From Traditional to Intelligent: Advances in Wood Color Treatment Technologies
-
摘要: 近年来,木材颜色处理技术取得了显著进展,多种方法共同推动了木材加工业的发展。漂白剂的使用提升了木材颜色的均匀性,为后续处理奠定了基础。真菌染色通过生物作用实现了颜色变化,天然染料则增强了木材的抗紫外线和防霉性能,延长了户外使用寿命。金属离子变色与木材成分反应,带来丰富的颜色变化,提升了装饰性。热处理改变木材结构,使颜色加深并提高了耐久性。在此基础上,智能算法尤其是机器学习技术,被应用于染色和热处理工艺,精准调整参数并预测效果,显著提升了生产效率和产品质量。这些技术集成推动了木材加工业向高效、环保和可持续方向发展。Abstract: In recent years, significant progress has been made in wood color treatment technologies, with various methods collectively advancing the wood processing industry. The use of bleaching agents has improved the color uniformity of wood, laying a solid foundation for subsequent treatments. Fungal staining achieves color changes through biological processes, while natural dyes enhance the UV resistance and anti-mold properties of wood, extending its outdoor lifespan. Metal ion color changes, through reactions with wood components, bring rich color variations and enhance decorative appeal. Heat treatment alters the wood's structure, deepening its color and increasing durability. Building on these advancements, intelligent algorithms, particularly machine learning techniques, have been applied to staining and heat treatment processes, enabling precise parameter adjustments and outcome predictions, significantly boosting production efficiency and product quality. These integrated technologies are driving the wood processing industry toward greater efficiency, environmental sustainability, and long-term viability.
-
Key words:
- Wood color /
- fungal staining /
- natural dyes /
- metal ion color change /
- heat treatment /
- machine learning
-
图 3 所选染色木块的扫描图像。(a)未处理。(b) Pergasol 黄。(c)果胶酶/Pergasol 黄。(d) Pergasol 红。(e)鞣酸。(f)果胶酶/鞣酸。(g)果胶酶/漆酶/鞣酸。(h) Procion 柠檬黄。(i)Procion 洋红。(j) Procion 鲜橙。(k) Procion 蓝绿。上排:未浸洗;下排:用水浸洗[18]。
Figure 3. Scanned images of selected dyed wood blocks. (A) Untreated. (B) Pergasol Yellow. (C) Pectinase/Pergasol Yellow. (D) Pergasol Red. (E) Tannin. (F) Pectinase/tannin. (G) Pectinase/ laccase/tannin. (H) Procion Lemon Yellow. (I) Procion Magenta. (J) Procion Brilliant Orange. (K) Procion Turquoise. Upper row: unleached; lower row: leached with water[18].
图 8 参考木材及用硫酸铁处理的木材图像:从左到右分别是施加10%、20%和30%溶液后的效果;从上到下分别是短时冷浴(2小时,20°C)、短时热浴(2小时,70°C)和长时冷浴(24小时,20°C)后的效果[28]。
Figure 8. Images of reference wood, and wood treated with iron sulphate: from left to right after 10 %, 20 % and 30 % solution was applied; from top to bottom: after short-term cold bath (2 h; 20℃), after short-term hot bath (2 h, 70℃), after long-term cold bath (24 h, 20℃)[28].
表 1 木材染色技术中色彩匹配和预测算法的最新进展。
Table 1. Recent Advances in Color Matching and Prediction Algorithms in Wood Dyeing Technologies.
Researcher Algorithm Type Purpose Results and Advantages Reference Guan et al. Genetic Algorithm (GA) optimizing Extreme Learning Machine (ELM) Improve accuracy of dye formula prediction Average relative deviation reduced to 0.262, significant accuracy improvement, cost-effectiveness and resource efficiency enhanced [11] Guan et al. Particle Swarm Optimization (PSO) Improve accuracy and efficiency of computer color matching Average relative deviation of 0.643%, average fit color difference of 0.720, significantly improved color matching accuracy and efficiency [48] Guan et al. Enhanced Radial Basis Function (RBF) Network Increase convergence speed and approximation accuracy of neural networks Average relative error reduced from 1.55% to 0.62%, training epochs reduced to 50, improved speed and accuracy [49] Wu et al. Particle Swarm Optimization (PSO) Improve wood dyeing accuracy Optimized model has lower color difference values, improved color matching accuracy, suitable for furniture production and interior design [50] Apraiz et al. Kubelka-Munk Theory with Self-learning Algorithms Predict dye color of stained oak accurately Accurately predicts wood color under various dye proportions and application methods, evaluates effects of varnishing on final color appearance [51] Wei et al. Adaptive Differential Evolution (ADE) Optimize prediction of wood dye formulas Optimized model's color difference ΔE00 less than 3, significantly improved prediction accuracy and optimization efficiency [52] Guan et al. Particle Swarm Optimization (PSO) Improve color matching accuracy Average fit color difference reduced from 0.8202 to
0.7287 , significantly improved color matching accuracy[53] Guan et al. Wolf Algorithm Optimized Support Vector Regression (SVR) Increase accuracy and speed of wood dye color matching Relative formula deviation reduced to 0.177, optimized model superior to traditional models, demonstrated global optimization capability [54] 表 2 先进预测模型在木材热处理及他颜色处理技术中的应用分析。
Table 2. Analysis of the Application of Advanced Prediction Models in Wood Heat Treatment and Other Color Processing Technologies.
Algorithm Type Research Objective Results and Advantages Reference Mo et al. Artificial Neural Networks (ANN) Predict color changes in wood High accuracy (R²>0.96), reduced time and resource usage [55] Kropat et al. Partial Least Squares Regression (PLSR) Predict visibility of chemically dyed wood Improved consistency, especially with iron acetate (R²_cv=0.92) [60] Nguyen et al. Artificial Neural Networks (ANN) Predict color changes in heat-treated and weather ed wood High accuracy (all datasets R²>0.92), reduced experimental costs [56] Van et al. Artificial Neural Networks (ANN) Predict color changes in heat-treated wood Extremely high predictive accuracy (R²>0.99), saves physical tests [57] Li et al. Improved Particle Swarm Optimization-Support Vector Machine (IPSO-SVM) Enhance prediction accuracy of color changes post heat treatment and weathering Significantly improved accuracy, reduced errors and variance [58] Li et al. Response Surface Methodology (RSM) Study the effect of CO2 laser on changing wood color Quantified relationship between laser settings and color results, showed chemical changes related to
color changes[59] -
[1] WANG H, ZHANG Y, LI H, et al. Research on the Impregnation Process and Mechanism of Silica Sol/Phenolic Resin Modified Poplar Wood[J]. Forests, 2023, 14(11): 2176. doi: 10.3390/f14112176 [2] HE S, ZHAO X, WANG E Q, et al. Engineered Wood: Sustainable Technologies and Applications[J]. Annual Review of Materials Research, 2023, 53(1): 195-223. doi: 10.1146/annurev-matsci-010622-105440 [3] WANG H, ZHANG Y, LI H, et al. Study on the Physico-Mechanical Properties and Mechanisms of Poplar Wood Co-Modified by Anoxic High-Temperature Heat Treatment and Impregnation with Silica Sol/Phenolic Resin[J]. Industrial Crops & Products, 2024, 221119312-119312. [4] ZHANG, J. , YANG, L. , & LIU, H. (2021). Green and Efficient Processing of Wood with Supercritical CO2: A Review. Applied Sciences, 11, 3929. [5] LU D, XIONG X, LU G, et al. Effects of NaOH/H2O2/Na2SiO3 Bleaching Pretreatment Method on Wood Dyeing Properties[J]. Coatings, 2023, 13(2): 233. doi: 10.3390/coatings13020233 [6] LIU Y, YU Z, ZHANG Y, et al. Microbial Dyeing—Infection Behavior and Influence of Lasiodiplodia Theobromae in Poplar Veneer[J]. Dyes and Pigments, 2020, 173: 107988. doi: 10.1016/j.dyepig.2019.107988 [7] ZHU T, SHENG J, CHEN J, et al. Staining of Wood Veneers with Anti-UV Property Using the Natural Dye Extracted from Dalbergia Cohinchinensis[J]. Journal of Cleaner Production, 2021, 284: 124770. doi: 10.1016/j.jclepro.2020.124770 [8] DAGHER R, STEVANOVIC T, LANDRY V. Wood Color Modification with Iron Salts Aqueous Solutions: Effect on Wood Grain Contrast and Surface Roughness[J]. Holzforschung, 2023, 77(5): 356-367. doi: 10.1515/hf-2022-0189 [9] GAŠPARÍK M, GAFF M, KAČÍK F, et al. Color and Chemical Changes in Teak (Tectona Grandis L. f. ) and Meranti (Shorea spp. ) Wood after Thermal Treatment[J]. BioResources, 2019, 14(2): 2667-2683. doi: 10.15376/biores.14.2.2667-2683 [10] SHI Y, LYU W, WANG X, et al. Effect of Various Compounding Methods on Acid Red 18050-Melamine Modified Urea Formaldehyde Resin Compound as Wood Modifier[J]. BioResources, 2019, 14(4): 9100-9109. doi: 10.15376/biores.14.4.9100-9109 [11] GUAN X, LI W, HUANG Q, et al. Intelligent Color Matching Model for Wood Dyeing Using Genetic Algorithm and Extreme Learning Machine[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42(6): 4907-4917. [12] AKKUŞ M, BUDAKÇI M. Determination of Color-Changing Effects of Bleaching Chemicals on Some Heat-Treated Woods[J]. Journal of Wood Science, 2020, 66: 1-14. doi: 10.1186/s10086-020-1848-7 [13] ÇAKICIER N, ULAY G. Determination of Color Characteristics of Some Wood Species Treated with Bleaching Chemicals[J]. BioResources, 2023, 18(4): 7796. doi: 10.15376/biores.18.4.7796-7804 [14] BALÇIK Ö B, ÖZDEMIR T. The Effect of Bleaching Agents on Color Change in Different Section Shapes in Beech And Fir Woods[J]. Kastamonu University Journal of Forestry Faculty, 23(2): 111-118. [15] LIU Y, ZHANG Y, YU Z, et al. Microbial Dyes: Dyeing of Poplar Veneer with Melanin Secreted by Lasiodiplodia Theobromae Isolated from Wood[J]. Applied Microbiology and Biotechnology, 2020, 104: 3367-3377. doi: 10.1007/s00253-020-10478-2 [16] VIDHOLDOVÁ Z, REINPRECHT L. The Colour of Tropical Woods Influenced by Brown Rot[J]. Forests, 2019, 10(4): 322. doi: 10.3390/f10040322 [17] SONG T, CHENG F, SUN J. Stain Capacity of Three Fungi on Two Fast-Growing Wood[J]. Journal of Forestry Research, 2021, 32(1): 427-434. doi: 10.1007/s11676-020-01103-z [18] WIDSTEN P, CHITTENDEN C, WEST M, et al. Enzymatic Treatments for Improved Dyeing of Solid Wood[J]. Holzforschung, 2022, 76(6): 493-502. doi: 10.1515/hf-2021-0230 [19] ZHU T, LIU S, REN K, et al. Colorability of Dyed Wood Veneer Using Natural Dye Extracted from Dalbergia Cochinchinensis with Different Organic Solvents[J]. BioResources, 2018, 13(4): 7197-7211. [20] YUNIANTI A D, PANGESTU K T P. COLOR IMPROVEMENT OF PRETREATED GMELINA WOOD BY IMPREGNATION OF NATURAL DYES[J]. [21] RUI H, ROBINSON S C, VEGA GUTIERREZ P, et al. Spalting Colorants as Dyes for Wood Stabilizers[J]. Journal of Coatings Technology and Research, 2019, 16: 905-911. doi: 10.1007/s11998-019-00203-8 [22] QI Y, ZHOU Z, LI J, et al. Study on the Dyeing Properties of Chinese Fir with Cinnamomum Camphor Pigment by Premordant Dyeing[J]. Wood Material Science & Engineering, 2024: 1-11. [23] QI Y, ZHOU Z, XU R, et al. Research on the Dyeing Properties of Chinese Fir Using Ultrasonic-Assisted Mulberry Pigment Dyeing[J]. Forests, 2023, 14(9): 1832. doi: 10.3390/f14091832 [24] ZHU T, REN K, SHENG J, et al. Natural Dye Extracted from Dalbergia Cochinchinensis Residue with Water Fastness, Mildew Resistance and Permeability Properties for Wood Staining[J]. Wood Science and Technology, 2022, 56(3): 969-988. doi: 10.1007/s00226-022-01385-y [25] BELDEAN E, TIMAR M C. Wood Colouring with Natural Dye Extracts. New Research and Perspectives[J]. Bulletin of the Transilvania University of Brasov. Series II: Forestry• Wood Industry• Agricultural Food Engineering, 2023: 81-92. [26] DAGHER R, LANDRY V, STEVANOVIC T. Contribution to Understanding the Color Development on Wood Surfaces Treated with Iron Salts by a Combination of Analytical Methods[J]. Journal of Wood Chemistry and Technology, 2020, 40(4): 223-234. doi: 10.1080/02773813.2020.1745845 [27] HUNDHAUSEN U, MAI C, SLABOHM M, et al. The Staining Effect of Iron (II) Sulfate on Nine Different Wooden Substrates[J]. Forests, 2020, 11(6): 658. doi: 10.3390/f11060658 [28] JANKOWSKA A, KWIATKOWSKI A. Effectiveness of European Oak Wood Staining with Iron (II) Sulphate During Natural Weathering[J]. Maderas. Ciencia y Tecnología, 2022, 24. [29] QI H, LI X, LIU M, et al. DISCOLORATION OF OAK VENEER INDUCED BY METAL IONS[J]. WOOD RESEARCH, 2023, 68(2): 224-240. doi: 10.37763/wr.1336-4561/68.2.224240 [30] DAGHER R, STEVANOVIC T, RYAN D H, et al. A Note on Mössbauer Analysis of White Oak Surfaces Colored with Aqueous Iron Salt Solutions[J]. Journal of Wood Chemistry and Technology, 2022, 42(2): 83-90. doi: 10.1080/02773813.2022.2033780 [31] 侯豪杰, 齐华春, 王宏兴, 等. Fe~(2+)、Cu~(2+)诱导工艺对柞木表板颜色变化规律的影响[J]. 东北林业大学学报, 2024, 52(1): 124-127.HOU Haojie, QI Huachun, WANG Hongxing, et al. Effect of Fe~(2+), Cu~(2+) Induced Processes on the Color Change Patterns of Oak Veneer[J]. Journal of Northeast Forestry University, 2024, 52(1): 124-127(in Chinese). [32] SLABOJEVA G, SMIRIADKOVA M. Colour Stability of Surface Finishes on Thermally Modified Beech Wood[J]. Annals of Warsaw University of Life Sciences-SGGW. Forestry and Wood Technology, 2021, 114. [33] WANG P, CHENG S, CAO S, et al. Evaluation of Color Changes, Wettability, and Moisture Sorption of Heat-Treated Blue-Stained Radiata Pine Lumber[J]. BioResources, 2022, 17(3): 4952. doi: 10.15376/biores.17.3.4952-4961 [34] KAČÍK F, KUBOVSKÝ I, BOUČEK J, et al. Colour and Chemical Changes of Black Locust Wood During Heat Treatment[J]. Forests, 2022, 14(1): 73. doi: 10.3390/f14010073 [35] DA SILVA E J, CREMONEZ V G, NISGOSKI S. Color Change and Thermogravimetric Analysis of Thermally Treated Eucalyptus Grandis Wood[J]. Revista Ciência da Madeira (Brazilian Journal of Wood Science), 2019, 10(1). [36] DZURENDA L, DUDIAK M. Cross-Correlation of Color and Acidity of Wet Beech Wood in the Process of Thermal Treatment with Saturated Steam[J]. Wood Res, 2021, 66(1): 105-116. doi: 10.37763/wr.1336-4561/66.1.105116 [37] BORŮVKA V, ŠEDIVKA P, NOVÁK D, et al. Haptic and Aesthetic Properties of Heat-Treated Modified Birch Wood[J]. Forests, 2021, 12(8): 1081. doi: 10.3390/f12081081 [38] ZHANG P, GAO J, LIU F, et al. Study on the Discoloration Mechanism of Eucalyptus Wood During Thermal Treatment in Different Media[J]. Polymers, 2023, 15(7): 1599. doi: 10.3390/polym15071599 [39] ZHANG P, WEI Y, LIU Y, et al. Heat-Induced Discoloration of Chromophore Structures in Eucalyptus Lignin[J]. Materials, 2018, 11(9): 1686. doi: 10.3390/ma11091686 [40] VIDHOLDOVÁ Z, SLABEOJEVÁ G. Colour Stabilisation of Surface of Four Thermally Modified Woods with Saturated Water Vapour by Finishes[J]. Polymers, 2021, 13(19): 3373. doi: 10.3390/polym13193373 [41] 王雪玉, 吕文华. 杉木增强-染色复合改性剂的制备工艺[J]. 东北林业大学学报, 2018, 46(4): 73-77. doi: 10.3969/j.issn.1000-5382.2018.04.015WANG Xueyu, LÜ Wenhua. Preparation Process of Fir Strengthening-Dyeing Composite Modifier[J]. Journal of Northeast Forestry University, 2018, 46(4): 73-77(in Chinese). doi: 10.3969/j.issn.1000-5382.2018.04.015 [42] 蹇鸿洋, 王张恒, 孙德林, 等. 增强-染色复合改性松木的制备及性能研究[J]. 家具与室内装饰, 2022, 29(12): 50-53.JIAN Hongyang, WANG Zhangheng, SUN Delin, et al. Preparation and Performance Study of Strengthening-Dyeing Composite Modified Pine[J]. Furniture and Interior Decoration, 2022, 29(12): 50-53(in Chinese). [43] JAXEL J, GUSENBAUER C, BÖHMDORFER S, et al. Improving Single-Step scCO2 Dyeing of Wood by DMSO-Induced Micro-Swelling[J]. The Journal of Supercritical Fluids, 2020, 165: 104978. doi: 10.1016/j.supflu.2020.104978 [44] VIDHOLDOVÁ Z, SLABEOJEVÁ G. Colour Stabilisation of Surface of Four Thermally Modified Woods with Saturated Water Vapour by Finishes[J]. Polymers, 2021, 13(19): 3373. doi: 10.3390/polym13193373 [45] ZOU W, LI Z, WANG Z, et al. Poplar-Based Thermochromic Composites That Change Colour at 38° C to 46° C[J]. Scientific Reports, 2021, 11(1): 16865. doi: 10.1038/s41598-021-95274-2 [46] KANG Z, FENG N, LIU B, et al. Polyvinyl Alcohol/Propylene Glycol Facilitates Reversible Thermochromism of Passive Energy-Saving Flexible Wood Films at Low (Brightness) to High (Depth) Temperatures[J]. RSC Advances, 2023, 13(47): 33096-33106. doi: 10.1039/D3RA06336D [47] WU Y, ZHOU J, HUANG Q, et al. Study on the Properties of Partially Transparent Wood Under Different Delignification Processes[J]. Polymers, 2020, 12(3): 661. doi: 10.3390/polym12030661 [48] 管雪梅, 黄靖一, 许宝成, 等. 基于粒子群优化Stearns-Noechel模型的全光谱木材配色算法研究[J]. 林产工业, 2022, 59(5): 20-26.GUAN Xuemei, HUANG Jingyi, XU Baocheng, et al. Study on Full-Spectrum Wood Color Matching Algorithm Based on Particle Swarm Optimization of Stearns-Noechel Model[J]. China Forest Products Industry, 2022, 59(5): 20-26(in Chinese). [49] GUAN X, ZHU Y, SONG W. Application of RBF Neural Network Improved by Peak Density Function in Intelligent Color Matching of Wood Dyeing[J]. Chaos, Solitons & Fractals, 2016, 89: 485-490. [50] WU M, GUAN X, LI W, et al. Color Spectra Algorithm of Hyperspectral Wood Dyeing Using Particle Swarm Optimization[J]. Wood Science and Technology, 2021, 55: 49-66. doi: 10.1007/s00226-020-01233-x [51] APRAIZ I I, DE LA OSA R A, ORTIZ D, et al. Industrial Research on Evolution and Prediction of Hardwood Color[J]. Applied Optics, 2020, 59(31): 9681-9689. doi: 10.1364/AO.403565 [52] 魏艳秀, 管雪梅, 李文峰, 等. 基于ADE算法优化的木材单板染色全光谱配色模型研究[J]. 西南林业大学学报(自然科学), 2021, 41(2): 125-132.WEI Yanxiu, GUAN Xuemei, LI Wenfeng, et al. Study on Full-Spectrum Wood Veneer Dyeing Color Matching Model Optimized by ADE Algorithm[J]. Journal of Southwest Forestry University (Natural Science), 2021, 41(2): 125-132(in Chinese). [53] 管雪梅, 吴马超, 李文峰, 等. 基于粒子群优化Friele模型木材染色配色算法研究[J]. 西北林学院学报, 2020, 35(6): 244-248. doi: 10.3969/j.issn.1001-7461.2020.06.34GUAN Xuemei, WU Machao, LI Wenfeng, et al. Study on Wood Dyeing Color Matching Algorithm Based on Particle Swarm Optimization of Friele Model[J]. Journal of Northwest Forestry University, 2020, 35(6): 244-248(in Chinese). doi: 10.3969/j.issn.1001-7461.2020.06.34 [54] 管雪梅, 杨渠三, 吴言. 基于灰狼算法优化支持向量回归模型的木材染色配色算法研究[J]. 林产工业, 2023, 60(7): 27-33.GUAN Xuemei, YANG Qusan, WU Yan. Research on Wood Dyeing Color Matching Algorithm Based on Grey Wolf Optimizer and Support Vector Regression Model[J]. China Forest Products Industry, 2023, 60(7): 27-33(in Chinese). [55] MO J, TAMBOLI D, HAVIAROVA E. Prediction of the Color Change of Surface Thermally Treated Wood by Artificial Neural Network[J]. European Journal of Wood and Wood Products, 2023, 81(5): 1135-1146. doi: 10.1007/s00107-023-01969-w [56] NGUYEN T T, VAN NGUYEN T H, JI X, et al. Prediction of the Color Change of Heat-Treated Wood During Artificial Weathering by Artificial Neural Network[J]. European Journal of Wood and Wood Products, 2019, 77: 1107-1116. doi: 10.1007/s00107-019-01449-0 [57] VAN NGUYEN T H, NGUYEN T T, JI X, et al. Predicting Color Change in Wood During Heat Treatment Using an Artificial Neural Network Model[J]. BioResources, 2018, 13(3): 6250-6264. doi: 10.15376/biores.13.3.6250-6264 [58] LI J, LI N, LI J, et al. Prediction of Thermally Modified Wood Color Change After Artificial Weathering Based on IPSO-SVM Model[J]. Forests, 2023, 14(5): 948. doi: 10.3390/f14050948 [59] LI R, XU W, WANG X, et al. Modeling and Predicting of the Color Changes of Wood Surface During CO2 Laser Modification[J]. Journal of Cleaner Production, 2018, 183: 818-823. doi: 10.1016/j.jclepro.2018.02.194 [60] KROPAT M, LALEICKE P F, ACOSTA J J. Towards Inline Prediction of Color Development for Wood Stained with Chemical Stains Using Near-Infrared Spectroscopy[J]. Forest Products Journal, 2022, 72(2): 130-139. doi: 10.13073/FPJ-D-22-00021
计量
- 文章访问数: 48
- HTML全文浏览量: 28
- 被引次数: 0