Preparation and properties of polyvinyl alcohol-carbon black/hollow sphere foam sound absorption composites
-
摘要:
空心球泡沫多孔材料以其丰富、环保、成本低、易加工成型、吸声性能优异等优点,在吸声降噪领域吸引了越来越多的研究。但由于多孔材料对低频声波的吸收能力有限,导致其低频范围吸声性能不佳,严重阻碍了它的实际应用。本文通过将粉煤灰空心球与水玻璃等原料在模具中经两次固化成型制备得到空心球泡沫多孔材料,再通过真空浸渍、热干燥或冷冻干燥等方法在多孔材料中引入柔性聚乙烯醇-炭黑(PVA-C)第二相,制备了一种刚性-柔性复合材料 (PVA-C/空心球泡沫),引入PVA-C复合薄膜不仅可以产生粘弹性薄膜固有的阻尼特性,除了增加摩擦和复合薄膜界面之间的声波耗散之外,薄膜的振动也进一步损耗声波能量。结果表明所制备的多孔复合吸声材料的抗压强度达到1.65 MPa,吸声性能在低频100-1000 Hz提高了35.2%,降噪系数达到0.523,提高了10.1%。通过在刚性吸声体中引入柔性第二相材料,强化低频吸收,有效提高了多孔材料的低频波段吸声性能。 (a)不同比例PVA-C/空心球泡沫多孔复合材料的吸声性能(热干燥),(b)多孔材料基体与两种干燥处理(HD热干燥,FD冷冻干燥)后多孔复合材料的吸声性能 Abstract: Noise pollution greatly affects human mental and physical health. Porous sound absorption materials usually perform well in middle and high frequency bands, but improvement still needs in low frequency bands. In this work, hollow sphere foam matrix were prepared with fly-ash hollow sphere and sodium silicate as the raw materials firstly. Subsequently, flexible polyvinyl alcohol-carbon black (PVA-C) composite was introduced into the porous matrix through vacuum impregnation and ordinary heat drying or freeze drying process to obtain PVA-C/hollow sphere foam composites. The results show that the compressive strength of the obtained porous composite is more than 1.65 MPa. The sound absorption performance is improved by 35.2% in the range of 100-1000 Hz, compared with the hollow sphere foam matrix. The noise reduction coefficient reaches 0.523, which is increased by 10.1%. The results of the study provide a basis for the improvement of sound absorption performance and practical application of porous sound absorbing materials. -
图 9 近年来文献报道的多孔吸声材料吸声性能比较:(a) 不同试样厚度与500 Hz处吸声系数对应关系;(b) 不同试样厚度与降噪系数对应关系[28, 34-55]
Figure 9. Comparison of the sound absorption properties of porous materials reported in recent work: (a) Sound absorption coefficient of samples with different thicknesses at 500 Hz; (b) Noise reduction coefficient of samples withdifferent thicknesses[28, 34-55]
Name Manufacturers Pecification Fly-ash Zhengzhou Haoda Primary fly ash, Partical size
(600-800 μm)Sodium silicate Dewang chemical Modules2.0-3.5 Na2CO3 Aladdin 99.5% Na2B4O7 Aladdin 99.5% NaOH Aladdin 98% Polypropylene fiber Huixiang fiber Length(2-3 mm) Carbon black (C) Jinli chemical nanoscale Polyvinyl alcohol(PVA) Aladdin 1788,AR BYK180 BYK AR PVP Shanghai Wokai Reagent AR,K30 表 1 不同PVA∶C比例的多孔复合材料平均吸声系数α和降噪系数NRC的比较
Table 1. Comparison of average sound absorption coefficient α and NRC of porous composites with different PVA∶C ratios
Sample α100-1000 Hz α1000-6300 Hz NRC HSFS 0.304 0.668 0.475 HSFS-HD (5∶1) 0.353 0.687 0.519 HSFS-HD (10∶1) 0.341 0.729 0.521 HSFS-HD (20∶1) 0.327 0.672 0.486 HSFS-HD (50∶1) 0.327 0.653 0.485 HSFS-FD 0.411 0.652 0.523 Notes: α100-1000 Hz—Average sound absorption coefficient in the 100-1000 Hz frequency;
α1000-6300 Hz—Average sound absorption coefficient in the 1000-6300 Hz frequency; NRC—Noise reduction coefficient of the sample.表 2 近年来文献报道的多孔吸声材料抗压强度比较
Table 2. Comparison of the compressive strength of porous sound-absorbing materials reported in recent works
-
[1] FIRDAUS G, AHMAD A. Noise pollution and human health: A case study of municipal corporation of delhi[J]. Indoor and Built Environment,2010,19(6):648-656. doi: 10.1177/1420326X10370532 [2] RAJA R V, RAJASEKARAN V, SRIRAMAN G. Non-auditory effects of noise pollution on health: A perspective[J]. Indian Journal of Otolaryngology and Head & Neck Surgery,2019,71(2):1500-1511. [3] LI T T, ZHOU X, WANG H Y, et al. Sound absorption and compressive property of PU foam-filled composite sandwiches: Effects of needle-punched fabric structure, porous structure, and fabric-foam interface[J]. Polymer for Advanced Technologies,2020,31(3):451-460. doi: 10.1002/pat.4781 [4] YANG T, HU L Z, XIONG X M, et al. Sound absorption properties of natural fibers: A review[J]. Sustainability,2020,12(20):25-39. [5] HE C, SHUI A Z, MA J, et al. In situ growth magnesium borate whiskers and synthesis of porous ceramics for sound-absorbing[J]. Ceramics International,2020,46:29339-29343. doi: 10.1016/j.ceramint.2020.08.062 [6] RUAN J Q, GE H, HUANG D F, et al. Copper foam sustained silica aerogel for high-efficiency acoustic absorption[J]. Aip Advances,2019,9(1):19-27. [7] CAO L T, FU Q X, SI Y, et al. Porous materials for sound absorption[J]. Composites Communications,2018,10:25-35. doi: 10.1016/j.coco.2018.05.001 [8] 陈昌儒. 基于多孔材料的宽低频吸隔声新型结构研究[D]. 北京: 北京理工大学, 2017.CHEN Changru. The new structure of broadband low-frequency sound absorpting and insulation performance based on porous materials[D]. Beijing: Beijing Institute of Technology, 2017(in Chinese). [9] LIU X S, JIANG Z Y, JIN X F, et al. Reserch status and development trend of inorganic sound-absorption material[J]. Smart Grid,2016,41(10):5-19. [10] YANG M, WANG T, GE H Y. Development of fiber sound absorption material[J]. New Chemical Materials,2018,46(6):5-8. [11] WANG F, GU H, YIN J W, et al. Porous Si3N4 fabrication via volume-controlled foaming and their sound absorption properties[J]. Journal of Alloys and Compounds,2017,727:163-171. doi: 10.1016/j.jallcom.2017.07.232 [12] YAO G C, LIU H, SONG B N. The progress in aluminum foam research in China[C]//Proceedings of the International Conference on Advanced Materials and Engineering Materials, Shenyang: 2012, 52(6): 253-256. [13] QI L Q, XU J, LIU K Y. Porous sound-absorbing materials prepared from fly ash[J]. Environmental Science and Pollution Research,2019,26(22):22264-22272. doi: 10.1007/s11356-019-05573-5 [14] JU P R, GUO Z C. Porous sound absorbing materials prepared by steel slag[J]. Bulletin of the Chinese Ceramic Society,2015,34(10):2960-2967. [15] DU Z P, YAO D X, XIA Y F, et al. Highly porous silica foams prepared via direct foaming with mixed surfactants and their sound absorption characteristics[J]. Ceramics International,2020,46(9):12942-12947. doi: 10.1016/j.ceramint.2020.02.063 [16] BELAKROUM R, GHERFI A, KADJA M, et al. Design and properties of a new sustainable construction material based on date palm fibers and lime[J]. Construction and Building Materials,2018,184:330-343. doi: 10.1016/j.conbuildmat.2018.06.196 [17] 覃东. 多孔陶瓷吸声材料的制备与性能研究[D]. 广州: 华南理工大学, 2013.TAN Dong. Preparation and characteristics of porous sound absorption ceramics[D]. Guangzhou: South China University of Technology, 2013(in Chinese). [18] NINE M J, AYUB M, ZANDER A C, et al. Graphene oxide-based lamella network for enhanced sound absorption[J]. Advanced Functional Materials,2017,27(46):10-19. [19] VERDEJO R, STAEMPFLI R, ALVAREZ L M, et al. Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes[J]. Composites Science and Technology,2009,69(10):1564-1579. doi: 10.1016/j.compscitech.2008.07.003 [20] BECHWATI F, AVIS M R, BULL D J, et al. Low frequency sound propagation in activated carbon[J]. The Journal of the Acoustical Society of America,2012,132(1):239-248. doi: 10.1121/1.4725761 [21] MADUSHIKA J W A, LANAROLLE W D G. A review on novel approaches to enhance sound absorbing performance using textile fibers[J]. The Journal of The Textile Institute,2022,113(2):341-348. doi: 10.1080/00405000.2021.1872831 [22] 刘焕. 改性PVA纳米纤维膜复合材料的制备及吸声性能探究[D]. 苏州: 苏州大学, 2019.LIU Huan. Preparation and sound absorption properties of modified PVA nanofiber menbrane compositions[D]. Suzhou: Suzhou University, 2019(in Chinese). [23] LIN J H, LIN Z L, PAN Y J, et al. Thermoplastic polyvinyl alcohol/multiwalled carbon nanotube composites: Preparation, mechanical properties, thermal properties, and electromagnetic shielding effectiveness[J]. Journal of Applied Polymer Science,2016,133(21):43474-43485. [24] JAYARAMUDU T, KO H U, ZHAI L D, et al. Preparation and characterization of hydrogels from polyvinyl alcohol and cellulose and their electroactive behavior[J]. Soft Materials,2017,15(1):64-72. doi: 10.1080/1539445X.2016.1246458 [25] MANSUR H S, SADAHIRA C M, SOUZA A N, et al. FT-IR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde[J]. Materials Science and Engineering: C,2008,28(4):539-548. doi: 10.1016/j.msec.2007.10.088 [26] SHUICHI A, TAKAHISA K, KEISUKE A, et al. Structure-sound absorption property relationships of electrospun thin silica fiber sheets: Quantitative analysis based on acoustic models[J]. Applied Acoustics,2019,152:13-20. doi: 10.1016/j.apacoust.2019.03.016 [27] CHEVILLOTTE F. Controlling sound absorption by an upstream resistive layer[J]. Applied Acoustics,2012,73(1):56-60. doi: 10.1016/j.apacoust.2011.07.005 [28] HE C, DU B, MA J, et al. Enhanced sound absorption properties of porous ceramics modified by graphene oxide films[J]. Journal of the American Ceramic Society,2022,105(5):3177-3188. doi: 10.1111/jace.18302 [29] LEE J, JUNG I. Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide[J]. Applied Acoustics,2019,151:10-21. doi: 10.1016/j.apacoust.2019.02.029 [30] HE C, DU B, MA J, et al. Enhanced sound absorption properties of ceramics with graphene oxide composites[J]. ACS Omega,2021,6(50):34242-34249. doi: 10.1021/acsomega.1c03362 [31] JAEHYUK L, INHWA J. Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide[J]. Applied Acoustics,2019,151:10-21. doi: 10.1016/j.apacoust.2019.02.029 [32] WU Y, SUN X Y, WU W, et al. Graphene foam/carbon nanotube/poly (dimethyl siloxane) composites as excellent sound absorber[J]. Composites Part A: Applied Science and Manufacturing,2017,102:391-399. doi: 10.1016/j.compositesa.2017.09.001 [33] BIN L, ERIK O, ANTHONY P, et al. Simultaneous enhancements in damping and static dissipation capability of polyetherimide composites with organosilane surface modified graphene nanoplatelets[J]. Polymer,2011,52(24):5606-5614. doi: 10.1016/j.polymer.2011.09.048 [34] BUJOREANU C, NEDEFF F, BENCHEA M, et al. Experimental and theoretical considerations on sound absorption performance of waste materials including the effect of backing plates[J]. Applied Acoustics,2017,119:88-93. doi: 10.1016/j.apacoust.2016.12.010 [35] CELIA A, CARLOS L, LUIS F V, et al. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers[J]. Waste Management,2013,33(11):2316-2321. doi: 10.1016/j.wasman.2013.07.008 [36] PANNERT W, WINKLER R, MERKEL M. On the acoustical properties of metallic hollow sphere structures (MHSS)[J]. Materials Letters,2009,63(13-14):1121-1134. doi: 10.1016/j.matlet.2008.10.063 [37] ZHANG Y, LI H, AHMED A, et al. Effect of different factors on sound absorption property of porous concrete[J]. Transportation Research Part D: Transport and Environment,2020,87:133-150. [38] EBRAHIM T, SOMAYEH A, PARHAM S, et al. Use of date palm waste fibers as sound absorption material[J]. Journal of Building Engineering,2021,41:102752-102761. doi: 10.1016/j.jobe.2021.102752 [39] ABBAD A, JABOVISTE K, OUISSE M, et al. Acoustic performances of silicone foams for sound absorption[J]. Journal of Cellular Plastics,2018,54(3):651-660. doi: 10.1177/0021955X17732305 [40] ARENAS C, RIOS J D, CIFUENTES H, et al. Sound absorbing porous concretes composed of different solid wastes[J]. European Journal of Environmental and Civil Engineering,2020,42(4):152-165. [41] ZHOU T, CHEN X D, PAN Y L, et al. Mechanical performance and thermal stability of polyvinyl alcohol-cellulose aerogels by freeze drying[J]. Cellulose,2019,26(3):1747-1755. doi: 10.1007/s10570-018-2179-3 [42] LIU X T, TANG X N, DENG Z M. Sound absorption properties for multi-layer of composite materials using nonwoven fabrics with kapok[J]. Journal of Industrial Textiles,2022,51(10):1601-1615. doi: 10.1177/1528083720904926 [43] RAPISARDA M, FIERRO G P M, MEO M. Ultralight graphene oxide/polyvinyl alcohol aerogel for broadband and tuneable acoustic properties[J]. Scientific Reports,2021,11(1):10-19. doi: 10.1038/s41598-020-79544-z [44] ZHANG Y, LI H, ABDELHADY A, et al. Effect of different factors on sound absorption property of porous concrete[J]. Transportation Research Part D: Transport and Environment,2020,87:102532. doi: 10.1016/j.trd.2020.102532 [45] FARADILLA F S, NUGROHO D T, HIDAYATI R E, et al. Optimization of SiO2/Al2O3 ratio in the preparation of geopolymer from high calcium fly ash[C]//Proceedings of the 2nd International Conference on Green Environmental Engineering and Technology, Electr Network, 2020: 1526-1534. [46] GAO H, LIU H, LIAO L B, et al. A bifunctional hierarchical porous kaolinite geopolymer with good performance in thermal and sound insulation[J]. Construction and Building Materials,2020,251:1562-1572. doi: 10.1016/j.conbuildmat.2020.118888 [47] VIKRANT T, ARUN S, ARIJIT B. Acoustic properties of cenosphere reinforced cement and asphalt concrete[J]. Applied Acoustics,2004,63(5):263-275. [48] ARENAS C, VILCHES L F, LEIVA C, et al. Recycling ceramic industry wastes in sound absorbing materials[J]. Materiales de Construccion,2016,66(324):7-19. [49] HEEAE K, JIYOUNG H, SUKHOON P. Acoustic characteristics of sound absorbable high performance concrete[J]. Applied Acoustics,2018,138:171-178. doi: 10.1016/j.apacoust.2018.04.002 [50] LIN J H, HU P Y, HUANG C H, et al. Functional hollow ceramic microsphere/flexible polyurethane foam composites with a cell structure: mechanical property and sound absorptivity[J]. Polymers,2022,14(5):1547-1556. [51] YAN S, PAN Y M, WANG L, et al. Synthesis of low-cost porous ceramic microspheres from waste gangue for dye adsorption[J]. Journal of Advanced Ceramics,2017,7(1):30-40. [52] ARENAS C, LUNA G Y, LEIVA C, et al. Development of a fly ash-based geopolymeric concrete with construction and demolition wastes as aggregates in acoustic barriers[J]. Construction and Building Materials,2017,134:433-442. doi: 10.1016/j.conbuildmat.2016.12.119 [53] SEUNG BUM P, DAE SEUK S, JUN L. Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio[J]. Cement and Concrete Research,2005,35(9):1846-1854. doi: 10.1016/j.cemconres.2004.12.009 [54] MASAHIRO T, KIMIHIRO S, MITSURU O, et al. Improved sound absorption performance of three-dimensional MPP space sound absorbers by filling with porous materials[J]. Applied Acoustics,2017,116:311-316. doi: 10.1016/j.apacoust.2016.10.006 [55] KONKENA B, VASUDEVAN S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements[J]. The Journal of Physical Chemistry Letters,2012,3(7):867-872. doi: 10.1021/jz300236w -