Co-vulcanization of eucommia ulmoides gum-styrene butadiene rubber composite system and its dynamic and static mechanical properties
-
摘要: 将杜仲橡胶(EUG)与丁苯橡胶(SBR)共混制备了EUG-SBR橡胶复合材料。通过剥离实验和拉伸实验表征其共硫化的情况;通过拉伸实验,SEM、DMA和XRD研究了EUG含量对复合材料动静态性能的影响。结果表明,硫化体系:促进剂DZ 1.0份、促进剂TMTD 0.1份、硫磺1.5份可以使两种橡胶达到更好的共硫化,剥离强度达到4.2 kN/m,EUG-SBR(EUG/SBR质量比为70/30)复合材料的拉伸强度达到6.3 MPa。复合材料中的EUG晶区主要以β晶型存在,随着EUG含量增多,复合材料的结晶度和熔融温度明显提高。EUG相的引入会使复合材料的损耗因子峰值tanδmax下降,同时大幅提高复合材料的储能模量,在10 ℃时EUG-SBR复合材料的储能模量会从5份EUG时的3.0×106 Pa提高到35份EUG时的1.7×107 Pa。同时晶区的存在起到物理交联点的作用,提升复合材料的拉伸强度和定伸应力。Abstract: Eucommia ulmoides gum (EUG) was blended with styrene butadiene rubber (SBR) to prepare EUG-SBR composites. The co-vulcanization was characterized by stripping experiments and tensile experiments, and the effect of EUG content on the dynamic properties of the composites was studied via tensile experiment, SEM, DMA and XRD. The results display that the prepared sulfide formula (accelerant DZ 1.0, accelerant TMTD 0.1, sulfur 1.5) could achieve better co-vulcanization of the two rubbers. The stripping strength of the two rubbers reaches 4.2 kN/m and the tensile strength (mass ratio of SBR/EUG=70/30) could reach 6.3 MPa. The EUG phase in the composites mainly exists in β-crystalline form, and with the EUG content increasing, the crystallinity and melt temperature of the composites are significantly improved. The introduction of EUG decreases the peak loss factor tanδmax value and increases the storage modulus of the composites. At temperatures of 10 ℃, the storage modulus of EUG-SBR composites increases from 3.0×106 Pa (at 5 phr EUG) to 1.7×107 Pa (at 35 phr EUG). At the same time, the presence of crystal zone plays a role of physical crosslinking points to improve the tensile strength and fixed elongation stress of composites.
-
Key words:
- eucommia ulmoides gum /
- styrene butadiene rubber /
- co-vulcanization /
- damping /
- storage modulus /
- crystal /
- percolation
-
表 1 杜仲橡胶-丁苯橡胶(EUG-SBR)共硫化研究用配方
wt% Table 1. Formulations for eucommia ulmoides gum-styrene butadiene rubber (EUG-SBR) co-vulcanization research
wt% Formulation Formulation 1 Formulation 2 Formulation 3 Raw rubber 100 100 100 Zinc oxide (ZnO) 4 4 4 Stearic acid (SA) 1 1 1 Accelerator CZ 0.8 -- -- Accelerator DZ -- 1 -- Accelerator NS -- -- 1 Accelerator TMTD -- 0.1 -- Insoluble sulfur (S) 1.8 1.5 1.5 Notes: CZ—N-cyclohexyl-2-benzothiazole sulfonamide; DZ—N, N-dicyclohexyl-2-benzothiazole sulfonamide; NS—N-tert-butyl-2-benzothiazole sulfonamide; TMTD—Tetramethylthiuram disulfide. 表 2 不同配方EUG-SBR复合材料的剥离强度
Table 2. Stripping strength of various EUG-SBR composite materials of different formulations
Formulation Formulation 1 Formulation 2 Formulation 3 Average peel force/N 41 104 57 Peel strength/(kN·m−1) 1.6 4.2 2.3 表 3 不同配方EUG-SBR复合材料的力学性能
Table 3. Mechanical properties of various EUG-SBR composite materials of different formulations
Formulation Tensile strength/MPa Elongation at break/% Stress at 100%/MPa Stress at 300%/MPa Hardness (Shore A) Formulation 1 2.9 383 1.3 2.0 51 Formulation 2 6.2 416 1.7 3.2 60 Formulation 3 5.1 429 1.6 2.8 58 表 4 EUG-SBR复合材料的结晶度Xc
Table 4. Crystallinity Xc of EUG-SBR composites
EUG/SBR mass ratio 0/100 5/95 15/85 25/75 35/65 100/0 Xc /% 0 0 1.43 5.33 7.49 31.12 表 5 不同EUG含量 EUG-SBR复合材料力学性能
Table 5. Mechanical properties of EUG-SBR composite materials with different EUG contents
EUG/SBR
mass ratioTensile strength/MPa Elongation at break/% Stress at 100%/MPa Stress at 300%/MPa Hardness( Shore A) 0/100 2.2 413 0.9 1.5 41 5/95 2.2 389 0.9 1.5 42 15/85 2.6 408 1.0 1.6 44 25/75 5.2 464 1.4 2.3 54 35/65 9.1 480 1.8 3.3 61 -
[1] 张聪, 胡昌飞, 林新志. SSBR分子结构对硫化胶阻尼性能的影响[J]. 材料开发与应用, 2019, 34(2):63-69.ZHANG Cong, HU Changfei, LIN Xinzhi. Effect of molecular structure on damping properties of solution-polymerized styrene-butadiene vulcanized rubber[J]. Development and Application of Materials,2019,34(2):63-69(in Chinese). [2] FU Yifeng, KABIR I. Inrana, YEOH Guanheng, et al. A review on polymer-based materials for underwater sound absorption[J]. Polymer Testing,2021,96:107115. doi: 10.1016/j.polymertesting.2021.107115 [3] 耿晓燕, 郭大通, 赵德涛, 等. 滑动接枝共聚物/丁腈橡胶复合材料及其阻尼性能[J]. 复合材料学报, 2016, 33(7):1454-1460.GENG Xiaoyan, GUO Datong, ZHAO Detao, et al. Sliding graft copolymer/nitrile butadiene rubber composites and its damping property[J]. Acta Materiae Compositae Sinica,2016,33(7):1454-1460(in Chinese). [4] 向平, 李豪祥, 宋昊, 等. 压力与温度对炭黑填充丁苯橡胶复合材料动静态性质影响的分子模拟[J]. 高分子材料科学与工程, 2021, 37(3):93-99+105.XIANG Ping, LI Haoxiang, SONG Hao, et al. Molecular simulation of the influence of pressure and temperature on the dynamic and static properties of carbon black filled styrene butadiene rubber composites[J]. Polymer Materials Science & Engineering,2021,37(3):93-99+105(in Chinese). [5] 王兵, 任伟伟, 王雯霏. 静压力下粘弹性阻尼材料自由体积分数的分子模拟研究[J]. 材料开发与应用, 2016, 31(6):1-5.WANG Bing, REN Weiwei, WANG Wenfei. Molecular simulation analysis for the influence of hydrostatic pressure on the free volume fraction of viscoelastic damping materials[J]. Development and Application of Materials,2016,31(6):1-5(in Chinese). [6] 浦文婧, 李效东, 王清华. 高分子吸声材料吸声性能与粘弹性之间的关系[J]. 高分子材料科学与工程, 2011, 27(12):86-89.PU Wenjing, LI Xiaodong, WANG Qinghua. Relationship between acoustical absorptivity and viscoelasticity of acoustical absorptive polymer[J]. Polymer Materials Science & Engineering,2011,27(12):86-89(in Chinese). [7] WEI Xingneng, PENG Pai, PENG Feng, et al. Natural polymer eucommia ulmoides rubber: a novel material[J]. Journal of agricultural and food chemistry,2021,69(13):3797-3821. doi: 10.1021/acs.jafc.0c07560 [8] 董宇航, 赵喜源, 曹仁伟, 等. 天然杜仲胶的提取技术和应用研究现状[J]. 弹性体, 2020, 30(1):68-74. doi: 10.3969/j.issn.1005-3174.2020.01.015DONG Yuhang, ZHAO Xiyuan, CAO Renwei, et al. Research status of extraction technology and application of eucommia ulmoides gum[J]. China Elastomerics,2020,30(1):68-74(in Chinese). doi: 10.3969/j.issn.1005-3174.2020.01.015 [9] HE Xirui, WANG Jinhui, LI Maoxing, et al. Eucommia ulmoides Oliv. : Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine[J]. Journal of Ethnopharmacology,2014,152(1):14-32. doi: 10.1016/j.jep.2013.12.052 [10] 李春霞, 辛振祥, 夏琳. 天然杜仲橡胶在橡塑方面的研究进展[J]. 特种橡胶制品, 2014, 35(1):78-80.LI Chunxia, XIN Zhenxiang, XIA Lin. Research progress of natural eucommia rubber in rubber and plastics[J]. Special Purpose Rubber Products,2014,35(1):78-80(in Chinese). [11] 张继川, 薛兆弘, 严瑞芳, 等. 天然高分子材料——杜仲胶的研究进展[J]. 高分子学报, 2011(10):1105-1117.ZHANG Jichuan, XUE Zhaohong, YAN Ruifang, et al. Natural polymer material-recent studies on eucommia ulmoides fum[J]. Acta Polymerica Sinica,2011(10):1105-1117(in Chinese). [12] DONG Menjie, ZHANG Tianxing, ZHANG Jichuan, et al. Mechanism analysis of Eucommia ulmoides gum reducing the rolling resistance and the application study in green tires[J]. Polymer Testing,2020,87(8):106539. [13] CAO Renwei, DENG Linhui, FENG Zhibo, et al. Preparation of natural bio-based Eucommia ulmoides gum/styrene-butadiene rubber composites and the evaluation of their damping and sound absorption properties[J]. Polymer,2021,213:123292. doi: 10.1016/j.polymer.2020.123292 [14] GEORGE Soney C, NINAN K N, GROENINCKX Gabriel, et al. Styrene-butadiene rubber/natural rubber blends: morphology, transport behavior, and dynamic mechanical and mechanical properties[J]. Journal of Applied Polymer Science,2015,78(6):1280-1303. [15] 郭建华, 曾幸荣, 罗权焜. 橡胶阻尼减震材料的研究进展[J]. 特种橡胶制品, 2012, 033(6):68-73.GUO Jianhua, ZENG Xinrong, LUO Quankun. Research progress of rubber damping materials[J]. Special Purpose Rubber Products,2012,033(6):68-73(in Chinese). [16] LI Ying, XU Fan, LIN Zaishan, et al. Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications[J]. Nanoscale,2017,9:14476-14485. doi: 10.1039/C7NR05189A [17] ZHANG Jichuan, XUE Zhaohong, Yan Ruifang. Damping performance of eucommia ulmoides gum[J]. Chinese Journal of Polymer Science,2011,29(2):157-163. doi: 10.1007/s10118-010-1008-4 [18] 罗权焜, 郭建华. 共混橡胶的共硫化研究[J]. 特种橡胶制品, 2011, 32(5):1-7. doi: 10.3969/j.issn.1005-4030.2011.05.001LUO Quankun, GUO Jianhua. Study on co-vulcanization of blend rubber[J]. Special Purpose Rubber Products,2011,32(5):1-7(in Chinese). doi: 10.3969/j.issn.1005-4030.2011.05.001 [19] 中国国家标准化管理委员会. 胶粘剂T剥离强度试验方法 挠性材料对挠性材料: GB/T 2791—1995[S]. 北京: 中国标准出版社, 1995.Standardization Administration of the People's Republic of China. Adhesive T peel strength test method Flexible material with flexible material: GB/T 2791—1995[S]. Beijing: China Standards Press, 1995(in chinese). [20] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People's Republic of China. Determination of tensile stress-strain properties of vulcanized rubber or thermoplastic rubber: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in chinese). [21] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶压入硬度试验方法 第1部分: 邵氏硬度计法(邵尔硬度): GB/T 531.1—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People's Republic of China. Vulcanized rubber or thermoplastic rubber indentation hardness test method Part 1: GB/T 531.1—2008[S]. Beijing: China Standards Press, 2008(in chinese). [22] 王振华. 橡胶纳米增强机理及新型增强导热复合材料的制备、结构与性能研究 [D]. 北京化工大学, 2010.WANG Zhenhua. Nano-reinforcement mechanism of rubber and preparation, structure and performance of new reinforced thermally conductive composite materials [D]. Beijing University of Chemical Technology, 2010(in chinese). [23] YAO Kuncheng, NIE Huarong, LIANG Yongri, et al. Polymorphic crystallization behaviors in cis-1, 4-polyisoprene/trans-1, 4-polyisoprene blends[J]. Polymer,2015,80:259-264. doi: 10.1016/j.polymer.2015.10.063 [24] RATRI Paramitajaya, TASHIRO Kohji, IGUCHI Masatoshi. Experimentally-and theoretically-evaluated ultimate 3-dimensional elastic constants of trans-1, 4-polyisoprene α and β crystalline forms on the basis of the newly-refined crystal structure information[J]. Polymer,2012,53(16):3548-3558. doi: 10.1016/j.polymer.2012.06.003 [25] ZHANG Jichuan, XUE Zhaohong. A comparative study on the properties of Eucommia ulmoides gum and synthetic trans-1, 4-polyisoprene[J]. Polymer Testing,2011,30(7):753-759. doi: 10.1016/j.polymertesting.2011.06.010 [26] WU Yingfei, YAO Kuncheng, NIE Huarong, et al. Confirmation on the compatibility between cis-1, 4-polyisoprene and trans-1, 4-polyisoprene[J]. Polymer,2018,153:271-276. doi: 10.1016/j.polymer.2018.08.031 -

计量
- 文章访问数: 125
- HTML全文浏览量: 111
- 被引次数: 0