留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate 复合材料的协同抑菌性能

汪艳 张强 陈惠惠 邱莹 胡瑞玲 李亚鹏 赵欣鑫 安雪 刘荟芝 郭少波

汪艳, 张强, 陈惠惠, 等. Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate 复合材料的协同抑菌性能[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 汪艳, 张强, 陈惠惠, 等. Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate 复合材料的协同抑菌性能[J]. 复合材料学报, 2024, 42(0): 1-13.
WANG Yan, ZHANG Qiang, CHEN Huihui, et al. Synergistic antibacterial properties of Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate composites[J]. Acta Materiae Compositae Sinica.
Citation: WANG Yan, ZHANG Qiang, CHEN Huihui, et al. Synergistic antibacterial properties of Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate composites[J]. Acta Materiae Compositae Sinica.

Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate 复合材料的协同抑菌性能

基金项目: 陕西省教育厅项目(20JS015),陕西省自然科学基金(2023-YBGY-486)和陕西理工大学基础研究基金(SLGRCQD2309)
详细信息
    通讯作者:

    张强,教授,硕士生导师,研究方向为多环芳烃的合成, E-mail: zhangqiang22@126.com

  • 中图分类号: O626;TB333

Synergistic antibacterial properties of Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate composites

Funds: Project of Shaanxi Provincial Department of Education (20JS015), Shaanxi Provincial Natural Science Foundation (2023-YBGY-486), and Fundamental Research Fund of Shaanxi University of Science and Technology (SLGRCQD2309)
  • 摘要: 随着耐药细菌的快速增长,有机抑菌剂已无法满足社会公共卫生需求,高活性复合抑菌剂不仅可以保留单组分的性质,还可以显示出更加优异的抑菌性能,因而成为抑菌材料的重要研究方向。本研究通过制备纳米Cu2S材料,然后与3-(苯并噻唑-2-巯基)丙烷磺酸钠反应,制备出结构新颖的Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate(Cu2S@SBPF)材料,采用透射电子显微镜(TEM)、X射线衍射仪(XRD)、紫外可见分光光度计(UV-vis)、傅里叶变换红外光谱仪(FT-IR)及X射线光电子能谱分析仪(XPS)等测试手段对样品的微观形貌、结构、元素组成等进行表征,探究了该复合材料对革兰氏阴性菌大肠杆菌(E. coli)、革兰氏阳性菌金黄色葡萄球菌(S. aureus)和耐药菌沙门氏菌(T-Salmonella)的抑菌性能。结果表明,浓度为500 µg/mL的复合材料在60 min时对E. coliS. aureusT-Salmonella的抑菌率均达到99.99%且对E. coli最为敏感。抑菌机制表明,该复合材料能破坏细菌的细胞壁进入细菌内部,抑制细菌呼吸,最终使细菌死亡。这一成果有望为解决细菌耐药问题提供新的方案。

     

  • 图  1  Cu2S@SBPF复合材料的合成示意图

    Figure  1.  Illustration of the synthesis of Cu2S@SBPF composites

    SBPF—Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate

    图  2  (a) Cu2S的TEM图;(b) Cu2S的HRTEM图;(c) (d) (e) Cu2S的EDS图;

    Figure  2.  (a) TEM diagram of Cu2S; (b) HRTEM of Cu2S; EDS diagram of (c) (d) (e) Cu2S;

    图  3  (a) (b) (c) Cu2S、SBPF 、Cu2S@SBPF的XRD图、红外光谱图和紫外吸收光谱图;(d-i) Cu2S@SBPF的XPS谱图

    Figure  3.  (a) (b) (c) XRD、Infrared spectra and UV absorption spectra of Cu2S, SBPF and Cu2S@SBPF; (d-i) XPS spectra of Cu2S@SBPF

    图  4  (a) SBPF和 Cu2S的优化电子结构和SBPF的静电势(ESP)分析示意图;(b) Cu2S与SBPF的结合能

    Figure  4.  (a) Schematic diagram of the optimized electronic structures of SBPF and Cu2S and the electrostatic potential (ESP) analysis of SBPF; (b) Binding energy between Cu2S and SBPF

    图  5  不同材料对E. coliS. aureusT-Salmonella的滤纸片扩散照片;A、B、C、D 分别对应溶剂蒸馏水、Cu2S、SBPF以及 Cu2S@SBPF。图中(a1)代表浓度为0.5、1、2、5 mg/mL的不同抑菌材料对E. coli的抑菌结果照片。(b1)、(c1)为S. aureusT-Salmonella的抑菌结果照片;(a2)、(b2)、(c2)分别为不同材料对E. coliS. aureus、T-Salmonella的抑菌圈直径随浓度变化曲线

    Figure  5.  Diffusion photos of E. coli, S. aureus and T-Salmonella by different materials on filter paper; A, B, C and D correspond to the solvents distilled water, Cu2S, SBPF and Cu2S@SBPF, respectively. In the figure (a1), the antibacterial results of different antibacterial materials with concentrations of 0.5, 1, 2 and 5 mg/mL against E. coli are shown. (b1) and (c1) are photos of antibacterial results of S. aureus and T-Salmonella; (a2), (b2) and (c2) show the inhibition zone diameter curves of different materials against E. coli, S. aureus and T-Salmonella as a function of concentration, respectively.

    图  6  Cu2S@SBPF复合材料菌落计数照片

    Cu2S@SBPF复合材料抑制 E. coli(a)、S. aureus(b)和 T-Salmonella(c)的菌落计数分布图;(d)为纳米复合材料的时间-杀菌曲线图;(e)图为纳米复合材料对三种测试菌在不同时间的抑菌率比较图

    Figure  6.  Cu2S@SBPF Colony count photo of the composite

    Cu2S@SBPF Colony count distribution diagram of E. coli(a), S. aureus(b) and T-Salmonella(c) inhibited by the composite. (d) shows the time-sterilization curve of the nanocomposite; (e) Figure shows the comparison of antibacterial rates of nanocomposites against the three test bacteria at different times

    图  7  (a)Cu2S@SBPF复合材料与三种测试菌混合5和60 min后的Zeta电位值;(b)ICP-OES测得的铜阳离子累积释放图;(c)复合材料毒理性实验结果

    Figure  7.  (a) The Zeta potential values of the Cu2S@SBPF composite after mixing with the three test bacteria for 5 and 60 min; (b) Cumulative release of copper cations measured by ICP-OES; (c) experimental results of toxicity of composite materials

    图  8  Cu2S@SBPF复合材料对E. coli(d)、S. aureus(e)和 T-Salmonella(f)的 PI 染色照片,(a、b、c)为对应的纯菌对照效果图。Cu2S@SBPF复合材料作用于E. coli(g)、S. aureus(h)和 T-Salmonella (i)的细胞质泄露结果

    Figure  8.  Photos of the PI staining of the Cu2S@SBPF composite for E. coli(d), S. aureus(e) and T-Salmonella(f), and (a, b, c) are the corresponding rendering of the pure bacteria control. Results of cytoplasmic leakage of the Cu2S@SBPF composite acting on E. coli(g), S. aureus(h), and T-Salmonella (i)

    图  9  Cu2S@SBPF复合材料抑菌机制图

    Figure  9.  Cu2S@SBPF Antibacterial mechanism diagram of composite material

    表  1  溶剂、Cu2S、SBPF以及 Cu2S@SBPF对E. coliS. aureusT-Salmonella的抑菌圈尺寸

    Table  1.   Inhibition zone size of solvent, Cu2S, SBPF, and Cu2S@SBPF against E. coli, S. aureus, and T-Salmonella

    BacterialConcentration/
    (mg·mL−1)
    Inhibition zones/cm (±0.05)
    H2OCu2SSBPFCu2S@SBPF
    E. coli0.50.60.90.61
    10.61.10.71.2
    20.61.60.81.9
    50.62.112.4
    S. aureus0.50.60.60.60.7
    10.60.70.60.8
    20.61.20.61.9
    50.61.70.72.3
    T-Salmonella0.50.60.70.60.8
    10.60.80.61
    20.610.71.3
    50.61.50.91.6
    下载: 导出CSV
  • [1] THEO V, STEPHEN S L, CRISTIANA A, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. The Lancet, 2020, 396(10258): 1204-1222. doi: 10.1016/S0140-6736(20)30925-9
    [2] ALI S H, SAYED A R. Review of the synthesis and biological activity of thiazoles[J]. Synthetic Communications, 2021, 51(5): 670-700. doi: 10.1080/00397911.2020.1854787
    [3] GRYBAITE B, VAICKELIONIENE R, STASEVYCH M, et al. Synthesis and antimicrobial activity of novel thiazoles with reactive functional groups[J]. Chemistry Select, 2019, 4(23): 6965-6970.
    [4] KARTSEV V, GERONIKAKI A, ZUBENKO A, et al. Synthesis and antimicrobial activity of new heteroaryl (aryl) thiazole derivatives molecular docking studies[J]. Antibiotics, 2022, 11(10): 1337. doi: 10.3390/antibiotics11101337
    [5] JI X H, WU Y H, HAN Y Y, et al. Synergistic antibacterial study of nano-Cu2O/CuO@ Ag-tetracycline composites[J]. Materials Chemistry and Physics, 2023, 306: 127904. doi: 10.1016/j.matchemphys.2023.127904
    [6] CHEN H F, WU J J, WU M Y, et al. Preparation and antibacterial activities of copper nanoparticles encapsulated by carbon[J]. New Carbon Materials, 2019, 34(4): 382-389. doi: 10.1016/S1872-5805(19)30023-X
    [7] RADI A, PRADHAN D, SOHN Y, et al. Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O core- shell nanoparticles on Si (100) by one-step, templateless, capping-agent-free electrodeposition[J]. ACS Nano, 2010, 4(3): 1553-1560. doi: 10.1021/nn100023h
    [8] 梁犇, 吴娟娟, 郑锦丽, 等. 4-羟基香豆素-Ag复合材料的协同抑菌性能[J]. 复合材料学报, 2023, 40(8): 4779-4791.

    LIANG B, WU J J, ZHENG J L, et al. Synergistic antibacterial properties of 4-hydroxycoumarin-Ag composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4779-4791(in Chinese).
    [9] XU X Y, SHEN J, QIN J Y, et al. Cytotoxicity of bacteriostatic reduced graphene oxide-based copper oxide nanocomposites[J]. Journal of Metals, 2019, 71: 294-301.
    [10] ZHOU J L, ZHAI M, WANG R X, et al. High metal-loaded Cu2O@ TM hybrids for melt-spun antibacterial fibers engineered towards medical protective fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2022, 161: 107080. doi: 10.1016/j.compositesa.2022.107080
    [11] 吴迎花, 陈惠惠, 房迅, 等. Cu2O/CuO-四环素复合材料的协同抑菌性能[J]. 复合材料学报, 2023, 40(12): 6789-6799.

    WU Y H, CHEN H H, FANG X, et al. Study on synergistic antibacterial effect of Cu2O/CuO-tetracycline composites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6789-6799(in Chinese).
    [12] 何月珍, 尹曼悦, 孙健. 硫化亚铜纳米抗菌剂及其制备方法和应用: 安徽省, CN113582216A[P]. 2021-11-02.

    HE Y Z, YIN M Y, SUN J, et al. Cuprous sulfide nano antibacterial agent and preparation method and application thereof: Anhui Province, China, CN113582216A[P]. 2021-11-02. (in Chinese)
    [13] 董娜, 陈哲, 王辰. 高温热解法合成硫化亚铜纳米晶[J]. 有色金属(冶炼部分), 2020, (5): 71-74.

    DONG N, CHEN Z, WANG C, et al. Synthesis of cuprous sulfide nanocrystalline by high temperature pyrolysis[J]. Nonferrous Metals (Extractive Metallurgy), 2020, (5): 71-74(in Chinese).
    [14] 李思晴, 赵晨, 陈哲. Cu1.1S纳米晶的制备及光催化应用[J]. 吉林化工学院学报, 2021, 38(11): 29-32.

    LI S Q, ZHAO C, CHEN Z, et al. Preparation and photocatalytic application of Cu1.1S nanocrystals[J]. Journal of Jilin Institute of Chemical Technology, 2021, 38(11): 29-32(in Chinese).
    [15] 余德观, 廖颖艺, 黄罗仪, 等. 4种苯并噻唑类药物及其类似物的谱学计算分析[J]. 药物分析杂志, 2021, 41(8): 1461-1475.

    YU D G, LIAO Y Y, HUANG L Y, et al. Spectrographic calculation of 4 benzothiazoles and their analogues[J]. Chinese Journal of Pharmaceutical Analysis, 2021, 41(8): 1461-1475(in Chinese).
    [16] 刘庆, 魏振宏, 于慧, 等. 金属氯化物-苯并噻唑有机-无机杂化化合物的合成、表征及荧光性质[J]. 无机化学学报, 2017, 33(11): 2139-2146.

    LIU Q, WEI Z H, YU H, et al. Syntheses, characterization and optical properties of three organic inorganic hybrid compounds based on metal chlorides and benzothiazole[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(11): 2139-2146(in Chinese).
    [17] ZHANG P, WANG T Q, QIAN G R, et al. Organo-LDH synthesized via tricalcium alumi-nate hydration in the present of Na-dodecylbenzenesulfate aqueous solution and subsequent investigated by near-infrared and mid-infrared[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 125: 195-200. doi: 10.1016/j.saa.2014.01.062
    [18] 高明, 徐艳林, 盛翔, 等. 超高效液相色谱法测定橡胶中6种橡胶助剂的含量[J]. 理化检验(化学分册), 2020, 56(1): 66-70.

    GAO M, XU Y L, SHENG X, et al. Determination of six kinds of rubber additives in rubber by ultra performance liquid chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(1): 66-70(in Chinese).
    [19] 岳阳阳, 韦毅, 邓明龙, 等. 构造CuO/Cu2S复合微纳米晶材料及其光催化性能研究[J]. 化工新型材料, 2020, 48(7): 114-118+123.

    YUE Y Y, WEI Y, DENG M L, et al. Synthesis and photocatalytic properties of CuO/Cu2S composite micro-nanocrystalline materials[J]. New Chemical Materials, 2020, 48(7): 114-118+123(in Chinese).
    [20] FINSGAR M. Tandem GCIB-ToF-SIMS and GCIB-XPS analyses of the 2-mercaptobenzothiazole on brass[J]. Npj Materials Degradation, 2023, 7(1): 1. doi: 10.1038/s41529-022-00317-2
    [21] CHEN X N, WANG X H, FANG D. A review on C1s XPS-spectra for some kinds of carbon materials[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, (28)12: 1048-1058.
    [22] SHI H Y, LIU Y H, SONG J, et al. On-surface synthesis of self-assembled monolayers of benzothiazole derivatives studied by STM and XPS[J]. Langmuir, 2017, 33(17): 4216-4223. doi: 10.1021/acs.langmuir.7b00674
    [23] ZHAO J, GAO F, PUJARI S P, et al. Universal calibration of computationally predicted N 1s binding energies for interpretation of XPS experimental measurements[J]. Langmuir, 2017, 33(41): 10792-10799. doi: 10.1021/acs.langmuir.7b02301
    [24] 李毓豪, 刘华, 杨丙桥, 等. 木质素磺酸钠在磷矿正浮选脱镁中的应用及机理研究[J]. 有色金属(选矿部分), 2023, (3): 152-157+180.

    LI Y H, LIU H, YANG B J, et al. Study on the application and mechanism of sodium lignosulfonate in phosphorite flotation[J]. Nonferrous Metals Mieral Processing Section, 2023, (3): 152-157+180(in Chinese).
    [25] 谢成浩, 郭鸿旭, 陈彰旭. CN@NiS-Cu2S复合材料的制备及其催化性能分析[J]. 闽南师范大学学报(自然科学版), 2023, 36(3): 90-97.

    XIE C H, GUO H X, CHEN Z X, et al. Preparation of CN@NiS-Cu2S composites and analysis of their catalytic properties[J]. Journal of Zhangzhou Teachers College (Natural Science Edition), 2023, 36(3): 90-97(in Chinese).
    [26] FINSGAR M. Surface analysis of the 2-mercaptobenzothiazole corrosion inhibitor on 6082 aluminum alloy using ToF-SIMS and XPS[J]. Analytical Methods, 2020, 12(4): 456-465. doi: 10.1039/C9AY02293G
    [27] VALE B R C, MOURAO R S, BETTINI J, et al. Ligand induced switching of the band alignment in aqueous synthesized CdTe/CdS core/shell nanocrystals[J]. Scientific Reports, 2019, 9(1): 8332-8344. doi: 10.1038/s41598-019-44787-y
    [28] MAILLARD A P V F, ESPECHE J C, MATURANA P, et al. Zeta potential beyond materials sci-ence: applications to bacterial systems and to the devel-opment of novel antimicrobials[J]. Biochimica et Bio-physica Acta (BBA)- Biomembranes, 2021, 1863: 183597-183607.
    [29] WANG X L, LI Y, HUANG J, et al. Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances[J]. Journal of Environmental Radioactivity, 2019, 197: 81-89. doi: 10.1016/j.jenvrad.2018.12.002
    [30] YADAV A K, SIROHI P, SARASWAT S, et al. Inhibitory mechanism on combination of phytic acid with methanolic seed extract of syzygium cumini and sodium chloride over bacillus subtilis[J]. Current Microbiology, 2018, 75: 849-856. doi: 10.1007/s00284-018-1457-5
    [31] YANG H Y, CHANG C M, CHEN Y W, et al. Inhibitory effect of propolis extract on the growth of Listeria monocytogenes and the mutagenicity of 4-nitroquinoline-N-oxide[J]. Journal of the Science of Food and Agriculture, 2006, 86(6): 937-943. doi: 10.1002/jsfa.2441
    [32] LIU B K, XUE Y F, ZHANG J T, et al. Visible-light-driven TiO2/Ag3PO4 heterostructures with enhanced antifungal activity against agricultural pathogenic fungi Fusarium graminearum and mechanism insight[J]. Environmental Science: Nano, 2017, 4(1): 255-264. doi: 10.1039/C6EN00415F
    [33] HAMANO Y. Occurrence, biosynthesis, biodegradation, and industrial and medical applications of a naturally occurring ε-poly-l-lysine[J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(7): 1226-1233. doi: 10.1271/bbb.110201
    [34] ROJAS E R, BILLINGS G, ODERMATT P D, et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria[J]. Nature, 2018, 559(7715): 617-621. doi: 10.1038/s41586-018-0344-3
    [35] 刁春玲, 张国平, 徐广芳, 等. 苯并噻唑衍生物亚磷酸盐对禾谷镰刀菌的作用机理初探[J]. 农药学学报, 2006, 8(3): 233-238.

    DIAO C L, ZHANG G P, XU G F, et al. Effect of benzothiazole derivative phosphite on Fusarium grainearum[J]. Chinese Journal of Pesticide Science, 2006, 8(3): 233-238(in Chinese).
    [36] LI W R, XIE X B, SHI Q S, et al. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli[J]. Applied Mi-crobiology and Biotechnology, 2010, 85: 1115-1122. doi: 10.1007/s00253-009-2159-5
  • 加载中
计量
  • 文章访问数:  58
  • HTML全文浏览量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-28
  • 修回日期:  2024-04-03
  • 录用日期:  2024-04-20
  • 网络出版日期:  2024-05-25

目录

    /

    返回文章
    返回