留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热调控用同轴电纺PLA/PEG复合纳米纤维的制备与性能

胡宝继 陈艺蕊 王旭 彭伊珂 徐飞扬 张一帆 刘佳敏 张巧玲

胡宝继, 陈艺蕊, 王旭, 等. 热调控用同轴电纺PLA/PEG复合纳米纤维的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 胡宝继, 陈艺蕊, 王旭, 等. 热调控用同轴电纺PLA/PEG复合纳米纤维的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-13.
HU Baoji, CHEN Yirui, WANG Xu, et al. Fabrication and properties of coaxial electrospun PLA/PEG composite nanofibers for thermal regulation[J]. Acta Materiae Compositae Sinica.
Citation: HU Baoji, CHEN Yirui, WANG Xu, et al. Fabrication and properties of coaxial electrospun PLA/PEG composite nanofibers for thermal regulation[J]. Acta Materiae Compositae Sinica.

热调控用同轴电纺PLA/PEG复合纳米纤维的制备与性能

基金项目: 河南省重点研发与推广专项(科技攻关)项目(232102231032)
详细信息
    通讯作者:

    胡宝继,博士,讲师,研究方向为智能响应复合材料及其穿戴应用 E-mail: hu__bj@126.com

  • 中图分类号: TS176

Fabrication and properties of coaxial electrospun PLA/PEG composite nanofibers for thermal regulation

Funds: Henan Province Key R&D And Promotion Special (Science And Technology) Project (No. 232102231032)
  • 摘要: 为探讨纺丝溶剂对同轴电纺纳米纤维的影响,并制备热调控用纳米纤维,分别以聚乙二醇(PEG)和聚乳酸(PLA)溶液为内、外层纺丝液,利用同轴电纺制备了PLA/PEG复合纳米纤维(NfC-S)。通过调整内层纺丝溶剂制备了三种NfC-S,分别为以去离子水为内层溶剂的NfC-S(PPw)、以四氢呋喃(THF)为内层溶剂的NfC-S(PPt)和以碳酸二甲酯(DMC)/N,N-二甲基甲酰胺(DMF)为内层溶剂的NfC-S(PPd)。对NfC-S的形貌、化学结构、结晶性能、力学性能、热性能和亲水性进行了研究,并考察了NfC-S的热调控功能。结果显示:PPw获得两种尺度的纤维,平均直径相比PPd增加190 nm。PPw获得较大的弹性模量和断裂应力,断裂应力相比PPt增加0.54 MPa,而PPd和PPt获得较大的断裂应变。NfC-S具备归因于PEG的熔融吸热能力,其中PPt和PPw在升、降温过程中具有较大的温度滞后性,显示较强的热调控能力。NfC-S的疏水性相比纯PLA(PP0)较小,PPw的水接触角(136.5°)最接近PP0。总之,通过探讨内层纺丝溶剂对NfC-S性能的影响,开发了热调控用NfC-S,其中PPw的综合性能较优秀,为热调控用纳米纤维的可控制备提供参考。

     

  • 图  1  PLA/PEG复合纳米纤维(NfC-S)的制备过程;(a)聚乳酸(PLA)纺丝液的制备;(b)聚乙二醇(PEG)纺丝液的制备;(c)NfC-S的制备

    Figure  1.  Fabrication process of PLA/PEG nanofibers (NfC-S), (a) fabrication of polylactic acid (PLA) spinning solution, (b) fabrication of polyethylene glycol (PEG) spinning solution, (c) fabrication of NfC-S

    图  2  (a)NfC-S的成型过程;NfC-S的电镜照片与直径分布(b) PP0;(c) PPw;(d) PPd;(e) PPt

    Figure  2.  (a) The formation process of NfC-S, the SEM image and diameter distribution of NfC-S, (b) PP0, (c) PPw, (d) PPd, (e) PPt

    图  3  (a) NfC-S与PEG的FTIR光谱;(b) NfC-S的分子结构

    Figure  3.  (a) FTIR spectra of NfC-S and PEG, (b) the molecular structure of NfC-S

    图  4  NfC-S与PEG的XRD光谱

    Figure  4.  XRD spectra of NfC-S and PEG

    图  5  (a) NfC-S应力-应变曲线;(b) NfC-S弹性模量柱状;(c) NfC-S屈服应力和断裂应力统计柱状;(d) NfC-S屈服应变和断裂应变统计柱状;(e)各NfC-S的分子结构

    Figure  5.  (a) Stress-strain curve of NfC-S, (b) column chart of elastic modulus of NfC-S, (c) statistics of yield stress and breaking stress of NfC-S, (d) statistics of yield strain and breaking strain of NfC-S, (e) molecular structure of NfC-S

    图  6  (a) NfC-S与PEG的TGA曲线;(b)热失重为5%和10%时的温度统计

    Figure  6.  (a) TGA curves of NfC-S and PEG, (b) temperature statistics at 5% and 10% thermal weight loss

    图  7  (a) NfC-S与PEG在30-200℃范围的DSC曲线;(b) NfC-S与PEG在30-600℃范围的DSC曲线;(c) PP0与PEG的TgTccTmTd统计;(d) NfC-STm1Tm2Td1Td2统计

    Figure  7.  DSC curves of NfC-S and PEG in the temperature range of (a) 30-200℃ and (b) 30-600℃, (c) statistics of Tg, Tcc, Tm, and Td for PP0 and PEG, (d) statistics of Tm1, Tm2, Td1, and Td2 for NfC-S

    图  8  NfC-S的红外成像照片;(a)PP0;(b)PPw;(c)PPd;(d)PPt;(e)升温和(f)降温过程中NfC-S的时间-温度曲线

    Figure  8.  Infrared images, (a) PP0, (b) PPw, (c) PPd, (d) PPt, time-temperature curves of NfC-S during (e) heating and (f) cooling processes

    图  9  (a)NfC-S的水接触角统计;(b)NfC-S及其表面与水的相互作用

    Figure  9.  (a) Statistics of water contact angles for NfC-S, (b) the surface interaction between NfC-S and water

  • [1] SIDDHARTH A N, PRAMOD B S. Thermal management of lithium-ion battery module using the phase change material[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237(23): 5767-5776.
    [2] ABDOLMALEKI L, SADRAMELI S, PIRVARAM A. Application of environmental friendly and eutectic phase change materials for the efficiency enhancement of household freezers[J]. Renewable Energy, 2020, 145: 233-241. doi: 10.1016/j.renene.2019.06.035
    [3] PENG Hao, GUO Wenhua, FENG Shiyu, et al. A novel thermoelectric energy harvester using gallium as phase change material for spacecraft power application[J]. Applied Energy, 2022, 322: 119548. doi: 10.1016/j.apenergy.2022.119548
    [4] MENG Duo, DANG Xin, WANG Anqi, et al. Optimization of double-layer shaped phase change wallboard in buildings in twotypical climate areas in China[J]. Journal of Energy Storage, 2023, 61: 106698. doi: 10.1016/j.est.2023.106698
    [5] G. D P, BALASUBRAMANIAN K. A Review on Polymeric-Based Phase Change Material for Thermo-Regulating Fabric Application[J]. Polymer Reviews, 2020, 60(3): 389-419. doi: 10.1080/15583724.2019.1677709
    [6] TANATHEP L, DENIS F, MINH H H, et al. Insulated box and refrigerated equipment with PCM for food preservation: State of the art[J]. Journal of Food Engineering, 2022, 317: 110874. doi: 10.1016/j.jfoodeng.2021.110874
    [7] UR H R, FAWAD N, MUHAMMAD H A. An experimental case study of solar food dryer with thermal storage using phase change material[J]. Case Studies in Thermal Engineering, 2023, 51: 103611. doi: 10.1016/j.csite.2023.103611
    [8] GUO Huixuan, LIANG Yuzhang, HUANG Yuhang, et al. Multiwavelength camouflage metamaterials with adjustable emissivity[J]. Optics express, 2023, 31(22): 36770-36780. doi: 10.1364/OE.497472
    [9] XUE Qianqian, NIE Wen, GUO Lidian, et al. Determining the optimal airflow rate to minimize air pollution in tunnels[J]. Process Safety and Environmental Protection, 2022, 157: 115-130. doi: 10.1016/j.psep.2021.10.039
    [10] 杨效田, 沈梁玉, 王彩龙等. 石蜡对无机复合相变储热体系的改性研究[J]. 复合材料学报, 2022, 39(05): 2421-2429.

    YANG Xiaotian, SHEN Liangyu, WANG Cailong, et al. Study on paraffin modifying inorganic composite phase change heat storage system[J]. Acta Materiae Compositae Sinica, 2022, 157: 115-130(in Chinese).
    [11] CAO Qian, DING Hongyuan, XIE Jianghui, et al. Synthesis of highly thermal conductive carbon nanotubes on cellulose nanofiber film-loaded polyethylene glycol phase change material with flame retardancy by layered double hydroxide[J]. Journal of Energy Storage, 2023, 73(PA): 108717.
    [12] ALPER A A, GIZEM T. Synthesis and characterization of new organic phase change materials (PCMs): Diesters of suberic acid[J]. Solar Energy Materials and Solar Cells, 2021, 220: 110822. doi: 10.1016/j.solmat.2020.110822
    [13] 许俊, 曹楠普, 肖尧鑫等. 聚乙二醇生物相容性与结合水关系的单分子力谱研究[J]. 高分子学报, 2020, 51(7): 754-761. doi: 10.11777/j.issn1000-3304.2019.19219

    XU Jun, CAO Nanpu, XIAO Yaoxin, et al. Revealing the relationship between the biocompatibility and the bound Water of Poly(ethylene glycol) by single-molecule force spectroscopy[J]. Acta Polymerica Sinica, 2020, 51(7): 754-761(in Chinese). doi: 10.11777/j.issn1000-3304.2019.19219
    [14] ANDREW K, ALEXANDRA N W, BHOJE E G, et al. Recent Progress in PEG-Based Composite Phase Change Materials[J]. Polymer Reviews, 2023, 63(4): 1078-1129. doi: 10.1080/15583724.2023.2220041
    [15] HUANG Caoxing, ZHAO Xiaoxue, ZHENG Yayue, et al. Revealing the mechanism of surfactant-promoted enzymatic hydrolysis of dilute acid pretreated bamboo[J]. Bioresource technology, 2022, 360: 127524. doi: 10.1016/j.biortech.2022.127524
    [16] KENTO M, SEIICHI O, TAICHI I. Analysis of model drug permeation through highly crosslinked and biodegradable polyethylene glycol membranes[J]. Journal of Membrane Science, 2022, 645: 120218. doi: 10.1016/j.memsci.2021.120218
    [17] DU Changhe, YU Tongtong, WU Zishuai, et al. Achieving macroscale superlubricity with ultra-short running-in period by using polyethylene glycol-tannic acid complex green lubricant[J]. Friction, 2023, 11(5): 748-762. doi: 10.1007/s40544-022-0660-3
    [18] WANG XueTing, DENG Xudong, ZHANG TuoDi, et al. A Versatile Hydrophilic and Antifouling Coating Based on Dopamine Modified Four-Arm Polyethylene Glycol by One-Step Synthesis Method[J]. ACS macro letters, 2022, 11(6): 805-812. doi: 10.1021/acsmacrolett.2c00277
    [19] MOHAMED I, TARO S, HIDENORI A, et al. Investigation of anti-PEG antibody response to PEG-containing cosmetic products in mice[J]. Journal of Controlled Release, 2023, 354: 260-267. doi: 10.1016/j.jconrel.2023.01.012
    [20] D K W, L M D. Characterization of a solid-supported aqueous biphasic system for the sorption of dyes from aqueous solution[J]. Journal of Chromatography A, 2023, 1705: 464215. doi: 10.1016/j.chroma.2023.464215
    [21] SUN Q, ZHANG N, ZHANG H, et al. Functional phase change composites with highly efficient electrical to thermal energy conversion[J]. Renewable Energy, 2020, 145: 2629-2636. doi: 10.1016/j.renene.2019.08.007
    [22] PENG Luxi, QIU Jiajun, LIU Lidan, et al. Preparation of PEG/ZIF-8@HF drug delivery system for melanoma treatment via oral administration[J]. Drug delivery, 2022, 29(1): 1075-1085. doi: 10.1080/10717544.2022.2058649
    [23] YIN Guang-Zhong, YANG Xiao-Mei, MARTA A L, et al. Highly thermal conductive Boron Nitride/Polyrotaxane encapsulated PEG-based phase change materials[J]. European Polymer Journal, 2023, 199: 112431. doi: 10.1016/j.eurpolymj.2023.112431
    [24] QIU Lin, YAN Kening, FENG Yanhui, et al. Nano additives-enhanced PEG /AlN composites with high cycle stability to improve thermal and heat storage properties[J]. Energy, 2023, 278: 127794. doi: 10.1016/j.energy.2023.127794
    [25] BAI Shijie, ZHANG Kaixi, ZHANG Qun, et al. Intrinsic Flame Retardancy and Flexible Solid-Solid Phase Change Materials with Self-Healing and Recyclability[J]. ACS applied materials interfaces, 2023, 15(41): 48613-48622. doi: 10.1021/acsami.3c09722
    [26] JIN Weizhun, HUANG Qinghua, HUANG Haimeng, et al. The preparation of a suspension of microencapsulated phase change material (MPCM) and thermal conductivity enhanced by MXene for thermal energy storage[J]. Journal of Energy Storage, 2023, 73(PA): 108868.
    [27] 孙宗旭, 张焕芝, 荆锐等. 相变复合纳米纤维的研究与应用[J]. 材料导报, 2023, 37(7): 231-238.

    SUN Zongxu, ZHANG Huanzhi, JING Rui, et al. Research and application of phase change composite nanofibers[J]. Materials Reports, 2023, 37(7): 231-238(in Chinese).
    [28] PATEL Dev, WEI Wanying, SINGH Harmann, et al. Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage[J]. ACS sustainable chemistry engineering, 2023, 11(31): 11570-11579. doi: 10.1021/acssuschemeng.3c02094
    [29] ANDRES S, ELENA A, LAURA A, et al. Electrospun composite fibers containing organic phase change materials for thermo-regulation: Trends[J]. Renewable and Sustainable Energy Reviews, 2023, 187: 113648. doi: 10.1016/j.rser.2023.113648
    [30] YU Chengbin, SONG Youngseok. Modified Supporting Materials to Fabricate Form Stable Phase Change Material with High Thermal Energy Storage[J]. Molecules, 2023, 28(3): 1309. doi: 10.3390/molecules28031309
    [31] 文美玲, 高翔, 刘阳等. 静电纺纳米纤维表面形貌的制备及其生物医学应用[J]. 复合材料学报, 2023, 42: 1-13.

    WEN Meiling, GAO Xiang, LIU Yang, et al. Preparation of surface morphology of electrospun nanofibers and their biomedical applications[J]. Acta Materiae Compositae Sinica, 2023, 42: 1-13(in Chinese).
    [32] ARCHANA S, OLEKSANDR N, ROMAIN B. Wet spinning of strong cellulosic fibres with incorporation of phase change material capsules stabilized by cellulose nanocrystals[J]. Carbohydrate Polymers, 2023, 312: 120734. doi: 10.1016/j.carbpol.2023.120734
    [33] SONG Shaokun, AI Hong, LV Linda, et al. Novel smart coaxial electrospinning textiles for efficient thermal interface management and electromagnetic compatibility in electronics[J]. Chemical Engineering Journal, 2023, 472: 144854. doi: 10.1016/j.cej.2023.144854
    [34] TANATCHPORN S, PITT S, KORAKOT S. Titanium (IV) oxide composite hollow nanofibres with silver oxide outgrowth by combined sol–gel and electrospinning techniques and their potential applications in energy and environment[J]. Advanced Composites and Hybrid Materials, 2023, 6(3): 115. doi: 10.1007/s42114-023-00690-9
    [35] HOSSEIN B, MARYAM M, JUKKA S, et al. Form-stable phase change electrospun nanofibers mat with thermal regulation and biomedical multi-functionalities[J]. Journal of Energy Storage, 2023, 68: 107660. doi: 10.1016/j.est.2023.107660
    [36] WEI Jia, LONG Yan, WANG Binqi, et al. Structure and properties variations of regenerated cellulose fibers induced by metal ion impurity[J]. International journal of biological macromolecules, 2023, 255: 128124.
    [37] YIN JiaYi, CARLO B, ALESSANDRA L, et al. Piezoelectric field enhanced photocatalytic efficiency of PVDF/TiO2 core/shell nanofibrous membrane via coaxial electrospinning[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110298. doi: 10.1016/j.jece.2023.110298
    [38] 王曙东, 董青, 王可等. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.

    WANG Shudong, DONG Qing, WANG Ke, et al. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide[J]. Journal of Textile Research, 2021, 42(12): 28-33(in Chinese).
    [39] 成锡婷, 辜鹏程, 胡辉等. 明胶@左旋聚乳酸核壳结构纳米纤维的制备与性能[J]. 复合材料学报, 2023, 40(11): 6374-6382.

    CHENG Xiting, GU Pengcheng, HU Hui1, et al. Preparation and properties of gelatin@poly(L-lactic acid) core-shell nanofibers[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6374-6382(in Chinese).
    [40] 徐兆宝, 何翠, 赵瑾朝等. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(2): 69-73+80.

    XU Zhaobao, HE Cui, ZHAO Jinchao, et al. Preparation of coaxially electrospun multi-level fiber membrane and its phase change temperature-regulating performance[J]. Journal of Textile Research, 2022, 43(2): 69-73+80(in Chinese).
    [41] WEN F, SHENG Y Z, WEN Y S, et al. Coaxial electrospun membranes with thermal energy storage and shape memory functions for simultaneous thermal/moisture management in personal cooling textiles[J]. European Polymer Journal, 2020, 145: 110245.
  • 加载中
计量
  • 文章访问数:  51
  • HTML全文浏览量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-09
  • 修回日期:  2024-02-22
  • 录用日期:  2024-02-26
  • 网络出版日期:  2024-04-10

目录

    /

    返回文章
    返回