留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚苯胺包覆碳点功能化CoMn2O4去除废水中U(VI)的性能与机制

周鑫艳 王月

周鑫艳, 王月. 聚苯胺包覆碳点功能化CoMn2O4去除废水中U(VI)的性能与机制[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 周鑫艳, 王月. 聚苯胺包覆碳点功能化CoMn2O4去除废水中U(VI)的性能与机制[J]. 复合材料学报, 2024, 42(0): 1-13.
ZHOU Xinyan, WANG Yue. Adsorption performance and mechanism of U(VI) removal from wastewater by polyaniline-coated and carbon dot functionalized CoMn2O4[J]. Acta Materiae Compositae Sinica.
Citation: ZHOU Xinyan, WANG Yue. Adsorption performance and mechanism of U(VI) removal from wastewater by polyaniline-coated and carbon dot functionalized CoMn2O4[J]. Acta Materiae Compositae Sinica.

聚苯胺包覆碳点功能化CoMn2O4去除废水中U(VI)的性能与机制

基金项目: 国家自然科学基金 (12305380)
详细信息
    通讯作者:

    周鑫艳,研究生,硕士生导师,研究方向为油田化学 E-mail: 525068077@qq.com

  • 中图分类号: TQ137.1;138.1+2;TB333

Adsorption performance and mechanism of U(VI) removal from wastewater by polyaniline-coated and carbon dot functionalized CoMn2O4

Funds: National Natural Science Foundation of China (No.12305380)
  • 摘要: 核工业发展产生的含铀废水对人类健康和生态环境产生严重威胁。对含铀废水的有效化处理是核能绿色发展的重要保证。采用化学聚合法合成了一种新型聚苯胺包覆碳点功能化锰钴金属氧化物(CMC20%/PANI)。吸附剂表面丰富的氧、氮基团为U(VI)的高效捕获提供活性位点。采用静态吸附法研究了材料去除溶液中U(VI)的性能。因此,在pH = 5、120 min,CMC20%/PANI对U(VI)的吸附容量达到285 mg/g。吸附过程符合准二级动力学和Sips模型,表明吸附剂对铀涉及单层和多层的化学吸附,并且Sips拟合的理论吸附容量为659.7 mg/g。吸附机制研究表明:静电吸引、孔扩散以及含氧、氮基团的络合配位作用成为CMC20%/PANI对U(VI)的主要去除机制。

     

  • 图  1  聚苯胺包覆碳点功能化锰钴金属氧化物(CoMn2O4/CDs/PANI)的合成路线

    Figure  1.  Synthetic route to polyaniline-coated carbon dot functionalized manganese cobalt metal oxide was synthesized by chemical polymerization (CoMn2O4/CDs/PANI)

    图  2  PANI和CMCx/PANI的(a) XRD谱图;(b) FT-IR谱图

    Figure  2.  (a) XRD patterns of PANI and CMCx/PANI; (b) FT-IR spectra

    图  3  (a-b) PANI、(c-d) CMC20%/PANI、(e-f) CMC50%/PANI的SEM

    Figure  3.  SEM of (a-b) PANI, (c-d) CMC20%/PANI, and (e-f) CMC50%/PANI

    图  4  CMC20%/PANI和CMC50%/PANI:(a) N2循环吸脱附和(b) 孔径分布曲线

    Figure  4.  (a) N2 cyclic adsorption desorption and (b) pore size distribution curves of CMC20%/PANI and CMC50%/PANI

    图  5  (a) pH对PANI、CMC10%PANI、CMC20%/PANI和CMC50%/PANI的吸附铀性能的影响(T = 298 K, m/V = 0.25 g/L, C0 = 100 mg/L);(b) CMC20%/PANI Zeta电位;(c) 不同时间CMC20%/PANI对铀吸附性能(pH=5.0, T = 298 K, m/V = 0.25 g/L, C0 = 100 mg/L)和(d) 颗粒内扩散模型拟合曲线

    Figure  5.  (a) Effect of pH on the uranium adsorption performance of PANI, CMC10%PANI, CMC20%/PANI, and CMC50%/PANI (T = 298 K, m/V = 0.25 g/L, C0 = 100 mg/L); (b) Potential of CMC20%/PANI Zeta; (c) Uranium adsorption performance of CMC20%/PANI at different times (pH=5.0, T = 298 K, m/V = 0.25 g/L, C0 = 100 mg/L); (d) Fitting curve of intra particle diffusion model

    qt—The adsorption capacity at an time point

    图  6  (a) CMC20%/PANI在不同初始浓度及温度下对铀酰离子的吸附性能;等温线拟合曲线(C0=20~400 mg/L, T=298~318 K, pH = 5.0, m/V = 0.25 g/L);(b) lnK与1/T的关系

    Figure  6.  (a) The adsorption performance of CMC20%/PANI on uranyl ions at different initial concentrations and temperatures; Isotherm fitting curve (C0=20~400 mg/L, T=298~318 K, pH = 5.0, m/V = 0.25 g/L); (b) Relationship between equilibrium constant and reciprocal temperature

    K—Thermodynamic equilibrium constant.

    图  7  CMC20%/PANI对不同金属离子的(a) 吸附容量;(b) 分配系数

    Figure  7.  (a) Influence of coexisting ions and (b) distribution coefficient of CMC20%/PANI

    图  8  (a) 不同解吸液的解析率;(b) 循环性能;(c) 循环后CMC20%/PANI的SEM图谱

    Figure  8.  (a) Resolution rates of different desorbing solutions; (b) Cycling performance; (c) The SEM of CMC20%/PANI after cycles.

    图  9  CMC20%/PANI吸附铀前后(a) FT-IR;(b) XRD;(c) SEM

    Figure  9.  (a) FT-IR; (b) XRD; (c)SEM of CMC20%/PANI before and after uranium adsorption

    图  10  CMC20%/PANI吸附铀前后 (a) U 4f;(b) N 1s;(c) C 1s;(d) O 1s;(e) Mn 2p;(f) Co 2p XPS精细谱图

    Figure  10.  CMC20%/PANI before and after uranium adsorption (a) U 4f; (b) N 1s; (c) C 1s; (d) O 1s; (e) Mn 2p; (f) Co 2p XPS fine spectrum

    表  1  准一/二级动力学模型拟合参数

    Table  1.   Fitting parameters of pseudo first/second order kinetic models

    Kinetic model qe/(mg-U/g-ads) k1/(min−1)/k2/(g·mg−1·min−1) R2
    Pseudo-first-order kinetic model 277.8 0.2432 0.785
    Pseudo-second-order kinetic model 286.7 0.0016 0.985
    Notes: qe—Theoretical equilibrium adsorption capacity; k1—The quasi-first-order kinetic constant; k2—The quasi-second-order kinetic constant; R2—Correlation coefficient.
    下载: 导出CSV

    表  2  颗粒内扩散模型拟合参数

    Table  2.   Fitting parameters of intra particle diffusion model

    T/Kkp1R12kp2R22kp3R32
    29819.1840.9473.4730.8050.8550.109
    Notes: kp—The diffusion constant in particles; R2—Correlation coefficient.
    下载: 导出CSV

    表  3  CMC20%/PANI吸附铀酰离子的吸附等温模型拟合参数

    Table  3.   Fitting parameters of adsorption isotherm model for uranyl ions on CMC20%/PANI

    Isothermal model Parameter 298 K 308 K 318 K
    Langmuir qe/(mg·g−1) 791.088 809.268 866.259
    KL/(L·mg−1) 0.027 0.035 0.041
    R2 0.951 0.943 0.952
    Freundlich 1/n 0.396 0.363 0.357
    KF/(L·g−1) 83.777 106.496 122.312
    R2 0.825 0.789 0.803
    Sips qe/(mg·g−1) 659.798 690.434 750.500
    KS 0.041 0.049 0.058
    m 1.674 1.728 1.611
    R2 0.991 0.991 0.987
    Notes: qe—Theoretical equilibrium adsorption capacity; KL—The saturated adsorption capacity of a single layer; R2—Correlation coefficient; 1/n—The adsorption strength; KF—The Freundlich's constant; Ks—The Sips constant related to the adsorption energy; m—The sips constant.
    下载: 导出CSV

    表  5  各种吸附剂的铀吸附性能比较

    Table  5.   Comparison of adsorption capacity for U(VI) adsorption with various adsorbents

    Adsorbents Time/min Adsorption Capacity/(mg·g−1) pH Cycle performance References
    C@CaTiO3 40 119.2 3.5 [1]
    Zr-ATMPA 120 238.1 5 [3]
    HAP/BTN 30 186.4 6 5/80% [7]
    CMPA-F-BDA 20 443 8 5/80% [13]
    Fe-PANI-GA 20 350.47 5.5 5/144.2~127.3 mg/g [22]
    LGSA 30 1162 8.5 5/94.2% [23]
    CS-AO-AMP 3600 620 7-9 4/90% [24]
    CMC20%/PANI 120 659.0 5 5/89.7% This work
    Notes: C@CaTiO3—Pomegranate peel carbon loaded CaTiO3; Zr-ATMPA—Organic zirconium phosphonate; HAP/BTN—Hydroxyapatite modified bentonite; CMPA-F-BDA—The modification of amino groups onto the fluorenone-functionalized conjugated microporous poly(aniline)s network; Fe-PANI-GA—Zero-valent iron-polyaniline-graphene aerogel ternary composite; LGSA—Surfactant assisted APTES functionalization of graphene oxide intercalated layered double hydroxide; CS-AO-AMP—Chitosan-based porous adsorbent with multifunctional amidoxime and phosphate groups.
    下载: 导出CSV

    表  4  热力学参数

    Table  4.   Thermodynamic fitting parameters

    T/K ΔGθ/(kJ·mol−1) ΔHθ/(kJ·mol−1) ΔSθ/(J·mol−1·K−1)
    298 −3.612 13.874 58.677
    308 −4.199
    318 −4.785
    328 −5.372
    338 -5.959
    Notes: ΔGθ—Gibbs free energy; ΔHθ—Enthalpy; ΔSθ—Entropy change.
    下载: 导出CSV
  • [1] 龚逸, 李小燕, 张益硕, 等. 石榴皮炭负载CaTiO3复合材料去除溶液中U(VI)的性能与机制[J]. 复合材料学报, 2024, 41(03): 1327-1337.

    GONG Yi , LI Xiaoyan, ZHANG Yishuo, et al. Performance and mechanism of U(VI) removal from solution by pomegranate peel carbon supported CaTiO3 composites[J]. Acta Materiae Compositae Sinica, 2024, 41(03): 1327-1337(in Chinese).
    [2] 林升, 付映文, 那兵, 等. 磷酸氢钙原位矿化铀酰离子性能及机制研究[J]. 东华理工大学学报(自然科学版), 2022, 45(3): 275-281.

    LIN Sheng, FU Yingwen, NA Bing, et al. Property and mechanism of in-situ mineralization of uranyl ions with calcium hydrogen phosphate[J]. Journal of East China University of Technology (Natural Science), 2022, 45(3): 275-281(in Chinese).
    [3] 张志宾, 黄剑, 陈海军, 等. 新型有机膦酸锆对铀(Ⅵ)的吸附性能研究[J]. 东华理工大学学报(自然科学版), 2020, 43(2): 187-193.

    Zhang Zhibin, Huang Jian, Chen Haijun, et al. Adsorption of U(VI) in aqueous solution by new organic zirconium phosphonate[J]. Journal of East China University of Technology (Natural Science), 2020, 43(2): 187-193(in Chinese).
    [4] AMPHLETT J T M, CHOI S, PARRY S A, et al. Insights on uranium uptake mechanisms by ion exchange resins with chelating functionalities: Chelation vs. anion exchange[J]. Chemical Engineering Journal, 2020, 392: 123712. doi: 10.1016/j.cej.2019.123712
    [5] MA L-L, YE H, LIU L, et al. Polypropylene membranes with high adsorption capacity and anti-adhesion properties achieved by hydrophobic interactions and hydrogen bonded self-assembly for uranium extraction from seawater[J]. Chemical Engineering Journal, 2023, 451: 138696. doi: 10.1016/j.cej.2022.138696
    [6] OH M, LEE K, KIM K-W, et al. Uranyl peroxide ((UO2)(O2)·4H2O; UO4) precipitation for uranium sequestering: formation and physicochemical characterization[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(6): 2495-2501. doi: 10.1007/s10967-022-08299-w
    [7] 张益硕, 周仲魁, 李龙祥, 等. 羟基磷灰石改性膨润土对铀的吸附效果及其机制[J]. 复合材料学报, 2023, 40(12): 6740-6755.

    ZHANG Yishu, ZHOU Zhongkui, LI Longxiang, et al. Study on adsorption effect and mechanism of uranium by hydroxyapatite modified bentonite[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6740-6755(in Chinese).
    [8] SHAN C, WANG Y, LI J, et al. Recent Advances of VOCs Catalytic Oxidation over Spinel Oxides: Catalyst Design and Reaction Mechanism[J]. Environmental Science & Technology, 2023, 57(26): 9495-9514.
    [9] ZHANG J, YIN X, YE Z, et al. Synthesis of Novel Hierarchical Rod-like Mg–Al bimetallic oxides for enhanced removal of uranium (VI) from wastewater[J]. Chemosphere, 2022, 308: 136546. doi: 10.1016/j.chemosphere.2022.136546
    [10] DING L, ZHANG S, TAO C, et al. Efficient uranium(VI) adsorption platform based on graphene oxide-supported TixAl1-xOy bimetallic oxide[J]. Applied Surface Science, 2023, 615: 156337. doi: 10.1016/j.apsusc.2023.156337
    [11] AHMED M A, AHMED M A, MOHAMED A A. Synthesis, characterization and application of chitosan/graphene oxide/copper ferrite nanocomposite for the adsorptive removal of anionic and cationic dyes from wastewater[J]. RSC Advances, 2023, 13(8): 5337-5352. doi: 10.1039/D2RA07883J
    [12] HUANG M, XIE L, WANG Y, et al. Efficient uranium electrochemical deposition with a functional phytic Acid-Doped Polyaniline/Graphite sheet electrode by Adsorption-electrodeposition strategy[J]. Chemical Engineering Journal, 2023, 457: 141221. doi: 10.1016/j.cej.2022.141221
    [13] YE X, CHEN X, CHEN D, et al. Unconventional extraction of uranium from seawater through microenvironment-specific conjugated microporous poly(aniline)s[J]. Separation and Purification Technology, 2025, 353: 128362. doi: 10.1016/j.seppur.2024.128362
    [14] MOSTAFAEI A, ZOLRIASATEIN A. Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods[J]. Progress in Natural Science: Materials International, 2012, 22(4): 273-280. doi: 10.1016/j.pnsc.2012.07.002
    [15] ELANCHEZHIYAN S S, MUTHU PRABHU S, KARTHIKEYAN P, et al. Efficient and selective sequestration of perfluorinated compounds and hexavalent chromium ions using a multifunctional spinel matrix decorated carbon backbone N-rich polymer and their mechanistic investigations[J]. Journal of Molecular Liquids, 2021, 326: 115336. doi: 10.1016/j.molliq.2021.115336
    [16] QIU B, XU C, SUN D, et al. Polyaniline coating with various substrates for hexavalent chromium removal[J]. Applied Surface Science, 2015, 334: 7-14. doi: 10.1016/j.apsusc.2014.07.039
    [17] SOLTANI H, BELMOKHTAR A, ZEGGAI F Z, et al. Copper(II) Removal from aqueous solutions by PANI-Clay hybrid material: Fabrication, characterization, adsorption and kinetics study[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(3): 841-850. doi: 10.1007/s10904-018-01058-z
    [18] XIONG T, LI Q, LIAO J, et al. Design of hydroxyapatite aerogel with excellent adsorption performance to uranium[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106364. doi: 10.1016/j.jece.2021.106364
    [19] AHMED W, NúñEZ-DELGADO A, MEHMOOD S, et al. Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: Adsorption behavior and mechanism[J]. Environmental Research, 2021, 201: 111518. doi: 10.1016/j.envres.2021.111518
    [20] JUN B-M, LEE H-K, PARK S, et al. Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials[J]. Separation and Purification Technology, 2021, 278: 119675. doi: 10.1016/j.seppur.2021.119675
    [21] WEI X, LIU Q, ZHANG H, et al. Rapid and efficient uranium(VI) capture by phytic acid/polyaniline/FeOOH composites[J]. Journal of Colloid and Interface Science, 2018, 511: 1-11. doi: 10.1016/j.jcis.2017.09.054
    [22] CHEN L, FENG S, ZHAO D, et al. Efficient sorption and reduction of U(VI) on zero-valent iron-polyaniline-graphene aerogel ternary composite[J]. Journal of Colloid and Interface Science, 2017, 490: 197-206. doi: 10.1016/j.jcis.2016.11.050
    [23] DAS A, JANA A, DAS D, et al. Surfactant assisted APTES functionalization of graphene oxide intercalated layered double hydroxide (LDH) for uranium adsorption from alkaline leach liquor[J]. Journal of Cleaner Production, 2023, 390: 136058. doi: 10.1016/j.jclepro.2023.136058
    [24] YANG L, LI Y, CHEN D, et al. Efficient cooperative extraction uranium(VI) from aqueous solution and seawater by a novel phosphate/amidoxime chitosan-based adsorbent[J]. Journal of Water Process Engineering, 2024, 61: 105197. doi: 10.1016/j.jwpe.2024.105197
    [25] ZHU J, LIU Q, LI Z, et al. Recovery of uranium(VI) from aqueous solutions using a modified honeycomb-like porous carbon material[J]. Dalton Transactions, 2017, 46(2): 420-429. doi: 10.1039/C6DT03227C
    [26] WANG B, LI Y, ZHENG J, et al. Efficient removal of U(VI) from aqueous solutions using the magnetic biochar derived from the biomass of a bloom-forming cyanobacterium (Microcystis aeruginosa)[J]. Chemosphere, 2020, 254: 126898. doi: 10.1016/j.chemosphere.2020.126898
    [27] BEHERA A, SAHU S, PAHI S, et al. Synthesis and characterization of PANI-ZrWPO4 nanocomposite: adsorption-reduction efficiency and regeneration potential for Cr(VI) removal[J]. Environmental Science and Pollution Research, 2023, 30(48): 105627-105645. doi: 10.1007/s11356-023-29440-6
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-25
  • 修回日期:  2024-08-18
  • 录用日期:  2024-08-25
  • 网络出版日期:  2024-09-20

目录

    /

    返回文章
    返回