留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温湿度养护环境对CFRP-钢板界面粘结性能的影响

邓宗才 李宏斌 高立

邓宗才, 李宏斌, 高立. 温湿度养护环境对CFRP-钢板界面粘结性能的影响[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 邓宗才, 李宏斌, 高立. 温湿度养护环境对CFRP-钢板界面粘结性能的影响[J]. 复合材料学报, 2024, 42(0): 1-15.
DENG Zongcai, LI Hongbin, GAO Li. Influence of temperature and humidity curing environments on the bonding performance of CFRP-steel plate interfaces[J]. Acta Materiae Compositae Sinica.
Citation: DENG Zongcai, LI Hongbin, GAO Li. Influence of temperature and humidity curing environments on the bonding performance of CFRP-steel plate interfaces[J]. Acta Materiae Compositae Sinica.

温湿度养护环境对CFRP-钢板界面粘结性能的影响

基金项目: 国家自然科学基金 (51578021);江苏省高等学校自然科学研究项目 (21KJD560002);宿迁学院校级青年基金项目 (2023XQNA03)
详细信息
    通讯作者:

    邓宗才,博士,教授,博士生导师,研究方向为复合材料及其结构性能 E-mail: dengzc@bjut.edu.cn

  • 中图分类号: TB333

Influence of temperature and humidity curing environments on the bonding performance of CFRP-steel plate interfaces

Funds: National Natural Science Foundation of China (51578021); The Natural Science Research Project of Jiangsu Province Colleges and Universities (21KJD560002); The Youth Fund Project of Suqian College (2023XQNA03)
  • 摘要: 为了揭示温湿度共同养护作用下对CFRP粘贴钢板界面破坏模式和剥离机制的影响,本文通过CFRP-钢双剪粘结试验,综合考虑温度、湿度、粘结长度和胶层厚度多因素对CFRP-钢板界面粘结性能的影响,采用3D-DIC技术获得CFRP板表面的应变场,分析了静载拉伸过程中CFRP-钢粘结界面力学性能及破坏过程。研究结果表明:在60℃与60%相对湿度养护条件下粘结峰值荷载较高;低温和高湿环境都更易导致钢-胶界面失效;温度升高和湿度增加均会导致界面剪应力峰值降低与滑移量增加;粘结长度的增加有助于更广泛分散区域应力,而较薄(0.5 mm)的胶层有助于提高界面剪应力峰值和改善应力分布。最后,基于试验数据通过平滑法得到了简化的三折线剪切-滑移模型,为CFRP加固钢板结构的工程应用提供了理论支持和设计参考。

     

  • 图  1  CFRP-钢板搭接试件(单位:mm)

    Figure  1.  CFRP-steel plate lap joint specimen (Unit: mm)

    L—Bonding length

    图  2  试件制作步骤及加载装置

    Figure  2.  Specimen Fabrication Steps and loading apparatus

    图  3  CFRP-钢板各种破坏模式(由左至右以此为A-100-0.5-30、B-60-0.5-30、A-80-1-30、A-100-1-30)

    Figure  3.  Various failure modes of CFRP-steel plate (the sequence from left to right is denoted as A-100-0.5-30, B-60-0.5-30, A-80-1-30, A-100-1-30)

    图  4  A/B组CFRP-钢板荷载-位移曲线

    Figure  4.  Load-displacement curves of group A/B CFRP-steel plate

    图  5  C组CFRP-钢板荷载-位移曲线

    Figure  5.  Load-displacement curves of group C CFRP-steel plate

    图  6  A-100-0.5-30应变云图

    Figure  6.  A-100-0.5-30 Strain contour map

    图  7  CFRP-钢板轴向应变分布曲线

    Figure  7.  Axial strain distribution curves of CFRP-steel plate

    图  8  CFRP-钢板界面剪应力分布曲线

    Figure  8.  Interfacial shear stress distribution curves of CFRP-steel plate

    图  9  CFRP-钢板粘结-滑移曲线

    Figure  9.  Bond-slip curves of CFRP-steel plate

    图  10  CFRP-钢板粘结-滑移参数对比/峰值荷载对比

    Figure  10.  Bond-slip parameter comparison/ Ultimate load comparison of CFRP-steel plate

    表  1  材料力学性能

    Table  1.   Material properties

    Material Tensile
    strength/
    MPa
    Yield
    strength/
    MPa
    Shear
    strength/
    MPa
    Tensile
    modulus/
    MPa
    Elasticity
    modulus/
    GPa
    Bending
    strength/
    MPa
    Bending
    modulus/
    MPa
    Interlayer Shear
    strength/GPa
    Poisson’s
    ratio
    Elongation of
    fracture
    Steel plate 455 345 - - 206 - - - 0.3 -
    adhesive 31 - 23 1600 1.6 43 1800 - - 4.2%
    CFRP plate 2050 - - - 117 1710 117000 76.6 - -
    Notes: The adhesive parameter indicators were cured for 16 hours at 40°C and tested at 23°C.
    下载: 导出CSV

    表  2  CFRP-钢板试件及试验结果

    Table  2.   CFRP-steel plate specimens and test results

    Specimen number Ultimate load /kN Failure mode τmax /MPa s1/mm s2/mm sf /mm Gf /(N·mm−1)
    A-40-0.5-30 67.29 d 30.13 0.0139 0.1093 0.2065 4.5489
    A-60-0.5-30 74.35 d+c 23.93 0.0154 0.0442 0.3298 4.2893
    A-80-0.5-30 69.52 d 18.38 0.0180 0.0720 0.4220 4.3752
    A-100-0.5-30 76.11 d 14.02 0.0271 0.2158 0.5061 4.8704
    A-40-1-30 47.04 c 19.06 0.0216 0.0537 0.1588 1.8191
    A-60-1-30 72.34 d 23.87 0.0057 0.1324 0.3116 5.2311
    A-80-1-30 72.44 d 18.50 0.0207 0.2262 0.4757 6.3012
    A-100-1-30 81.08 d 15.86 0.0257 0.0459 0.6624 5.4115
    B-40-0.5-30 59.56 c 32.65 0.0219 0.1121 0.1533 3.9750
    B-60-0.5-30 84.09 d 22.07 0.0159 0.2394 0.3866 6.7324
    B-80-0.5-30 86.50 b 30.64 0.0273 0.0770 0.5250 8.8029
    B-100-0.5-30 85.40 a 33.98 0.0404 0.1163 0.2516 5.5646
    B-40-1-30 71.93 d 26.74 0.0070 0.0300 0.2026 3.0164
    B-60-1-30 73.38 d 22.37 0.0491 0.0953 0.2866 3.7215
    B-80-1-30 87.98 b 23.03 0.0292 0.3653 0.4954 9.5767
    B-100-1-30 57.21 b 24.95 0.1078 0.1351 0.4667 6.1613
    B-40-0.5-60 57.12 d 27.92 0.0081 0.0501 0.2337 3.8495
    B-60-0.5-60 84.45 a 30.47 0.0259 0.2859 0.4528 10.8612
    B-80-0.5-60 65.77 b 34.35 0.0857 0.1773 0.3018 6.7566
    B-100-0.5-60 80.90 a 29.64 0.0943 0.1865 0.4257 7.6737
    B-40-1-60 52.96 d 27.69 0.0030 0.1004 0.1912 3.9953
    B-60-1-60 64.99 c 25.12 0.0017 0.2172 0.3255 6.7948
    B-80-1-60 85.35 a+b 23.23 0.0074 0.3458 0.4834 9.5441
    B-100-1-60 66.94 a 25.35 0.0639 0.1783 0.3427 5.7938
    B-40-0.5-90 62.78 c 37.98 0.0057 0.0710 0.2870 6.6892
    B-60-0.5-90 63.00 b+d 30.63 0.0128 0.1979 0.3512 8.2143
    B-80-0.5-90 88.32 a 27.33 0.0569 0.2586 0.3678 7.7814
    B-100-0.5-90 81.84 b 36.33 0.0971 0.1761 0.4318 9.2786
    B-40-1-90 65.98 d 28.58 0.0087 0.1280 0.2168 4.8008
    B-60-1-90 79.41 d 20.66 0.0136 0.2150 0.3070 5.2518
    B-80-1-90 58.88 a+b+d 29.42 0.0779 0.1786 0.2869 5.7010
    B-100-1-90 81.63 a 28.37 0.0895 0.2477 0.4425 8.5191
    C-40-0.5-30 68.81 a+c+d 31.16 0.0105 0.1313 0.2109 5.1678
    C-60-0.5-30 77.71 a+c 34.25 0.0602 0.2017 0.3410 8.2637
    C-80-0.5-30 68.80 a+d 33.73 0.1037 0.1691 0.3123 6.3685
    C-100-0.5-30 78.83 a+d 26.69 0.1521 0.2635 0.4790 7.8810
    C-40-1-30 63.82 a+c+d 29.84 0.0989 0.1398 0.2459 4.2798
    C-60-1-30 85.15 a 31.29 0.0328 0.2751 0.4459 10.7671
    C-80-1-30 71.38 a+d 22.53 0.0741 0.1995 0.3641 5.5140
    C-100-1-30 67.91 d 17.92 0.0833 0.1780 0.2939 3.4820
    C-40-0.5-60 69.81 a+c 24.23 0.0613 0.1075 0.1917 2.8820
    C-60-0.5-60 81.95 a 27.03 0.0777 0.2885 0.3990 8.2411
    C-80-0.5-60 93.97 b 26.10 0.0804 0.3073 0.4559 8.9127
    C-100-0.5-60 73.67 a+b 32.20 0.0896 0.1911 0.3407 7.1183
    C-40-1-60 73.90 a+c 33.70 0.0077 0.0247 0.2588 4.6481
    C-60-1-60 94.26 a 32.89 0.0182 0.2193 0.4691 11.0239
    C-80-1-60 88.98 a 23.23 0.0482 0.3268 0.5113 9.1776
    C-100-1-60 83.96 a+b 28.01 0.1358 0.2581 0.4303 7.7389
    C-40-0.5-90 50.65 d 14.61 0.0224 0.0809 0.1257 1.3463
    C-60-0.5-90 44.04 d 12.26 0.0019 0.1080 0.1563 1.6087
    C-80-0.5-90 41.31 d 14.82 0.0094 0.0316 0.1627 1.3706
    C-100-0.5-90 70.26 a+d 10.47 0.0235 0.2705 0.3916 3.3420
    C-40-1-90 58.59 c+d 23.65 0.0204 0.1056 0.1973 3.3410
    C-60-1-90 52.88 d 11.96 0.0051 0.0799 0.2413 1.8898
    C-80-1-90 39.81 c+d 15.00 0.0140 0.3404 0.5040 6.2288
    C-100-1-90 63.81 b+d 16.74 0.0517 0.2081 0.3681 4.3897
    Notes:A-40-0.5-30: Group A (-10°C), 40 mm bonding, 0.5 mm adhesive, 30% RH; τmax—Max shear stress; s1—Slip at max stress; s2—Slip at plateau end; sf—Max interface slip; Gf—Fracture energy; Group A's humidity ~30%; Failures: a—CFRP delamination, b—CFRP fracture, c—Adhesive failure, d—Steel-adhesive failure; Group A's humidity was ~30% due to curing chamber limitations.
    下载: 导出CSV

    表  3  具有应变软化段的CFRP-钢板a、b坐标值

    Table  3.   Coordinate values of a and b of CFRP-steel plate with strain softening segment

    Specimen numberCoordinate of point aCoordinate of point b
    A-40-1-30(0.84297, 44.94704)(0.92412, 43.24049)
    C-60-1-60(1.42238, 93.85569)(1.50692, 91.73733)
    C-100-0.5-30(1.13675, 70.70329)(1.22985, 75.8377)
    C-100-1-30(1.02044, 64.24918)(1.19141, 64.22222)
    下载: 导出CSV

    表  4  CFRP-钢板各类养护环境下的粘结-滑移参数平均值

    Table  4.   Average values of bond-slip parameters of CFRP-steel plate under various maintenance environments

    Maintenance environment$ {\overline \tau _{{\text{max}}}}{\text{/mm}} $$ {\overline s _{\text{1}}}{\text{/mm}} $$ {\overline s _{\text{2}}}{\text{/mm}} $$ {\overline s _{\text{f}}}{\text{/mm}} $$ {\overline G _{\text{f}}}{\text{/(N}} \cdot {\text{m}}{{\text{m}}^{{\text{ - 1}}}}{\text{)}} $
    A-3020.470.020.110.384.61
    B-3027.050.040.150.355.94
    C-3028.430.080.190.346.47
    B-6027.970.040.190.346.91
    C-6028.420.060.220.387.47
    B-9029.910.050.180.347.03
    C-9014.940.020.150.272.94
    Notes:A-30 represents Group A's curing temperature of -10°C with a relative humidity of 30%.
    下载: 导出CSV
  • [1] 李腾, 宁志华, 吴嘉瑜. CFRP加固钢板的粘结界面剥离破坏[J]. 复合材料学报, 2021, 38(12): 4090-4105.

    LI Teng, NING Zhihua, WU Jiayu. Interfacial debonding failure of CFRP-strengthened steel structures[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4090-4105(in Chinese).
    [2] WU C, ZHAO X L, CHIU W K, et al. Effect of fatigue loading on the bond behaviour between UHM CFRP plates and steel plates[J]. Composites Part B: Engineering, 2013, 50: 344-353. doi: 10.1016/j.compositesb.2013.02.040
    [3] WANG H T, WU G, JIANG J B. Fatigue behavior of cracked steel plates strengthened with different CFRP systems and configurations[J]. Journal of Composites for Construction, 2016, 20(3): 04015078. doi: 10.1061/(ASCE)CC.1943-5614.0000647
    [4] GRAMMATIKOS S A, JONES R G, EVERNDEN M, et al. Thermal cycling effects on the durability of a pultruded GFRP material for off-shore civil engineering structures[J]. Composite Structures, 2016, 153: 297-310. doi: 10.1016/j.compstruct.2016.05.085
    [5] WANG Y, ZHENG Y, LI J, et al. Experimental study on tensile behaviour of steel plates with centre hole strengthened by CFRP plates under marine environment[J]. International Journal of Adhesion and Adhesives, 2018: 18-26.
    [6] 李传习, 罗南海. 高温对CFRP板/钢界面力学性能的影响[J]. 交通科学与工程, 2019, 35(4): 34-39. doi: 10.3969/j.issn.1674-599X.2019.04.006

    Li Chuanxi, Luo Nanhai. Effect of high temperature on the mechanical properties of CFRP plate/steel interface[J]. Journal of Transportation Science and Engineering, 2019, 35(4): 34-39(in Chinese). doi: 10.3969/j.issn.1674-599X.2019.04.006
    [7] SOUSA J M, CORREIA J R, CABRAL-FONSECA S. Some permanent effects of hygrothermal and outdoor ageing on a structural polyurethane adhesive used in civil engineering applications[J]. International Journal of Adhesion and Adhesives, 2018, 84: 406-419. doi: 10.1016/j.ijadhadh.2018.04.010
    [8] 李传习, 李游, 高有为, 等. 纳米SiO2掺量对胶粘CFRP板-钢搭接界面黏结性能的影响[J]. 复合材料学报, 2020, 37(10): 2619-2635.

    Li Chuanxi, Li You, Gao Youwei, et al. Effect of nano SiO2 content on the bonding performance of adhesive CFRP plate-steel lap interface[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2619-2635(in Chinese).
    [9] 李传习, 柯璐, 陈卓异, 等. CFRP-钢界面粘结性能试验与数值模拟[J]. 复合材料学报, 2018, 35(12): 3534-3547.

    Li Chuanxi, Ke Lu, Chen Zhuoyi, et al. Experimental and numerical simulation of bonding performance of CFRP-steel interface[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3534-3547.
    [10] HE J, XIAN G. Debonding of CFRP-to-steel joints with CFRP delamination[J]. Composite Structures, 2016, 153: 12-20. doi: 10.1016/j.compstruct.2016.05.100
    [11] Al-Shawaf, Al-Mahaidi, Zhao. Effect of Elevated Temperature on Bond Behaviour of High Modulus CFRP/Steel Double-Strap Joints[J]. Australian Journal of Structural Engineering, 2009, 10(1): 63-74. doi: 10.1080/13287982.2009.11465033
    [12] 朱德举, 姚明侠, 张怀安, 等. 动态拉伸荷载下温度对CFRP/钢板单搭接剪切接头力学性能的影响[J]. 土木工程学报, 2016, (8): 28-35.

    Zhu Deju, Yao Mingxia, Zhang Huian, et al. Effect of temperature on mechanical properties of CFRP/steel plate single lap shear joint under dynamic tensile load[J]. China Civil Engineering Journal, 2016, (8): 28-35(in Chinese).
    [13] NGUYEN T C, BAI Y, ZHAO X L, et al. Durability of steel/CFRP double strap joints exposed to sea water, cyclic temperature and humidity[J]. Composite Structures, 2012, 94(5): 1834-1845. doi: 10.1016/j.compstruct.2012.01.004
    [14] 李传习, 司睹英胡, 高有为. 极端湿热环境对CFRP/钢界面性能的影响[J/OL]. 建筑材料学报: 1-11

    2024-04-24]. Li Chuanxi, Si Duyinghu, Gao Youwei. Influence of extreme humid and hot environment on the interface properties of CFRP/steel [J/OL]. Journal of Building Materials: 1-11 [2024-04-24] (in Chinese).
    [15] DAWOOD M, RIZKALLA S. Environmental durability of a CFRP system for strengthening steel structures[J]. Construction and Building Materials, 2010, 24(9): 1682-1689. doi: 10.1016/j.conbuildmat.2010.02.023
    [16] 罗南海. 胶膜连接CFRP板/钢界面力学性能试验研究[D]. 长沙: 长沙理工大学, 2019.

    Luo Nanhai. Experimental study on mechanical properties of adhesive film bonded CFRP plate/steel interface [D]. Changsha: Changsha University of Science & Technology, 2019(in Chinese).
    [17] HESHMATI M, HAGHANI R, AI-EMRANI M. Effects of moisture on the long-term performance of adhesively bonded FRP/steel joints used in bridges[J]. Composites Part B: Engineering, 2016, 92: 447-462. doi: 10.1016/j.compositesb.2016.02.021
    [18] YU T, FERNANDO D, TENG J G, et al. Experimental study on CFRP-to-steel bonded interfaces[J]. Composites Part B: Engineering, 2012, 43(5): 2279-2289. doi: 10.1016/j.compositesb.2012.01.024
    [19] 吴江, 柯倩倩, 祝雯, 等. 基于三维数字图像相关法的混凝土硫酸盐侵蚀膨胀研究[J]. 广州建筑, 2022, 50(6): 45-48.

    Wu Jiang, Ke Qianqian, Zhu Wen, et al. Study on sulfate attack expansion of concrete based on three dimensional digital image correlation method[J]. Guangzhou Architecture, 2022, 50(6): 45-48(in Chinese).
    [20] 魏康, 员方, 董志强, 等. 基于标志点的多相机数字图像相关方法精度分析及土木工程中的应用[J]. 东南大学学报(自然科学版), 2021, 51(2): 219-226. doi: 10.3969/j.issn.1001-0505.2021.02.005

    Wei Kang, Yuan Fang, Dong Zhiqiang, et al. Accuracy analysis of multicamera digital image correlation method based on landmarks and its application in civil engineering[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(2): 219-226(in Chinese). doi: 10.3969/j.issn.1001-0505.2021.02.005
    [21] 范杰, 朱星, 胡桔维, 等. 基于3D-DIC的砂岩裂纹扩展及损伤监测试验研究[J]. 岩土力学, 2022, 43(4): 1009-1019.

    Fan Jie, Zhu Xing, Hu Juwei, et al. Experimental study on crack propagation and damage monitoring of sandstone based on 3D-DIC[J]. Rock and Soil Mechanics, 2022, 43(4): 1009-1019(in Chinese).
    [22] Tang J , Chen X , Dai F , et al. Experimental investigation of fracture damage of notched granite beams under cyclic loading using DIC and AE techniques[J]. Fatigue Fracture of Engineering Materials Structures, 2020, 43(7): 1583-1596.
    [23] 祁彪. CFRP-钢界面改性及冻融环境作用下耐久性能研究[D]. 郑州大学, 2022.

    Qi Biao. Study on the durability performance of CFRP-steel interface modification and freeze-thaw environment [D]. Zhengzhou University, 2022(in Chinese).
    [24] 朱海洋. 双向拉伸载荷下CFRP试验件设计、制造与试验研究[D]. 大连理工大学, 2022.

    Zhu Haiyang. Design, manufacturing, and experimental study of CFRP specimens under biaxial tensile load [D]. Dalian University of Technology, 2022(in Chinese).
    [25] 魏瑶瑶. 加速腐蚀环境下CFRP-钢界面疲劳性能研究[D]. 西安科技大学, 2020.

    Wei Yaoyao. Study on the fatigue performance of CFRP-steel interface under accelerated corrosion environment[D]. Xi'an: Xi'an University of Science and Technology, 2020(in Chinese).
    [26] 岳清瑞, 杨勇新. 《碳纤维片材加固修复混凝土结构技术规程》(CECS146: 2003)介绍[J]. 建筑结构, 2003, (6): 69-72.

    Yue Qingrui, Yang Yongxin. Introduction to the "Technical Specification for Strengthening and Repairing Concrete Structures with Carbon Fiber Sheet" (CECS146: 2003)[J]. Building Structure, 2003, (6): 69-72(in Chinese).
    [27] 杨怡, 黄炽辉, 吴作栋. 基于双剪实验的CFRP-钢板界面粘结性能研究[J]. 中山大学学报(自然科学版), 2021, 60(6): 62-70.

    YANG Yi, HUANG Chihui, WU Zuodong. Study on the bonding performance of CFRP-steel plate interface based on double shear test[J]. Journal of Sun Yat-sen University (Natural Science Edition), 2021, 60(6): 62-70(in Chinese).
    [28] 王海涛, 吴刚, 庞育阳. 结构胶类型对CFRP板-钢界面粘结性能的影响[J]. 苏州科技大学学报(工程技术版), 2017, 30(4): 45-48.

    Wang Haitao, Wu Gang, Pang Yuyang. Influence of adhesive types on the bonding performance of CFRP plate-steel interface[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology Edition), 2017, 30(4): 45-48(in Chinese).
    [29] 王海涛. CFRP板加固钢结构疲劳性能及其设计方法研究[D]. 东南大学, 2016.

    Wang Haitao. Research on the fatigue performance of steel structures reinforced with CFRP plates and its design method[D]. South-east University, 2016(in Chinese).
    [30] 庞育阳. 极端服役环境下CFRP-钢界面粘结性能研究[D]. 东南大学, 2019.

    Pang Yuyang. Study on the bonding performance of CFRP-steel interface under extreme service conditions[D]. Southeast University, 2019(in Chinese).
  • 加载中
计量
  • 文章访问数:  45
  • HTML全文浏览量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-05-05
  • 录用日期:  2024-05-19
  • 网络出版日期:  2024-06-15

目录

    /

    返回文章
    返回