Synergistic antibacterial properties of Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate composites
-
摘要: 随着耐药细菌的快速增长,有机抑菌剂已无法满足社会公共卫生需求,高活性复合抑菌剂不仅可以保留单组分的性质,还可以显示出更加优异的抑菌性能,因而成为抑菌材料的重要研究方向。本研究通过制备纳米Cu2S材料,然后与3-(苯并噻唑-2-巯基)丙烷磺酸钠反应,制备出结构新颖的Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate(Cu2S@SBPF)材料,采用透射电子显微镜(TEM)、X射线衍射仪(XRD)、紫外可见分光光度计(UV-vis)、傅里叶变换红外光谱仪(FT-IR)及X射线光电子能谱分析仪(XPS)等测试手段对样品的微观形貌、结构、元素组成等进行表征,探究了该复合材料对革兰氏阴性菌大肠杆菌(E. coli)、革兰氏阳性菌金黄色葡萄球菌(S. aureus)和耐药菌沙门氏菌(T-Salmonella)的抑菌性能。结果表明,浓度为500 µg/mL的复合材料在60 min时对E. coli、S. aureus和T-Salmonella的抑菌率均达到99.99%且对E. coli最为敏感。抑菌机制表明,该复合材料能破坏细菌的细胞壁进入细菌内部,抑制细菌呼吸,最终使细菌死亡。这一成果有望为解决细菌耐药问题提供新的方案。Abstract: With the rapid growth of drug-resistant bacteria, organic bacteriostatic agents have been unable to meet the needs of social public health. High-activity composite bacteriostatic agents can not only retain the properties of single components, but also show more excellent antibacterial properties, thus becoming an important research direction of antibacterial materials. In this study, a novel structure Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate (Cu2S@SBPF) material, Transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet visible spectrophotometer (UV-vis), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy analyzer (XPS) were used to characterize the micromorphology, structure and elemental composition of the samples. The antibacterial properties of the composite against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and drug-resistant bacteria T-Salmonella were investigated. The results showed that the antibacterial rate of the composite at the concentration of 500 µg/mL to E. coli, S. aureus and T-Salmonella reached 99.99% at 60 min, and the composite was the most sensitive to E. coli. The antibacterial mechanism showed that the composite material could destroy the cell wall of bacteria into the interior of bacteria, inhibit bacterial respiration, and eventually cause bacterial death. This result is expected to provide a new solution to solve the problem of bacterial drug resistance.
-
Key words:
- Cu2S /
- Benzothiazole /
- Composite materials /
- Synergistic inhibition of bacteria /
- medicine [1]
-
图 5 不同材料对E. coli、S. aureus和T-Salmonella的滤纸片扩散照片;A、B、C、D 分别对应溶剂蒸馏水、Cu2S、SBPF以及 Cu2S@SBPF。图中(a1)代表浓度为0.5、1、2、5 mg/mL的不同抑菌材料对E. coli的抑菌结果照片。(b1)、(c1)为S. aureus 和T-Salmonella的抑菌结果照片;(a2)、(b2)、(c2)分别为不同材料对E. coli、S. aureus、T-Salmonella的抑菌圈直径随浓度变化曲线
Figure 5. Diffusion photos of E. coli, S. aureus and T-Salmonella by different materials on filter paper; A, B, C and D correspond to the solvents distilled water, Cu2S, SBPF and Cu2S@SBPF, respectively. In the figure (a1), the antibacterial results of different antibacterial materials with concentrations of 0.5, 1, 2 and 5 mg/mL against E. coli are shown. (b1) and (c1) are photos of antibacterial results of S. aureus and T-Salmonella; (a2), (b2) and (c2) show the inhibition zone diameter curves of different materials against E. coli, S. aureus and T-Salmonella as a function of concentration, respectively.
图 6 Cu2S@SBPF复合材料菌落计数照片
Cu2S@SBPF复合材料抑制 E. coli(a)、S. aureus(b)和 T-Salmonella(c)的菌落计数分布图;(d)为纳米复合材料的时间-杀菌曲线图;(e)图为纳米复合材料对三种测试菌在不同时间的抑菌率比较图
Figure 6. Cu2S@SBPF Colony count photo of the composite
Cu2S@SBPF Colony count distribution diagram of E. coli(a), S. aureus(b) and T-Salmonella(c) inhibited by the composite. (d) shows the time-sterilization curve of the nanocomposite; (e) Figure shows the comparison of antibacterial rates of nanocomposites against the three test bacteria at different times
图 7 (a)Cu2S@SBPF复合材料与三种测试菌混合5和60 min后的Zeta电位值;(b)ICP-OES测得的铜阳离子累积释放图;(c)复合材料毒理性实验结果
Figure 7. (a) The Zeta potential values of the Cu2S@SBPF composite after mixing with the three test bacteria for 5 and 60 min; (b) Cumulative release of copper cations measured by ICP-OES; (c) experimental results of toxicity of composite materials
图 8 Cu2S@SBPF复合材料对E. coli(d)、S. aureus(e)和 T-Salmonella(f)的 PI 染色照片,(a、b、c)为对应的纯菌对照效果图。Cu2S@SBPF复合材料作用于E. coli(g)、S. aureus(h)和 T-Salmonella (i)的细胞质泄露结果
Figure 8. Photos of the PI staining of the Cu2S@SBPF composite for E. coli(d), S. aureus(e) and T-Salmonella(f), and (a, b, c) are the corresponding rendering of the pure bacteria control. Results of cytoplasmic leakage of the Cu2S@SBPF composite acting on E. coli(g), S. aureus(h), and T-Salmonella (i)
表 1 溶剂、Cu2S、SBPF以及 Cu2S@SBPF对E. coli、S. aureus 和 T-Salmonella的抑菌圈尺寸
Table 1. Inhibition zone size of solvent, Cu2S, SBPF, and Cu2S@SBPF against E. coli, S. aureus, and T-Salmonella
Bacterial Concentration/
(mg·mL−1)Inhibition zones/cm (±0.05) H2O Cu2S SBPF Cu2S@SBPF E. coli 0.5 0.6 0.9 0.6 1 1 0.6 1.1 0.7 1.2 2 0.6 1.6 0.8 1.9 5 0.6 2.1 1 2.4 S. aureus 0.5 0.6 0.6 0.6 0.7 1 0.6 0.7 0.6 0.8 2 0.6 1.2 0.6 1.9 5 0.6 1.7 0.7 2.3 T-Salmonella 0.5 0.6 0.7 0.6 0.8 1 0.6 0.8 0.6 1 2 0.6 1 0.7 1.3 5 0.6 1.5 0.9 1.6 -
[1] THEO V, STEPHEN S L, CRISTIANA A, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. The Lancet, 2020, 396(10258): 1204-1222. doi: 10.1016/S0140-6736(20)30925-9 [2] ALI S H, SAYED A R. Review of the synthesis and biological activity of thiazoles[J]. Synthetic Communications, 2021, 51(5): 670-700. doi: 10.1080/00397911.2020.1854787 [3] GRYBAITE B, VAICKELIONIENE R, STASEVYCH M, et al. Synthesis and antimicrobial activity of novel thiazoles with reactive functional groups[J]. Chemistry Select, 2019, 4(23): 6965-6970. [4] KARTSEV V, GERONIKAKI A, ZUBENKO A, et al. Synthesis and antimicrobial activity of new heteroaryl (aryl) thiazole derivatives molecular docking studies[J]. Antibiotics, 2022, 11(10): 1337. doi: 10.3390/antibiotics11101337 [5] JI X H, WU Y H, HAN Y Y, et al. Synergistic antibacterial study of nano-Cu2O/CuO@ Ag-tetracycline composites[J]. Materials Chemistry and Physics, 2023, 306: 127904. doi: 10.1016/j.matchemphys.2023.127904 [6] CHEN H F, WU J J, WU M Y, et al. Preparation and antibacterial activities of copper nanoparticles encapsulated by carbon[J]. New Carbon Materials, 2019, 34(4): 382-389. doi: 10.1016/S1872-5805(19)30023-X [7] RADI A, PRADHAN D, SOHN Y, et al. Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O core- shell nanoparticles on Si (100) by one-step, templateless, capping-agent-free electrodeposition[J]. ACS Nano, 2010, 4(3): 1553-1560. doi: 10.1021/nn100023h [8] 梁犇, 吴娟娟, 郑锦丽, 等. 4-羟基香豆素-Ag复合材料的协同抑菌性能[J]. 复合材料学报, 2023, 40(8): 4779-4791.LIANG B, WU J J, ZHENG J L, et al. Synergistic antibacterial properties of 4-hydroxycoumarin-Ag composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4779-4791(in Chinese). [9] XU X Y, SHEN J, QIN J Y, et al. Cytotoxicity of bacteriostatic reduced graphene oxide-based copper oxide nanocomposites[J]. Journal of Metals, 2019, 71: 294-301. [10] ZHOU J L, ZHAI M, WANG R X, et al. High metal-loaded Cu2O@ TM hybrids for melt-spun antibacterial fibers engineered towards medical protective fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2022, 161: 107080. doi: 10.1016/j.compositesa.2022.107080 [11] 吴迎花, 陈惠惠, 房迅, 等. Cu2O/CuO-四环素复合材料的协同抑菌性能[J]. 复合材料学报, 2023, 40(12): 6789-6799.WU Y H, CHEN H H, FANG X, et al. Study on synergistic antibacterial effect of Cu2O/CuO-tetracycline composites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6789-6799(in Chinese). [12] 何月珍, 尹曼悦, 孙健. 硫化亚铜纳米抗菌剂及其制备方法和应用: 安徽省, CN113582216A[P]. 2021-11-02.HE Y Z, YIN M Y, SUN J, et al. Cuprous sulfide nano antibacterial agent and preparation method and application thereof: Anhui Province, China, CN113582216A[P]. 2021-11-02. (in Chinese) [13] 董娜, 陈哲, 王辰. 高温热解法合成硫化亚铜纳米晶[J]. 有色金属(冶炼部分), 2020, (5): 71-74.DONG N, CHEN Z, WANG C, et al. Synthesis of cuprous sulfide nanocrystalline by high temperature pyrolysis[J]. Nonferrous Metals (Extractive Metallurgy), 2020, (5): 71-74(in Chinese). [14] 李思晴, 赵晨, 陈哲. Cu1.1S纳米晶的制备及光催化应用[J]. 吉林化工学院学报, 2021, 38(11): 29-32.LI S Q, ZHAO C, CHEN Z, et al. Preparation and photocatalytic application of Cu1.1S nanocrystals[J]. Journal of Jilin Institute of Chemical Technology, 2021, 38(11): 29-32(in Chinese). [15] 余德观, 廖颖艺, 黄罗仪, 等. 4种苯并噻唑类药物及其类似物的谱学计算分析[J]. 药物分析杂志, 2021, 41(8): 1461-1475.YU D G, LIAO Y Y, HUANG L Y, et al. Spectrographic calculation of 4 benzothiazoles and their analogues[J]. Chinese Journal of Pharmaceutical Analysis, 2021, 41(8): 1461-1475(in Chinese). [16] 刘庆, 魏振宏, 于慧, 等. 金属氯化物-苯并噻唑有机-无机杂化化合物的合成、表征及荧光性质[J]. 无机化学学报, 2017, 33(11): 2139-2146.LIU Q, WEI Z H, YU H, et al. Syntheses, characterization and optical properties of three organic inorganic hybrid compounds based on metal chlorides and benzothiazole[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(11): 2139-2146(in Chinese). [17] ZHANG P, WANG T Q, QIAN G R, et al. Organo-LDH synthesized via tricalcium alumi-nate hydration in the present of Na-dodecylbenzenesulfate aqueous solution and subsequent investigated by near-infrared and mid-infrared[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 125: 195-200. doi: 10.1016/j.saa.2014.01.062 [18] 高明, 徐艳林, 盛翔, 等. 超高效液相色谱法测定橡胶中6种橡胶助剂的含量[J]. 理化检验(化学分册), 2020, 56(1): 66-70.GAO M, XU Y L, SHENG X, et al. Determination of six kinds of rubber additives in rubber by ultra performance liquid chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(1): 66-70(in Chinese). [19] 岳阳阳, 韦毅, 邓明龙, 等. 构造CuO/Cu2S复合微纳米晶材料及其光催化性能研究[J]. 化工新型材料, 2020, 48(7): 114-118+123.YUE Y Y, WEI Y, DENG M L, et al. Synthesis and photocatalytic properties of CuO/Cu2S composite micro-nanocrystalline materials[J]. New Chemical Materials, 2020, 48(7): 114-118+123(in Chinese). [20] FINSGAR M. Tandem GCIB-ToF-SIMS and GCIB-XPS analyses of the 2-mercaptobenzothiazole on brass[J]. Npj Materials Degradation, 2023, 7(1): 1. doi: 10.1038/s41529-022-00317-2 [21] CHEN X N, WANG X H, FANG D. A review on C1s XPS-spectra for some kinds of carbon materials[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, (28)12: 1048-1058. [22] SHI H Y, LIU Y H, SONG J, et al. On-surface synthesis of self-assembled monolayers of benzothiazole derivatives studied by STM and XPS[J]. Langmuir, 2017, 33(17): 4216-4223. doi: 10.1021/acs.langmuir.7b00674 [23] ZHAO J, GAO F, PUJARI S P, et al. Universal calibration of computationally predicted N 1s binding energies for interpretation of XPS experimental measurements[J]. Langmuir, 2017, 33(41): 10792-10799. doi: 10.1021/acs.langmuir.7b02301 [24] 李毓豪, 刘华, 杨丙桥, 等. 木质素磺酸钠在磷矿正浮选脱镁中的应用及机理研究[J]. 有色金属(选矿部分), 2023, (3): 152-157+180.LI Y H, LIU H, YANG B J, et al. Study on the application and mechanism of sodium lignosulfonate in phosphorite flotation[J]. Nonferrous Metals Mieral Processing Section, 2023, (3): 152-157+180(in Chinese). [25] 谢成浩, 郭鸿旭, 陈彰旭. CN@NiS-Cu2S复合材料的制备及其催化性能分析[J]. 闽南师范大学学报(自然科学版), 2023, 36(3): 90-97.XIE C H, GUO H X, CHEN Z X, et al. Preparation of CN@NiS-Cu2S composites and analysis of their catalytic properties[J]. Journal of Zhangzhou Teachers College (Natural Science Edition), 2023, 36(3): 90-97(in Chinese). [26] FINSGAR M. Surface analysis of the 2-mercaptobenzothiazole corrosion inhibitor on 6082 aluminum alloy using ToF-SIMS and XPS[J]. Analytical Methods, 2020, 12(4): 456-465. doi: 10.1039/C9AY02293G [27] VALE B R C, MOURAO R S, BETTINI J, et al. Ligand induced switching of the band alignment in aqueous synthesized CdTe/CdS core/shell nanocrystals[J]. Scientific Reports, 2019, 9(1): 8332-8344. doi: 10.1038/s41598-019-44787-y [28] MAILLARD A P V F, ESPECHE J C, MATURANA P, et al. Zeta potential beyond materials sci-ence: applications to bacterial systems and to the devel-opment of novel antimicrobials[J]. Biochimica et Bio-physica Acta (BBA)- Biomembranes, 2021, 1863: 183597-183607. [29] WANG X L, LI Y, HUANG J, et al. Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances[J]. Journal of Environmental Radioactivity, 2019, 197: 81-89. doi: 10.1016/j.jenvrad.2018.12.002 [30] YADAV A K, SIROHI P, SARASWAT S, et al. Inhibitory mechanism on combination of phytic acid with methanolic seed extract of syzygium cumini and sodium chloride over bacillus subtilis[J]. Current Microbiology, 2018, 75: 849-856. doi: 10.1007/s00284-018-1457-5 [31] YANG H Y, CHANG C M, CHEN Y W, et al. Inhibitory effect of propolis extract on the growth of Listeria monocytogenes and the mutagenicity of 4-nitroquinoline-N-oxide[J]. Journal of the Science of Food and Agriculture, 2006, 86(6): 937-943. doi: 10.1002/jsfa.2441 [32] LIU B K, XUE Y F, ZHANG J T, et al. Visible-light-driven TiO2/Ag3PO4 heterostructures with enhanced antifungal activity against agricultural pathogenic fungi Fusarium graminearum and mechanism insight[J]. Environmental Science: Nano, 2017, 4(1): 255-264. doi: 10.1039/C6EN00415F [33] HAMANO Y. Occurrence, biosynthesis, biodegradation, and industrial and medical applications of a naturally occurring ε-poly-l-lysine[J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(7): 1226-1233. doi: 10.1271/bbb.110201 [34] ROJAS E R, BILLINGS G, ODERMATT P D, et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria[J]. Nature, 2018, 559(7715): 617-621. doi: 10.1038/s41586-018-0344-3 [35] 刁春玲, 张国平, 徐广芳, 等. 苯并噻唑衍生物亚磷酸盐对禾谷镰刀菌的作用机理初探[J]. 农药学学报, 2006, 8(3): 233-238.DIAO C L, ZHANG G P, XU G F, et al. Effect of benzothiazole derivative phosphite on Fusarium grainearum[J]. Chinese Journal of Pesticide Science, 2006, 8(3): 233-238(in Chinese). [36] LI W R, XIE X B, SHI Q S, et al. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli[J]. Applied Mi-crobiology and Biotechnology, 2010, 85: 1115-1122. doi: 10.1007/s00253-009-2159-5
计量
- 文章访问数: 82
- HTML全文浏览量: 61
- 被引次数: 0