留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陶瓷复合装甲优化设计及弹击后剩余弯曲强度

陈智勇 徐颖强 李妙玲 李彬 肖立 宋伟志

陈智勇, 徐颖强, 李妙玲, 等. 陶瓷复合装甲优化设计及弹击后剩余弯曲强度[J]. 复合材料学报, 2023, 40(1): 577-589. doi: 10.13801/j.cnki.fhclxb.20220214.001
引用本文: 陈智勇, 徐颖强, 李妙玲, 等. 陶瓷复合装甲优化设计及弹击后剩余弯曲强度[J]. 复合材料学报, 2023, 40(1): 577-589. doi: 10.13801/j.cnki.fhclxb.20220214.001
CHEN Zhiyong, XU Yingqiang, LI Miaoling, et al. Optimum design of ceramic composite armor and residual bending strength after projectile impact[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 577-589. doi: 10.13801/j.cnki.fhclxb.20220214.001
Citation: CHEN Zhiyong, XU Yingqiang, LI Miaoling, et al. Optimum design of ceramic composite armor and residual bending strength after projectile impact[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 577-589. doi: 10.13801/j.cnki.fhclxb.20220214.001

陶瓷复合装甲优化设计及弹击后剩余弯曲强度

doi: 10.13801/j.cnki.fhclxb.20220214.001
基金项目: 国家重点研发计划项目(2020YFB2010200);河南省科技攻关项目(212102210284;212102210588;222102220021);河南省高等学校重点科研项目(21A110016)
详细信息
    通讯作者:

    徐颖强,博士,教授,博士生导师,研究方向为新型车辆先进技术 E-mail: xuyngqng@nwpu.edu.cn

  • 中图分类号: V259;TJ810.38

Optimum design of ceramic composite armor and residual bending strength after projectile impact

Funds: National Key R & D Program (2020YFB2010200); Key Scientific and Technological projects in Henan Province (212102210284; 212102210588; 2221022220021); Key Scientific Research Projects of Colleges and Universities in Henan Province (21A110016)
  • 摘要: 根据防护要求和防护机制,设计了一种C/C-SiC陶瓷/铝基复合泡沫复合装甲。在确保复合装甲面密度为44 kg/m2的前提下,以弹击后剩余弯曲强度为评价标准,以陶瓷板布置位置、各组成层厚度、泡沫金属中泡沫孔径尺寸为研究因素,设计了三因素三水平的正交模拟优化方案,利用有限元软件ABAQUS模拟了子弹侵彻陶瓷靶板的过程及弹击损伤后复合装甲的弯曲实验过程,预测了剩余弯曲强度,并进行了结构优化。根据数值模拟结果制备陶瓷复合装甲试样,进行实弹打靶和弯曲实验以验证复合装甲试样剩余弯曲强度。结果表明,以MIL-A-46103E III类2A级为防护标准,剩余弯曲强度最高的陶瓷复合装甲最优化结构形式为:陶瓷板厚度12 mm、陶瓷板做防弹面板、Al基复合泡沫孔径为4 mm+10 mm的混合;对剩余弯曲强度的主次影响因素排序为:陶瓷板厚度>陶瓷板布置位置>Al基复合泡沫孔径。

     

  • 图  1  陶瓷复合装甲结构示意图

    Figure  1.  Structural diagram of ceramic composite armor

    图  2  子弹侵彻靶板有限元模型

    Figure  2.  Finite element model of bullet penetrating target

    图  3  子弹侵彻C/C-SiC陶瓷/铝基复合泡沫复合装甲靶板应力波传递过程

    Figure  3.  Stress wave transmission process of bullet penetrating C/C-SiC ceramic/Al-based foam metal composite armour target

    图  4  方案1中子弹侵彻C/C-SiC陶瓷/铝基复合泡沫复合装甲靶板后应力云图

    Figure  4.  Stress nephogram after bullet penetrating C/C-SiC ceramic/Al-based foam metal composite armour target in scheme 1

    图  5  方案1中子弹侵彻C/C-SiC陶瓷/铝基复合泡沫复合装甲靶板速度-时间历程曲线

    Figure  5.  Velocity-time history curve of bullet penetrating C/C-SiC ceramic/Al-based foam metal composite armour target in scheme 1

    图  6  C/C-SiC陶瓷/铝基复合泡沫复合装甲靶板弯曲破损后应力云图

    Figure  6.  Stress nephogram of C/C-SiC ceramic/Al-based foam metal composite armour target after bending and damage

    图  7  弹击后C/C-SiC陶瓷/铝基复合泡沫复合装甲靶板被弯曲过程中载荷-时间历程曲线

    Figure  7.  Load-time history curves of C/C-SiC ceramic/Al-based foam metal composite armour target bending after projectile impact

    图  8  未涂层的C/C-SiC陶瓷防弹面板

    Figure  8.  Uncoated C/C-SiC ceramic bulletproof panel

    图  9  空心陶瓷球预制体

    Figure  9.  Hollow ceramic ball preform

    图  10  碳化后的空心陶瓷球

    Figure  10.  Carbonized hollow ceramic ball

    图  11  石墨模具

    Figure  11.  Graphite mould

    图  12  未清理破碎空心陶瓷球的金属基复合泡沫试样

    Figure  12.  Metal matrix composite foam for unbroken hollow ceramic balls

    图  13  覆盖止裂层的陶瓷复合装甲

    Figure  13.  Ceramic composite armor covered with crack arrest layer

    图  14  弯曲载荷作用下C/C-SiC陶瓷/铝基复合泡沫复合装甲靶板的形态

    Figure  14.  Shape of C/C-SiC ceramic/Al-based foam metal composite armour target under bending load

    图  15  弹击后C/C-SiC陶瓷/铝基复合泡沫复合装甲靶板

    Figure  15.  C/C-SiC ceramic/Al-based foam metal composite armour target after projectile impact

    图  16  C/C-SiC陶瓷/铝基复合泡沫复合装甲靶板弹坑形貌

    Figure  16.  Crater morphology of C/C-SiC ceramic/Al-based foam metal composite armour target

    图  17  C/C-SiC陶瓷/铝基复合泡沫复合装甲靶板弯曲破坏形貌

    Figure  17.  Bending failure morphologies of C/C-SiC ceramic/Al-based foam metal composite armour target

    图  18  C/C-SiC陶瓷/铝基复合泡沫复合装甲靶板弯曲力-位移曲线

    Figure  18.  Bending force-displacement curves of C/C-SiC ceramic/Al-based foam metal composite armour target

    表  1  陶瓷板及对应金属(Al)基复合泡沫板厚度取值

    Table  1.   Thickness of ceramic plate and corresponding metal (Al) based composite foam board

    Material
    category
    Density/(g·cm−3)Thickness
    /mm
    C/C-SiC ceramics1.980 81012
    Al-based foam metal ( Aperture 4 mm)1.28621.918.815.7
    Al-based foam metal ( Aperture 10 mm)1.28621.918.815.7
    Al-based foam metal ( Aperture 4 mm+10 mm)1.25322.519.316.2
    下载: 导出CSV

    表  2  正交模拟设计方案

    Table  2.   Orthogonal simulation design scheme

    SchemeCeramic plate layout position (A)Thickness of ceramic plate (B)/mmAl-based foam metal aperture (C)/mm
    1Bulletproof panel 84
    2Bulletproof panel1010
    3Bulletproof panel124+10 blend
    4Bulletproof back plate104+10 blend
    5Bulletproof back plate124
    6Bulletproof back plate 810
    7Intermediate interlayer1210
    8Intermediate interlayer 84+10 blend
    9Intermediate interlayer104
    下载: 导出CSV

    表  3  C/C-SiC陶瓷/铝基复合泡沫复合装甲靶板剩余弯曲强度数值模拟结果

    Table  3.   Numerical simulation results of residual bending strength of C/C-SiC ceramic/Al-based foam metal composite armour target

    SchemeCeramic plate
    layout position
    (A)
    Thickness of
    ceramic plate
    (B)/mm
    Al-based foam
    metal aperture
    (C)/mm
    Fulcrum distance/
    mm
    Stressed
    section
    area/mm2
    Simulated value of residual
    bending strength
    Maximum load/kNResidual bending
    strength/MPa
    1Bulletproof panel 8 4180210×29.96.21 8.93
    2Bulletproof panel1010180210×28.86.11 9.47
    3Bulletproof panel124+10 blend180210×28.26.7010.83
    4Bulletproof back plate104+10 blend180210×29.36.12 9.17
    5Bulletproof back plate12 4180210×27.75.19 8.70
    6Bulletproof back plate 810180210×29.95.86 8.43
    7Intermediate interlayer1210180210×27.75.59 9.37
    8Intermediate interlayer 84+10 blend180210×30.55.81 8.03
    9Intermediate interlayer10 4180210×28.86.4710.03
    k19.748.479.22
    k28.779.569.09
    k39.149.639.34
    Rj0.981.160.25
    Notes: ki=Ki/s, Ki—Sum of corresponding test results when the horizontal number on any column is i; s—Number of occurrences of each level in any column; R(range)—On any column, R=max{k1, k2, k3}−min{k1, k2, k3}.
    下载: 导出CSV

    表  4  C/C-SiC陶瓷试样性能参数

    Table  4.   Performance parameters of C/C-SiC ceramic samples

    Bulletproof panelDensity/
    (g·cm−3)
    Residual bending strength/
    MPa
    Tensile strength/
    MPa
    Fracture toughness/
    (MPa·m1/2)
    Vickers hardness/ GPa
    C/C-SiC2.0946824219.517.2
    下载: 导出CSV

    表  5  Al基复合泡沫材料性能参数

    Table  5.   Performance parameters of Al based composite foams

    Bulletproof back plateElongation/%Density/
    (kg·m−3)
    Energy absorption density/(MJ·m−3)
    Al-based foam metal8.498030.1
    下载: 导出CSV

    表  6  防弹测试实验参数

    Table  6.   Experimental parameters of bulletproof test

    SchemeSample quality/kgSample area density/(kg·m−2)Firing angle/(°)Warhead speed/(m·s−1)Shot situation
    11.96344.510486No breakdown
    21.93743.920487No breakdown
    31.95444.310485No breakdown
    下载: 导出CSV

    表  7  C/C-SiC陶瓷/铝基复合泡沫复合装甲靶板剩余弯曲强度实验与数值模拟结果对比

    Table  7.   Comparison between experimental and numerical simulation results of residual bending strength of C/C-SiC ceramic/Al-based foam metal composite armour target

    SchemeCeramic plate
    layout
    position (A)
    Thickness of
    ceramic
    plate (B)/
    mm
    Al-based
    foam metal
    aperture (C)/
    mm
    Fulcrum
    distance/
    mm
    Stressed
    section
    area/mm2
    Simulated value
    of residual
    bending strength
    Measured value
    of residual
    bending strength
    Maximum
    load/
    kN
    Bending
    strength/
    MPa
    Maximum
    load/
    kN
    Residual bending
    strength/
    MPa
    1Bulletproof panel84180210×29.96.218.935.898.47
    2Bulletproof panel1010180210×28.86.119.476.249.67
    3Bulletproof panel124+10 blend180210×28.26.7010.836.3510.27
    下载: 导出CSV
  • [1] WANG Q X, ZHANG H M, CAI H N, et al. Simulation analysis of co-continuous ceramic composite dynamic mechanical performance and optimization design[J]. Computational Materials Science,2017,129:123-128. doi: 10.1016/j.commatsci.2016.12.009
    [2] 江洁, 董侠, 陈美玉, 等. 现代防弹材料[J]. 材料导报, 2013, 27(11):70-76, 82.

    JIANG Jie, DONG Xia, CHEN Meiyu, et al. A review of modern bulletproof materials[J]. Materials Reports,2013,27(11):70-76, 82(in Chinese).
    [3] MARTINIR, BARTHELAT F. Stretch-and-release fabrication, testing and optimization of a flexible ceramic armor inspired from fish scales[J]. Bioinspiration& Biomimetics,2016,11:1-10.
    [4] SONG N, LIU H, FANG J. Fabrication and mechanical properties of multi-walled carbon nanotube reinforced reaction bonded silicon carbide composites[J]. Ceramics International,2016,42(1):351-356. doi: 10.1016/j.ceramint.2015.08.117
    [5] 刘胜, 吕攀珂, 张艳朋. 陶瓷复合装甲的结构设计研究[J]. 兵器材料科学与工程, 2011, 34(6):84-86.

    LIU Sheng, LV Panke, ZHANG Yanpeng. Structural design of ceramic composite armor[J]. Ordnance Material Science and Engineering,2011,34(6):84-86(in Chinese).
    [6] GABROVSEK S, COLWILL I, STIPIDIS E. Agent-based simulation of improvised explosive device fragment damage on individual components[J]. The Journal of Defense Modeling and Simulation,2016,13(4):399-413. doi: 10.1177/1548512916653189
    [7] GUO W, BAI S, YE Y. Controllable fabrication and mechanical properties of C/C-SiC composites based on an electromagnetic induction heating reactive melt infiltration[J]. Journal of the European Ceramic Society,2021,41(4):2347-2355. doi: 10.1016/j.jeurceramsoc.2020.11.018
    [8] LICITRA L, LUONG D D, STRBIK O M, et al. Dynamic properties of alumina hollow particle filled aluminum alloy A356 matrix syntactic foams[J]. Materials & Design,2015,66:504-515.
    [9] KATONA B, SZEBENYI G, ORBULOV I N, et al. Fatigue properties of ceramic hollow sphere filled aluminium matrix syntactic foams[J]. Materials Science and Engineering: A,2017,679:350-357. doi: 10.1016/j.msea.2016.10.061
    [10] ZHANG B, LIN Y, LI S, et al. Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams[J]. Composites Part B: Engineering,2016,98:288-296. doi: 10.1016/j.compositesb.2016.05.034
    [11] MONTEIRO S N, BRAGA F D O, LIMA E P, et al. Promising curaua fiber-reinforced polyester composite for high-impact ballistic multilayered armor[J]. Polymer Engineering and Science,2017,57(9):947-954. doi: 10.1002/pen.24471
    [12] HU D, ZHANG Y M, SHEN Z W, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems[J]. Ceramics International,2017,43(13):10368-10376. doi: 10.1016/j.ceramint.2017.05.071
    [13] SERJOUEI A, GOUR G, ZHANG X F, et al. On improving ballistic limit of bi-layer ceramic-metal armor[J]. International Journal of Impact Engineering,2017,105:54-67. doi: 10.1016/j.ijimpeng.2016.09.015
    [14] MONTEIRO S N, FIGUEIREDO A B S, LIMA E S, et al. The role of sintered Al2O3-Nb2O5 front plate on the ballistic performance of multilayered armors[J]. Materials Science Forum,2017,899:329-334. doi: 10.4028/www.scientific.net/MSF.899.329
    [15] US Army Research Laboratory. Armor: Lightweight, composite: MIL-PRF-46103E[S].US Aberdeen proving ground: US Army Research Laboratory, 1998.
    [16] SANTOSA S P, ARIFURRAHMAN F, IZZUDIN M H, et al. Response analysis of blast Impact loading of metal-foam sandwich panels[J]. Procedia Engineering,2017,173:495-502. doi: 10.1016/j.proeng.2016.12.073
    [17] 叶腾钶, 徐豫新, 杨胜, 等. 钢、陶瓷和UHMWPE纤维层合结构抗破片侵彻最佳组合方式[J]. 北京理工大学学报(自然科学版), 2018, 38(8):786-791.

    YE Tengke, XU Yuxin, YANG Sheng, et al. Optimal configuration sequence of steel, ceramic and UHMWPE fiber laminates for the anti-fragment penetration[J]. Transactions of Beijing Institute of Technology,2018,38(8):786-791(in Chinese).
    [18] ZHANG X Q, FAN X Y, YAN C, et al. Interfacial microstructure and properties of carbon fiber composites modified with grapheme oxide[J]. Applied Materials Interfaces,2012,4(3):1543-1552. doi: 10.1021/am201757v
    [19] GRUJICIC M, BELL W C, PANDURANGAN B, et a1. Design and material selection guidelines and strategies for transparent armor systems[J]. Materials & Design,2012,34:808-819. doi: 10.1016/j.matdes.2011.07.007
    [20] FIDAN S, BORA M O, COBAN O, et al. Damage characterization of repeatedly impacted glass fiber reinforced polyester-armor steel composites with cone beam computed tomography technique[J]. Polymer Composites,2016,37(2):583-593. doi: 10.1002/pc.23215
    [21] PANDYA K S, POTHNIS J R, RAVIKUMAR G, et al. Ballistic impact behavior of hybrid composites[J]. Materials & Design,2013,44:128-135. doi: 10.1016/j.matdes.2012.07.044
    [22] 罗通. 纤维约束陶瓷复合靶板的制备及抗弹性能研究[D]. 北京: 北京理工大学, 2015.

    LUO Tong. Study on the preparation process and anti-ballistic properties of ceramic composite targets confined by fiber[D]. Beijing: Beijing Institute of Technology, 2015(in Chinese).
    [23] TASDEMIRCI A, TUNUSOGLU G, GUDEN M. The effect of the interlayer on the ballistic performance of ceramic/composite armors: Experimental and numerical study[J]. International Journal of Impact Engineering,2012,44:1-9. doi: 10.1016/j.ijimpeng.2011.12.005
    [24] ANDREA N, ENRICO R. On the effect of the backup plate stiffness on the brittle failure of a ceramic armor[J]. Acta Mechanica,2016,227(1):159-172. doi: 10.1007/s00707-015-1412-5
    [25] CHEN Z Y, XU Y Q, LI M L, et al. Structural design and numerical simulation optimization of SiC wood ceramic composite armor[J]. Rare Metal Materials and Engineering,2021,50(4):1146-1155.
    [26] KRISHNAN K, SOCKALINGAM S, BANSAL S, et al. Numerical simulation of ceramic composite armor subjected to ballistic impact[J]. Composites Part B: Engineering,2010,41(8):583-593. doi: 10.1016/j.compositesb.2010.10.001
    [27] HU D Q, WANG J R, CHEN Z G, et al. Simulation and experimental investigation on armor-piecing performance of TC composite projectile to multilayer A3 steel plates targets[J]. Journal of Ballistics,2017,29(1):73-78.
    [28] WANG M, QIN Q, WANG T J. On physically asymmetric sandwich plates with metal foam core subjected to blast loading: dynamic response and optimal design[J]. Acta Mechanica,2017,228(9):3265-3283. doi: 10.1007/s00707-017-1870-z
    [29] GUO Y N, SUN Q, WU L. Study of dynamic impact behaviors and ballistic properties of ceramic/UHMWPE composite armor[J]. Applied Mechanics and Materials,2012,121-126:397-400. doi: 10.4028/www.scientific.net/AMM.121-126.397
    [30] KYNER A, DHARMASENA K, WILLIAMS K, et al. High intensity impulsive loading by explosively accelerated granular matter[J]. International Journal of Impact Engineering,2017,108:229-251. doi: 10.1016/j.ijimpeng.2017.02.009
    [31] GUO Z R, CHEN W N, ZHENG J. A semi-empirical design parameter for determining the inelastic strike-face mass fraction of soft armor targets[J]. International Journal of Impact Engineering,2019,125:83-92. doi: 10.1016/j.ijimpeng.2018.10.007
    [32] 陈智勇, 李妙玲, 孙卫康, 等. 温度和成分质量比对聚碳硅烷陶瓷先驱体产率的影响[J]. 硅酸盐学报, 2018, 46(9):1297-1303.

    CHEN Zhiyong, LI Miaoling, SUN Weikang, et al. Effects of temperature and composition mass ratio on yield of polycarbosilane ceramic precursor[J]. Journal of the Chinese Ceramic Society,2018,46(9):1297-1303(in Chinese).
    [33] 陈智勇, 徐颖强, 肖立, 等. C/C-SiC复合材料致密度影响因素研究[J]. 航空材料学报, 2021, 41(1):67-73. doi: 10.11868/j.issn.1005-5053.2020.000072

    CHEN Zhiyong, XU Yingqiang, XIAO Li, et al. Factors affecting the density of C/C-SiC composite[J]. Journal of Aeronautical Materials,2021,41(1):67-73(in Chinese). doi: 10.11868/j.issn.1005-5053.2020.000072
    [34] YU Q Y, ZHAO Y, DONG A Q, et al. Mechanical properties of EPS filled syntactic foams prepared by VARTM[J]. Composites Part B: Engineering,2018,136:126-134. doi: 10.1016/j.compositesb.2017.07.053
    [35] YU Q Y, ZHAO Y, DONG A Q, et al. Preparation and properties of C/C hollow spheres and the energy absorption capacity of the corresponding aluminum syntactic foams[J]. Materials,2018,11(6):997. doi: 10.3390/ma11060997
    [36] YU Q Y, ZHAO Y, DONG A Q, et al. Comparison of two different methods for producing hollow macrospheres with carbon fiber reinforced composite skin used in syntactic foams[J]. Polymer Composites,2019,40(S2):E1075-E1083. doi: 10.1002/pc.24862
    [37] 丁华东, 方宁象, 刘云峰, 等. 陶瓷基复合装甲防12.7 mm穿甲燃烧弹的靶试研究(II)[J]. 装甲兵工程学院学报, 2012, 26(2):77-79. doi: 10.3969/j.issn.1672-1497.2012.02.017

    DING Huadong, FANG Ningxiang, LIU Yunfeng, et al. Target experiment of ceramics-based composite armor against 12.7 mm armor piercing incendiary (II)[J]. Journal of Academy of Armored Force Engineering,2012,26(2):77-79(in Chinese). doi: 10.3969/j.issn.1672-1497.2012.02.017
    [38] ASTM. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: D7137/D7137M—2017[S]. ASTM International: West Conshohocken, 2017.
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  1100
  • HTML全文浏览量:  679
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-01-16
  • 录用日期:  2022-01-22
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回