留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

W掺杂Cr2O3薄膜的制备及其在异丁烯气体检测中的应用

王鹏家 彭宝营 吴伟 巩亚东

王鹏家, 彭宝营, 吴伟, 等. W掺杂Cr2O3薄膜的制备及其在异丁烯气体检测中的应用[J]. 复合材料学报, 2023, 40(8): 4549-4557. doi: 10.13801/j.cnki.fhclxb.20221209.001
引用本文: 王鹏家, 彭宝营, 吴伟, 等. W掺杂Cr2O3薄膜的制备及其在异丁烯气体检测中的应用[J]. 复合材料学报, 2023, 40(8): 4549-4557. doi: 10.13801/j.cnki.fhclxb.20221209.001
WANG Pengjia, PENG Baoying, WU Wei, et al. Synthesis of W-doped Cr2O3 thin films and their application in isobutylene sensing[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4549-4557. doi: 10.13801/j.cnki.fhclxb.20221209.001
Citation: WANG Pengjia, PENG Baoying, WU Wei, et al. Synthesis of W-doped Cr2O3 thin films and their application in isobutylene sensing[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4549-4557. doi: 10.13801/j.cnki.fhclxb.20221209.001

W掺杂Cr2O3薄膜的制备及其在异丁烯气体检测中的应用

doi: 10.13801/j.cnki.fhclxb.20221209.001
基金项目: 宁夏自然科学基金(2022 AAC03344);北京市教委科技计划(KM202011232012);国家自然科学基金(51405026)
详细信息
    通讯作者:

    彭宝营,博士,副教授,硕士生导师,研究方向为纳米复合材料制备及应用、绿色制造技术 E-mail: pengbaoying@yeah.net

  • 中图分类号: TB332

Synthesis of W-doped Cr2O3 thin films and their application in isobutylene sensing

Funds: Natural Science Foundation of Ningxia (2022 AAC03344); Beijing Municipal Education Commission Project (KM202011232012); National Natural Science Foundation of China (51405026)
  • 摘要: 为了实现对异丁烯气体的有效检测,采用气溶胶辅助化学气相沉积(AACVD)技术在氧化铝基底表面合成氧化铬(Cr2O3)及W掺杂Cr2O3(W/Cr2O3)薄膜。通过SEM、TEM、XRD及XPS等检测手段对Cr2O3及W/Cr2O3薄膜的微观形貌、晶体结构和元素结合价态进行分析。结果表明:Cr2O3薄膜厚度约为20 μm,由粒径为50 nm左右的纳米颗粒组成,其结构较松散,而W掺杂Cr2O3后所获薄膜结构致密,颗粒粒径约为15 nm,尺寸明显减小,Cr2O3及W/Cr2O3薄膜均具有单一的六方相晶体结构。气敏测试结果表明,在400℃工作温度条件下,基于W/Cr2O3薄膜所制备的气体传感器相较于Cr2O3气体传感器对2×10−5异丁烯的灵敏度由原来的1.11提升为3.55,并展现出良好的稳定性、抗湿性和气体选择性。

     

  • 图  1  气溶胶辅助化学气相沉积的反应原理图

    MFC—Mass flow controller

    Figure  1.  Reaction schematic diagram of an aerosol-assisted chemical vapor deposition

    图  2  气体传感器结构示意图

    Figure  2.  Structure schematic diagram of gas sensor

    图  3  Cr2O3薄膜的SEM表面图像(a)和截面图像(b);W/Cr2O3薄膜的SEM图像(c)和TEM图像(d)

    Figure  3.  SEM surface image (a) and cross section image (b) of Cr2O3 thin film; SEM image (c) and TEM image (d) of W/Cr2O3 thin film

    图  4  Cr2O3和W/Cr2O3薄膜在衍射角为21°~66° (a)和30°~40° (b)范围内的XRD图谱

    Figure  4.  XRD patterns of Cr2O3 and W/Cr2O3 thin films in the diffraction angles of 21°-66° (a) and 30°-40° (b)

    图  5  Cr2O3和W/Cr2O3薄膜:(a) Cr2p能谱;(b) O1s能谱;W/Cr2O3薄膜:(c) W4f能谱

    Figure  5.  Cr2O3 and W/Cr2O3 thin films: (a) Cr2p spectra; (b) O1s spectra; W/Cr2O3 thin film: (c) W4f spectrum

    图  6  Cr2O3和W/Cr2O3气体传感器在不同工作温度条件下对2×10−5 C4H8气体的灵敏度

    Rg—Resistance value in C4H8 gas; Ra—Resistance value in air

    Figure  6.  Sensitivity of Cr2O3 and W/Cr2O3 gas sensors towards 2×10−5 C4H8 at different operating temperatures

    图  7  (a) Cr2O3和W/Cr2O3气体传感器在最佳工作温度条件下对不同浓度C4H8气体的灵敏度变化曲线;(b) C4H8气体浓度与灵敏度之间的拟合曲线

    Figure  7.  (a) Sensitivity curves of Cr2O3 and W/Cr2O3 gas sensors towards different concentrations of C4H8 gas at the optimal working temperature; (b) Fitting lines between C4H8 gas concentration and sensitivity

    图  8  不同工作温度及不同C4H8浓度条件下Cr2O3气体传感器(a)和W/Cr2O3气体传感器(b)对C4H8气体的灵敏度变化曲线

    Figure  8.  Sensitivity curves of Cr2O3 gas sensors (a) and W/Cr2O3 gas sensors (b) towards C4H8 gas at different working temperatures and different concentrations

    图  9  Cr2O3 (a)和W/Cr2O3 (b)气体传感器在不同相对湿度条件下对8×10−5 C4H8气体的灵敏度

    Figure  9.  Sensitivity of Cr2O3 (a) and W/Cr2O3 (b) gas sensors to 8×10−5 C4H8 gas at different relative humidity

    图  10  Cr2O3和W/Cr2O3气体传感器在400℃对不同被检测气体的选择性

    Figure  10.  Selectivity of Cr2O3 and W/Cr2O3 gas sensors towards different detected gases at 400℃

    图  11  气敏反应机制图:(a) Cr2O3薄膜;(b) W/Cr2O3薄膜

    Figure  11.  Schematic illustration of gas sensing mechanism: (a) Cr2O3 thin film; (b) W/Cr2O3 thin film

    表  1  传感器的重复性和一致性

    Table  1.   Repeatability and consistency of gas sensors

    SensorRepeatability RSD/%Average responseConsistency RSD/%
    Cr2O3-10.721.043.42
    Cr2O3-21.271.11
    Cr2O3-30.491.05
    W/Cr2O3-13.513.673.56
    W/Cr2O3-24.943.49
    Note: RSD—Relative standard deviation.
    下载: 导出CSV
  • [1] SEIYAMA T, KATO A, FUJIISHI K, et al. A new detector for gaseous components using semiconductive thin films[J]. Analytical Chemistry,1962,34(11):1502-1503. doi: 10.1021/ac60191a001
    [2] CHEN L, YU Q W, PAN C Y, et al. Chemiresistive gas sensors based on electrospun semiconductor metal oxides: A review[J]. Talanta,2022,246:123527. doi: 10.1016/j.talanta.2022.123527
    [3] LI Q T, ZENG W, LI Y Q. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments[J]. Sensors and Actuators B: Chemical,2022,359:131579. doi: 10.1016/j.snb.2022.131579
    [4] GUTH U, VONAU W, ZOSEL J. Recent developments in electrochemical sensor application and technology—A review[J]. Measurement Science and Technology,2009,20(4):042002. doi: 10.1088/0957-0233/20/4/042002
    [5] 吴煜霞, 杜海英, 张钊睿, 等. 同轴异质In2O3/SnO2复合纤维的构筑及其甲醛敏感性能[J]. 复合材料学报, 2022, 39(5):2249-2257.

    WU Yuxia, DU Haiying, ZHANG Zhaorui, et al. Fabrication of In2O3/SnO2-coaxial-electrospinning fiber and investigation on its formaldehyde sensing properties[J]. Acta Materiae Compositae Sinica,2022,39(5):2249-2257(in Chinese).
    [6] TANG H Y, SACCO L N, VOLLEBREGT S, et al. Recent advances in 2D/nanostructured metal sulfide-based gas sensors: Mechanisms, applications, and perspectives[J]. Journal of Materials Chemistry A,2020,8(47):24943-24976. doi: 10.1039/D0TA08190F
    [7] LEI W, SI W M, XU Y J, et al. Conducting polymer compo-sites with graphene for use in chemical sensors and biosensors[J]. Microchimica Acta,2014,181(7):707-722.
    [8] KIM M, LEE Y. A comprehensive review of gas sensors using carbon materials[J]. Journal of Nanoscience & Nanotechnology,2016,16(5):4310.
    [9] SUN Y H, WANG J, DU H Y, et al. Formaldehyde gas sensors based on SnO2/ZSM-5 zeolite composite nanofibers[J]. Journal of Alloys and Compounds,2021,868:159140. doi: 10.1016/j.jallcom.2021.159140
    [10] KIM J W, PORTE Y, KO K Y, et al. Micropatternable double-faced ZnO nanoflowers for flexible gas sensor[J]. ACS Applied Materials & Interfaces,2017,9(38):32876-32886.
    [11] LU S H, ZHANG Y Z, LIU J Y, et al. Sensitive H2 gas sensors based on SnO2 nanowires[J]. Sensors and Actuators B: Chemical,2021,345:130334. doi: 10.1016/j.snb.2021.130334
    [12] WANG Q, CHENG X, WANG Y R, et al. Sea urchins-like WO3 as a material for resistive acetone gas sensors[J]. Sensors and Actuators B: Chemical,2022,355:131262. doi: 10.1016/j.snb.2021.131262
    [13] BAI J L, KONG Y, LIU Z L, et al. Ag modified Tb-doped double-phase In2O3 for ultrasensitive hydrogen gas sensor[J]. Applied Surface Science,2022,583:152521. doi: 10.1016/j.apsusc.2022.152521
    [14] SONG B Y, ZHANG X F, HUANG J, et al. Porous Cr2O3 architecture assembled by nano-sized cylinders/ellipsoids for enhanced sensing to trace H2S gas[J]. ACS Applied Materials & Interfaces,2022,14(19):22302-22312.
    [15] NAKATE U T, LEE G H, AHMAD R, et al. Nano-bitter gourd like structured CuO for enhanced hydrogen gas sensor application[J]. International Journal of Hydrogen Energy,2018,43(50):22705-22714. doi: 10.1016/j.ijhydene.2018.09.162
    [16] LI C Y, CHOI P G, KIM K S, et al. High performance acetone gas sensor based on ultrathin porous NiO nanosheet[J]. Sensors and Actuators B: Chemical,2022,367:132143. doi: 10.1016/j.snb.2022.132143
    [17] DING C, MA Y L, LAI X Y, et al. Ordered large-pore mesoporous Cr2O3 with ultrathin framework for formaldehyde sensing[J]. ACS Applied Materials & Interfaces,2017,9(21):18170-18177.
    [18] POKHREL S, NAGARAJA K S. Electrical and humidity sensing properties of chromium(III) oxide-tungsten(VI) oxide composites[J]. Sensors and Actuators B: Chemical,2003,92(1):144-150.
    [19] 林秉群, 赵国敏, 潘明珠. 基于VOCs传感器敏感材料的研究进展[J]. 复合材料学报, 2022, 39(2):478-488.

    LIN Bingqun, ZHAO Guomin, PAN Mingzhu. Research progress of sensing materials for VOCs detection[J]. Acta Materiae Compositae Sinica,2022,39(2):478-488(in Chinese).
    [20] GUSHCHIN P A, LUBIMENKO V A, PETROVA D A, et al. Catalytic oligomerization of isobutylene at the boiling point of liquid nitrogen[J]. Chemical Engineering Science,2020,227:115903. doi: 10.1016/j.ces.2020.115903
    [21] DUTTA S, PANDEY A, LEELADHA R, et al. Growth and characterization of ultrathin TiO2-Cr2O3 nanocomposite films[J]. Journal of Alloys and Compounds,2017,696:376-381. doi: 10.1016/j.jallcom.2016.11.284
    [22] CAREY J, LEGESSE M, NOLAN M. Low valence cation doping of bulk Cr2O3: Charge compensation and oxygen vacancy formation[J]. The Journal of Physical Chemistry C,2016,120(34):19160-19174. doi: 10.1021/acs.jpcc.6b05575
    [23] BARASKAR P, CHOUHAN R, AGRAWAL A, et al. Weak ferromagnetism at room temperature in Ti incorporated Cr2O3 thin film[J]. Physica B: Condensed Matter,2019,571:36-40. doi: 10.1016/j.physb.2019.06.031
    [24] SHEN Y B, LI T T, ZHONG X X, et al. ppb-level NO2 sensing properties of Au-doped WO3 nanosheets synthesized from a low-grade scheelite concentrate[J]. Vacuum,2020,172:109036. doi: 10.1016/j.vacuum.2019.109036
    [25] ZHANG W, SHEN Y B, ZHANG J, et al. Low-temperature H2S sensing performance of Cu-doped ZnFe2O4 nanoparticles with spinel structure[J]. Applied Surface Science,2019,470:581-590. doi: 10.1016/j.apsusc.2018.11.164
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  592
  • HTML全文浏览量:  331
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2022-11-07
  • 录用日期:  2022-11-30
  • 网络出版日期:  2022-12-14
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回