Preparation and damping behavior of NiTip/5052 Al composites
-
摘要:
目的 随着社会需求的不断提高和工业技术的发展,机械工程领域对铝合金材料的减振降噪性能提出了更高的要求。铝合金通常被认为是低阻尼合金,且不具备低温(150℃以下)阻尼特性,这限制了铝合金在对减振降噪具有高要求的设备与构件上的使用。针对铝合金本征阻尼较低的问题,本文采用搅拌摩擦加工(FSP)技术制备出NiTip/5052Al复合材料,以期利用NiTi颗粒的相变阻尼特征来改善铝基合金的低温阻尼性能。 方法 将NiTi颗粒加入铝板的预置孔中,再采用龙门式搅拌摩擦焊机对其进行4道次FSP后获得NiTip/5052Al复合材料。利用扫描电镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)和万能试验机分别对NiTip/5052Al复合材料的微观结构、物相组成和力学性能进行分析。采用差式扫描量热仪(DSC)对样品的相变行为进行测试,研究NiTi颗粒相变特征对NiTip/5052Al复合材料的影响。采用动态热机械分析仪(DMA)在-120~90℃温度范围内测试样品的内耗值和储能模量,并对NiTip/5052Al复合材料的阻尼行为进行研究。 结果 从本文的研究数据和结果对比分析可以看出,NiTip/5052Al复合材料具备以下几个主要特征:(1)经过FSP后,NiTi颗粒与5052Al基体界面结合良好,未发生界面反应。NiTip/5052Al复合材料具备NiTi合金的马氏体相变特征。(2)NiTip/5052Al复合材料的强度均高于5052Al合金和FSP-5052Al合金,其中as-NiTip/5052Al复合材料的抗拉强度为240MPa,分别比5052Al和FSP-5052Al合金高23.7%和10.1%。NiTip-5052Al复合材料拉伸断口中的NiTi颗粒形貌完整,且呈现出比5052Al合金更细、更均匀的韧窝。(3)NiTip/5052Al复合材料的阻尼性能均明显优于5052Al合金和FSP-5052Al合金,且复合材料均呈现出明显的相变内耗峰。(4)因NiTi颗粒增强相的相变行为不同,as-NiTip/5052Al和550℃-NiTip/5052Al复合材料的相变阻尼峰值温度也存在明显差异。当升温至23℃时,550℃-NiTip/5052Al复合材料的内耗峰值分别比5052Al和FSP-5052Al合金高300%和140%。当升温至33℃时,as-NiTip/5052Al复合材料的内耗峰值分别比5052Al和FSP-5052Al合金高233%和100%。(5)NiTip/5052Al复合材料的储能模量均随着温度和应变的增加而减小,且均高于5052Al合金和FSP-5052Al合金。 结论 NiTi颗粒的本征相变特征使得NiTip/5052Al复合材料均呈现出较宽的马氏体相变特征峰。由于NiTi增强颗粒在NiTip/5052Al复合材料基体中的承载作用,使得复合材料的强度高于5052Al和FSP-5052Al合金。as-NiTip/5052Al复合材料的拉伸断口中存在因NiTi颗粒剥落而产生的凹坑以及未被剥离的NiTi颗粒,其基体中存在大量的细小韧窝。NiTi颗粒在相变过程中引发的相变阻尼行为使其复合材料呈现出具有相变特征的内耗峰,使得NiTip/5052Al复合材料的阻尼性能明显优于5052Al和FSP-5052Al合金。FSP过程中的挤压变形作用以及NiTi颗粒和5052Al基体间的热膨胀系数差异,导致复合材料中产生较多的残余应力,有利于改善复合材料的储能模量,使得NiTip/5052Al复合材料的储能模量明显高于5052Al和FSP-5052Al合金。 -
关键词:
- NiTi颗粒 /
- 铝基复合材料 /
- 搅拌摩擦加工(FSP) /
- 相变 /
- 阻尼行为
Abstract: With the development of industrial technology, the field of mechanical engineering has put forward higher requirements for the vibration and noise reduction of aluminum alloy materials. In order to solve the problem of low intrinsic damping of aluminum alloy, NiTip/5052Al composites with phase transformation damping characteristics were prepared by friction stir processing (FSP). The microstructure and phase composition of NiTip/5052Al composites were analyzed by Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS) and X-ray Diffraction (XRD). The phase transformation processes, mechanical properties and damping behaviors of the composites were analyzed by Differential Scanning Calorimetry (DSC), universal testing machine and Dynamic Mechanical Analysis (DMA), respectively. The results show that the interfaces between NiTi particles and 5052Al matrix are well bonded after FSP, and no interfacial reaction occurs. The NiTip/5052Al composites have martensitic transformation characteristics of NiTi alloy. The strength of NiTip/5052Al composites are higher than 5052Al and FSP-5052Al alloy. The tensile strength of as-NiTip/5052Al composite is 240 MPa, which is 23.7% and 10.1% higher than 5052Al and FSP-5052Al alloy, respectively. The damping properties of NiTip/5052Al composites are significantly better than 5052Al alloy and FSP-5052Al alloy, and the composites exhibit significant phase transformation internal friction peaks. When the temperature rises to 23℃, the internal friction peak of 550℃-NiTip /5052Al composite is 300% and 140% higher than 5052Al and FSP-5052Al alloys, respectively. When the temperature rises to 33℃, the internal friction peak of as-NiTip/5052Al composite is 233% and 100% higher than 5052Al and FSP-5052Al alloys, respectively. The storage modulus of NiTip/5052Al composites decrease with increasing temperature and strain, and their storage modulus are higher than 5052Al alloy and FSP-5052Al alloy. -
图 2 NiTip/5052Al复合材料的SEM图: (a) NiTi颗粒和NiTip/5052Al复合材料; (b) 图(a)的局部放大图; (c) 图(b)的面扫描图; (d) NiTi颗粒与铝基体界面处的线扫描图
Figure 2. SEM images of NiTip/5052Al composites: (a) NiTi particles and NiTip/5052Al composites; (b) high magnification image of (a); (c) face scanning images of (b); (d) line scanning image at the interface between NiTi particle and Al matrix
表 1 5052 Al的标称化学成分(质量分数 %)
Table 1. Nominal chemical composition of 5052 Al (wt. %)
Mg Fe Si Cr Cu Mn Zn Al 2.2-2.8 0.4 0.25 0.15-0.35 0.1 0.1 0.1 Bal. 表 2 NiTi颗粒和NiTip/5052Al复合材料的相变峰值温度
Table 2. Phase transformation peak temperatures of NiTi particles and NiTip/5052Al composites
Ap/℃ Rp/℃ Mp/℃ as-NiTip 19.7 5 −23 550℃-NiTip 14.1 — −14.2 as-NiTip/5052Al 21.5 — −22.7 550℃-NiTip/5052Al 12 — −24.7 Notes:Ap, Rp and Mp represent the peak temperatures of B19'→B2, B2→R and B2→B19' phase transition respectively, the peak temperature of R→B19' phase transition is also expressed by Mp. -
[1] WANG B, CHEN X H, PAN F S, et al. Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA5052 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China,2015,25(8):2481-2489. doi: 10.1016/S1003-6326(15)63866-3 [2] 秦艳利, 孙博慧, 张昊, 等. 选区激光熔化铝合金及其复合材料在航空航天领域的研究进展[J]. 中国激光, 2021, 48:15-31.QIN Y L, SUN B H, ZHANG H, et al. Development of selective laser melted aluminum alloy and aluminum matrix composites in aerospace field[J]. Chinese Journal of Lasers,2021,48:15-31(in Chinese). [3] 曾广凯, 崔君阁, 王雨辰, 等. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36:152-156.ZENG G K, CUI J G, WANG Y C, et al. Microstructure and tensile properties of Al3Ti /Al-Si-Cu-V-Zr alloy composites[J]. Materials Reports,2022,36:152-156(in Chinese). [4] ZHOU G F, JIANG H J, LIU C Y, et al. Effect of porous particle layer on damping capacity and storage modulus of AlSi30 p/5052 Al composites[J]. Materials Letters,2021,300:130162. doi: 10.1016/j.matlet.2021.130162 [5] WANG Y B, JIANG H J, LIU C Y, et al. Influence of Al particle layer on damping behavior of Alp/7075 Al composites fabricated by hot rolling[J]. Journal of Alloys and Compounds,2021,882:160763. doi: 10.1016/j.jallcom.2021.160763 [6] REDDY K V, NAIK R B, Reddy G M, et al. Damping capacity of aluminium surface layers developed through friction stir processing[J]. Materials Letters,2021,298:130031. doi: 10.1016/j.matlet.2021.130031 [7] JIANG H J, LIU C Y, CHEN Y, et al. Evaluation of microstructure, damping capacity and mechanical properties of Al-35 Zn and Al-35 Zn-0.5 Sc alloys[J]. Journal of Alloys and Compounds,2018,739:114-121. doi: 10.1016/j.jallcom.2017.12.234 [8] LIU C Y, JIANG H J, ZHANG B, et al. High damping capacity of Al alloys produced by friction stir processing[J]. Materials Characterization,2018,136:382-387. doi: 10.1016/j.matchar.2018.01.009 [9] 黄文益, 江鸿杰, 王一博, 等. 6061铝颗粒层增强7075铝基复合材料的微观结构及阻尼性能[J]. 复合材料学报, 2021, 38(12):4220-4227. doi: 10.13801/j.cnki.fhclxb.20210309.004HUANG W Y, JIANG H J, WANG Y B, et al. Microstructure and damping capacity of 7075 aluminum matrix composite enhanced by 6061 aluminum particles layer[J]. Acta Materiae Compositae Sinica,2021,38(12):4220-4227(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210309.004 [10] 张忠明, 胡博, 高峰涛, 等. 往复挤压法制备Al2O3p/Al复合材料的室温阻尼性能[J]. 复合材料学报, 2011, 28:130-135.ZHANG Z M, HU B, GAO F T, et al. Room-temperature damping capacity of Al2O3p/Al composites prepared by reciprocating extrusion[J]. Acta Materiae Compositae Sinica,2011,28:130-135(in Chinese). [11] SAN J J, NO M L. Damping behavior during martensitic transformation in shape memory alloys[J]. Journal of Alloys and Compounds,2003,355(1-2):65-71. doi: 10.1016/S0925-8388(03)00277-9 [12] CHEN Y, JIANG H C, LIU S W, et al. Damping capacity of TiNi-based shape memory alloys[J]. Journal of Alloys and Compounds,2009,482(1-2):151-154. doi: 10.1016/j.jallcom.2009.03.148 [13] HU J, WU G, ZHANG Q, et al. Mechanical properties and damping capacity of SiCP/TiNif/Al composite with different volume fraction of SiC particle[J]. Composites Part B-Engineering,2014,66:400-406. doi: 10.1016/j.compositesb.2014.06.013 [14] HUO X, CHEN P, LAHKAR S, et al. Occurrence of the R-phase with increased stability induced by low temperature precipitate-free aging in a Ni50.9Ti49.1 alloy[J]. Acta Materialia,2022,227:117688. doi: 10.1016/j.actamat.2022.117688 [15] SONG Y, JIN M, HAN X, et al. Microstructural origin of ultrahigh damping capacity in Ni50.8Ti49.2 alloy containing nanodomains induced by insufficient annealing and low-temperature aging[J]. Acta Materialia,2021,205:116541. doi: 10.1016/j.actamat.2020.116541 [16] WANG W, HAN P, XI X, et al. Preparation of NiTip/WE43 magnesium matrix composites by friction stir processing[J]. Rare Metal Materials and Engineering,2020,49(12):4050-4054. [17] DIXIT M, NEWKIRK J W, MISHRA R S. Properties of friction stir-processed Al1100-NiTi composite[J]. Scripta Materialia,2007,56(6):541-544. doi: 10.1016/j.scriptamat.2006.11.006 [18] KAYA I, KARACA H E, NAGASAKO M, et al. Effects of aging temperature and aging time on the mechanism of martensitic transformation in nickel-rich NiTi shape memory alloys[J]. Materials Characterization,2020,159:110034. doi: 10.1016/j.matchar.2019.110034 [19] ZHU J, WU H H, WU Y, et al. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation[J]. Acta Materialia,2021,207:116665. doi: 10.1016/j.actamat.2021.116665 [20] RADI A, KHALIL A J, ETMINANFAR M R, et al. Influence of stress aging process on variants of nano-Ni4Ti3 precipitates and martensitic transformation temperatures in NiTi shape memory alloy[J]. Materials and Design,2018,142:93-100. doi: 10.1016/j.matdes.2018.01.024 [21] 冯欣欣, 衣晓洋, 王海振, 等. Ti-Ni基记忆合金复合材料的研究进展[J]. 复合材料学报, 2021, 38(7):2070-2077. doi: 10.13801/j.cnki.fhclxb.20210312.007FENG X X, YI X Y, WANG H Z, et al. Progress of Ti-Ni based shape memory alloy composites[J]. Acta Materiae Compositae Sinica,2021,38(7):2070-2077(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210312.007 [22] 曹金营, 曹贺, 欧阳求保, 等. 多道次搅拌摩擦加工对SiCp/2 A14铝合金复合材料显微组织和力学性能的影响[J]. 复合材料学报, 2020, 37(11):2861-2869.CAO J Y, CAO H, OUYANG Q B, et al. Effect of multi-pass friction stir processing on microstructure and mechanical properties of SiCp/2 A14 aluminum alloy composites[J]. Acta Materiae Compositae Sinica,2020,37(11):2861-2869(in Chinese). [23] HUANG G Q, YAN Y F, WU J, et al. Microstructure and mechanical properties of fine-grained aluminum matrix composite reinforced with nitinol shape memory alloy particulates produced by underwater friction stir processing[J]. Journal of Alloys and Compounds,2019,786:257-271. doi: 10.1016/j.jallcom.2019.01.364 [24] SANATY Z A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect[J]. Materials Science and Engineering A,2012,531:112-118. doi: 10.1016/j.msea.2011.10.043 [25] JIANG H J, ZHANG B, LIU C Y, et al. Mechanical and damping behavior of age-hardened and non-age-hardened Al alloys after friction stir processing[J]. Acta Metallurgica Sinica-English Letters,2019,32(9):1135-1141. doi: 10.1007/s40195-019-00905-3 [26] 黄学文, 董光能, 王慧, 等. TiNi形状记忆合金阻尼特性的研究[J]. 材料工程, 2003:3-6+14. doi: 10.3969/j.issn.1001-4381.2003.08.001HUANG X W, DONG G N, WANG H, et al. Study on damping characteristics of TiNi shape memory alloy[J]. Journal of Materials Engineering,2003:3-6+14(in Chinese). doi: 10.3969/j.issn.1001-4381.2003.08.001 [27] 康泽天, 王志勇, 周博, 等. 形状记忆合金超弹性缆索力学行为的有限单元法[J]. 机械工程学报, 2020, 56:65-72.KANG Z T, WANG Z Y, ZHOU B, et al. Finite element method for mechanical behavior of shape memory alloy superelastic cables[J]. Journal of Mechanical Engineering,2020,56:65-72(in Chinese). [28] 路建宁, 王娟, 林颖菲, 等. 表面氧化处理对SiC/A356 Al复合材料组织及性能的影响[J]. 材料导报, 2020, 34:1381-1385.LU J N, WANG J, LIN Y F, et al. Effect of surface oxidation treatment on the structure and properties of SiC/A356 Al composites[J]. Materials Reports,2020,34:1381-1385(in Chinese). [29] LIU S, LI X, YAN D, et al. A novel TiNi/AlSi composite with high strength and high damping capacity[J]. Journal of Materials Science and Technology,2008,24(6):903-906. [30] NI D R, WANG J J, MA Z Y. Shape memory effect, thermal expansion and damping property of friction stir processed NiTip/Al composite[J]. Journal of Materials Science and Technology,2016,32(2):162-166. doi: 10.1016/j.jmst.2015.12.013 -