对应关系;(b) 不同试样厚度与降噪系数对应关系[28, 34-55]

    Figure  9.  Comparison of the sound absorption properties of porous materials reported in recent work: (a) Sound absorption coefficient of samples with different thicknesses at 500 Hz; (b) Noise reduction coefficient of samples withdifferent thicknesses[28, 34-55]

    图  10  三种不同多孔吸声材料的应力-应变曲线

    Figure  10.  Stress-strain curves of three different porous sound absorbing materials

    表  1  样品名称及制备方法

    Table  1.   Sample name and preparation method

    Sample Preparation method
    HSFS Hollow spherical foam porous materials
    HSFS-HD HSFS impregnated with polyvinyl alcohol-carbon black (PVA-C) suspension is heat-dried (HD) at 80℃ for 6 h
    HSFS-FD HSFS impregnated with PVA-C suspension is freeze-dried (FD) at 80℃ for 48 h
    PVA-C composite film PVA-C suspension dried on glass substrate at 80℃ for 4 h
    下载: 导出CSV

    表  2  不同PVA∶C比例的多孔复合材料平均吸声系数α和降噪系数NRC的比较

    Table  2.   Comparison of average sound absorption coefficient α and NRC of porous composites with different PVA∶C ratios

    Sampleα100-1000 Hzα1000-6300 HzNRC
    HSFS0.3040.6680.475
    HSFS-HD (5∶1)0.3530.6870.519
    HSFS-HD (10∶1)0.3410.7290.521
    HSFS-HD (20∶1)0.3270.6720.486
    HSFS-HD (50∶1)0.3270.6530.485
    HSFS-FD0.4110.6520.523
    Notes: α100-1000 Hz—Average sound absorption coefficient in the 100-1000 Hz frequency;
    α1000-6300 Hz—Average sound absorption coefficient in the 1000-6300 Hz frequency; NRC—Noise reduction coefficient of the sample.
    下载: 导出CSV

    表  3  近年来文献报道的多孔吸声材料抗压强度比较

    Table  3.   Comparison of the compressive strength of porous sound-absorbing materials reported in recent works

    MaterialsCompressive strength/MPaRef.
    Silica foam0.94[15]
    PU foam0.01[3]
    Copper foam0.30[6]
    Fly-ash1.20[13]
    Steel slag5.41[14]
    Ceramic1.12[5]
    Geopolymer4.50[52]
    Date palm0.20[16]
    HSFS-HD1.72This work
    HSFS-FD1.65This work
    Note: PU—Polyurethane.
    下载: 导出CSV
  • [1] FIRDAUS G, AHMAD A. Noise pollution and human health: A case study of municipal corporation of delhi[J]. Indoor and Built Environment,2010,19(6):648-656. doi: 10.1177/1420326X10370532
    [2] RAJA R V, RAJASEKARAN V, SRIRAMAN G. Non-auditory effects of noise pollution on health: A perspective[J]. Indian Journal of Otolaryngology and Head & Neck Surgery,2019,71(2):1500-1511.
    [3] LI T T, ZHOU X, WANG H Y, et al. Sound absorption and compressive property of PU foam-filled composite sandwiches: Effects of needle-punched fabric structure, porous structure, and fabric-foam interface[J]. Polymer for Advanced Technologies,2020,31(3):451-460. doi: 10.1002/pat.4781
    [4] YANG T, HU L Z, XIONG X M, et al. Sound absorption properties of natural fibers: A review[J]. Sustainability,2020,12(20):25-39.
    [5] HE C, SHUI A Z, MA J, et al. In situ growth magnesium borate whiskers and synthesis of porous ceramics for sound-absorbing[J]. Ceramics International,2020,46:29339-29343. doi: 10.1016/j.ceramint.2020.08.062
    [6] RUAN J Q, GE H, HUANG D F, et al. Copper foam sustained silica aerogel for high-efficiency acoustic absorption[J]. Aip Advances,2019,9(1):19-27.
    [7] CAO L T, FU Q X, SI Y, et al. Porous materials for sound absorption[J]. Composites Communications,2018,10:25-35. doi: 10.1016/j.coco.2018.05.001
    [8] 陈昌儒. 基于多孔材料的宽低频吸隔声新型结构研究[D]. 北京: 北京理工大学, 2017.

    CHEN Changru. The new structure of broadband low-frequency sound absorpting and insulation performance based on porous materials[D]. Beijing: Beijing Institute of Technology, 2017(in Chinese).
    [9] LIU X S, JIANG Z Y, JIN X F, et al. Reserch status and development trend of inorganic sound-absorption material[J]. Smart Grid,2016,41(10):5-19.
    [10] YANG M, WANG T, GE H Y. Development of fiber sound absorption material[J]. New Chemical Materials,2018,46(6):5-8.
    [11] WANG F, GU H, YIN J W, et al. Porous Si3N4 fabrication via volume-controlled foaming and their sound absorption properties[J]. Journal of Alloys and Compounds,2017,727:163-171. doi: 10.1016/j.jallcom.2017.07.232
    [12] YAO G C, LIU H, SONG B N. The progress in aluminum foam research in China[C]//Proceedings of the International Conference on Advanced Materials and Engineering Materials. Shenyang: 2012, 52(6): 253-256.
    [13] QI L Q, XU J, LIU K Y. Porous sound-absorbing materials prepared from fly ash[J]. Environmental Science and Pollution Research,2019,26(22):22264-22272. doi: 10.1007/s11356-019-05573-5
    [14] JU P R, GUO Z C. Porous sound absorbing materials prepared by steel slag[J]. Bulletin of the Chinese Ceramic Society,2015,34(10):2960-2967.
    [15] DU Z P, YAO D X, XIA Y F, et al. Highly porous silica foams prepared via direct foaming with mixed surfactants and their sound absorption characteristics[J]. Ceramics International,2020,46(9):12942-12947. doi: 10.1016/j.ceramint.2020.02.063
    [16] BELAKROUM R, GHERFI A, KADJA M, et al. Design and properties of a new sustainable construction material based on date palm fibers and lime[J]. Construction and Building Materials,2018,184:330-343. doi: 10.1016/j.conbuildmat.2018.06.196
    [17] 覃东. 多孔陶瓷吸声材料的制备与性能研究[D]. 广州: 华南理工大学, 2013.

    TAN Dong. Preparation and characteristics of porous sound absorption ceramics[D]. Guangzhou: South China University of Technology, 2013(in Chinese).
    [18] NINE M J, AYUB M, ZANDER A C, et al. Graphene oxide-based lamella network for enhanced sound absorption[J]. Advanced Functional Materials,2017,27(46):10-19.
    [19] VERDEJO R, STAEMPFLI R, ALVAREZ L M, et al. Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes[J]. Composites Science and Technology,2009,69(10):1564-1579. doi: 10.1016/j.compscitech.2008.07.003
    [20] BECHWATI F, AVIS M R, BULL D J, et al. Low frequency sound propagation in activated carbon[J]. The Journal of the Acoustical Society of America,2012,132(1):239-248. doi: 10.1121/1.4725761
    [21] MADUSHIKA J W A, LANAROLLE W D G. A review on novel approaches to enhance sound absorbing performance using textile fibers[J]. The Journal of the Textile Institute,2022,113(2):341-348. doi: 10.1080/00405000.2021.1872831
    [22] 刘焕. 改性PVA纳米纤维膜复合材料的制备及吸声性能探究[D]. 苏州: 苏州大学, 2019.

    LIU Huan. Preparation and sound absorption properties of modified PVA nanofiber menbrane compositions[D]. Suzhou: Suzhou University, 2019(in Chinese).
    [23] LIN J H, LIN Z L, PAN Y J, et al. Thermoplastic polyvinyl alcohol/multiwalled carbon nanotube composites: Preparation, mechanical properties, thermal properties, and electromagnetic shielding effectiveness[J]. Journal of Applied Polymer Science,2016,133(21):43474-43485.
    [24] JAYARAMUDU T, KO H U, ZHAI L D, et al. Preparation and characterization of hydrogels from polyvinyl alcohol and cellulose and their electroactive behavior[J]. Soft Materials,2017,15(1):64-72. doi: 10.1080/1539445X.2016.1246458
    [25] MANSUR H S, SADAHIRA C M, SOUZA A N, et al. FT-IR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde[J]. Materials Science and Engineering: C,2008,28(4):539-548. doi: 10.1016/j.msec.2007.10.088
    [26] SHUICHI A, TAKAHISA K, KEISUKE A, et al. Structure-sound absorption property relationships of electrospun thin silica fiber sheets: Quantitative analysis based on acoustic models[J]. Applied Acoustics,2019,152:13-20. doi: 10.1016/j.apacoust.2019.03.016
    [27] CHEVILLOTTE F. Controlling sound absorption by an upstream resistive layer[J]. Applied Acoustics,2012,73(1):56-60. doi: 10.1016/j.apacoust.2011.07.005
    [28] HE C, DU B, MA J, et al. Enhanced sound absorption properties of porous ceramics modified by graphene oxide films[J]. Journal of the American Ceramic Society,2022,105(5):3177-3188. doi: 10.1111/jace.18302
    [29] OH J, KIM J, LEE H, et al. Directionally antagonistic graphene oxide-polyurethane hybrid aerogel as a sound absorber[J]. ACS Applied Materials & Interfaces,2018,10(26):22650-22660. doi: 10.1021/acsami.8b06361
    [30] HE C, DU B, MA J, et al. Enhanced sound absorption properties of ceramics with graphene oxide composites[J]. ACS Omega,2021,6(50):34242-34249. doi: 10.1021/acsomega.1c03362
    [31] JAEHYUK L, INHWA J. Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide[J]. Applied Acoustics,2019,151:10-21. doi: 10.1016/j.apacoust.2019.02.029
    [32] WU Y, SUN X Y, WU W, et al. Graphene foam/carbon nanotube/poly (dimethyl siloxane) composites as excellent sound absorber[J]. Composites Part A: Applied Science and Manufacturing,2017,102:391-399. doi: 10.1016/j.compositesa.2017.09.001
    [33] BIN L, ERIK O, ANTHONY P, et al. Simultaneous enhancements in damping and static dissipation capability of polyetherimide composites with organosilane surface modified graphene nanoplatelets[J]. Polymer,2011,52(24):5606-5614. doi: 10.1016/j.polymer.2011.09.048
    [34] BUJOREANU C, NEDEFF F, BENCHEA M, et al. Experimental and theoretical considerations on sound absorption performance of waste materials including the effect of backing plates[J]. Applied Acoustics,2017,119:88-93. doi: 10.1016/j.apacoust.2016.12.010
    [35] CELIA A, CARLOS L, LUIS F V, et al. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers[J]. Waste Management,2013,33(11):2316-2321. doi: 10.1016/j.wasman.2013.07.008
    [36] PANNERT W, WINKLER R, MERKEL M. On the acoustical properties of metallic hollow sphere structures (MHSS)[J]. Materials Letters,2009,63(13-14):1121-1134. doi: 10.1016/j.matlet.2008.10.063
    [37] ZHANG Y, LI H, AHMED A, et al. Effect of different factors on sound absorption property of porous concrete[J]. Transportation Research Part D: Transport and Environment,2020,87:133-150.
    [38] EBRAHIM T, SOMAYEH A, PARHAM S, et al. Use of date palm waste fibers as sound absorption material[J]. Journal of Building Engineering,2021,41:102752-102761. doi: 10.1016/j.jobe.2021.102752
    [39] ABBAD A, JABOVISTE K, OUISSE M, et al. Acoustic performances of silicone foams for sound absorption[J]. Journal of Cellular Plastics,2018,54(3):651-660. doi: 10.1177/0021955X17732305
    [40] ARENAS C, RIOS J D, CIFUENTES H, et al. Sound absorbing porous concretes composed of different solid wastes[J]. European Journal of Environmental and Civil Engineering,2020,42(4):152-165.
    [41] ZHOU T, CHEN X D, PAN Y L, et al. Mechanical performance and thermal stability of polyvinyl alcohol-cellulose aerogels by freeze drying[J]. Cellulose,2019,26(3):1747-1755. doi: 10.1007/s10570-018-2179-3
    [42] LIU X T, TANG X N, DENG Z M. Sound absorption properties for multi-layer of composite materials using nonwoven fabrics with kapok[J]. Journal of Industrial Textiles,2022,51(10):1601-1615. doi: 10.1177/1528083720904926
    [43] RAPISARDA M, FIERRO G P M, MEO M. Ultralight graphene oxide/polyvinyl alcohol aerogel for broadband and tuneable acoustic properties[J]. Scientific Reports,2021,11(1):10-19. doi: 10.1038/s41598-020-79544-z
    [44] ZHANG Y, LI H, ABDELHADY A, et al. Effect of different factors on sound absorption property of porous concrete[J]. Transportation Research Part D: Transport and Environment,2020,87:102532. doi: 10.1016/j.trd.2020.102532
    [45] FARADILLA F S, NUGROHO D T, HIDAYATI R E, et al. Optimization of SiO2/Al2O3 ratio in the preparation of geopolymer from high calcium fly ash[C]//Proceedings of the 2nd International Conference on Green Environmental Engineering and Technology. Electr Network, 2020: 1526-1534.
    [46] GAO H, LIU H, LIAO L B, et al. A bifunctional hierarchical porous kaolinite geopolymer with good performance in thermal and sound insulation[J]. Construction and Building Materials,2020,251:1562-1572. doi: 10.1016/j.conbuildmat.2020.118888
    [47] VIKRANT T, ARUN S, ARIJIT B. Acoustic properties of cenosphere reinforced cement and asphalt concrete[J]. Applied Acoustics,2004,63(5):263-275.
    [48] ARENAS C, VILCHES L F, LEIVA C, et al. Recycling ceramic industry wastes in sound absorbing materials[J]. Materiales de Construccion,2016,66(324):7-19.
    [49] HEEAE K, JIYOUNG H, SUKHOON P. Acoustic characteristics of sound absorbable high performance concrete[J]. Applied Acoustics,2018,138:171-178. doi: 10.1016/j.apacoust.2018.04.002
    [50] LIN J H, HU P Y, HUANG C H, et al. Functional hollow ceramic microsphere/flexible polyurethane foam composites with a cell structure: Mechanical property and sound absorptivity[J]. Polymers,2022,14(5):1547-1556.
    [51] YAN S, PAN Y M, WANG L, et al. Synthesis of low-cost porous ceramic microspheres from waste gangue for dye adsorption[J]. Journal of Advanced Ceramics,2017,7(1):30-40.
    [52] ARENAS C, LUNA G Y, LEIVA C, et al. Development of a fly ash-based geopolymeric concrete with construction and demolition wastes as aggregates in acoustic barriers[J]. Construction and Building Materials,2017,134:433-442. doi: 10.1016/j.conbuildmat.2016.12.119
    [53] SEUNG BUM P, DAE SEUK S, JUN L. Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio[J]. Cement and Concrete Research,2005,35(9):1846-1854. doi: 10.1016/j.cemconres.2004.12.009
    [54] MASAHIRO T, KIMIHIRO S, MITSURU O, et al. Improved sound absorption performance of three-dimensional MPP space sound absorbers by filling with porous materials[J]. Applied Acoustics,2017,116:311-316. doi: 10.1016/j.apacoust.2016.10.006
    [55] KONKENA B, VASUDEVAN S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements[J]. The Journal of Physical Chemistry Letters,2012,3(7):867-872. doi: 10.1021/jz300236w
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  702
  • HTML全文浏览量:  275
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-03
  • 修回日期:  2022-09-13
  • 录用日期:  2022-09-24
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回