Synthesis of W-doped Cr2O3 thin films and their application in isobutylene sensing
-
摘要:
挥发性有机污染物(VOCs)气体广泛存在于生产生活中,异丁烯是一种常见的VOCs气体,其危害是容易让人窒息,且其与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险,工业生产中亟需一种性能优良的气体传感器来对其进行快速检测,但市场上专门用于检测异丁烯的气体传感器还鲜有报道。本文采用气溶胶辅助化学气相沉积(AACVD)技术在氧化铝基底上分别沉积得到纯氧化铬(Cr2O3)薄膜及W掺杂Cr2O3(W/Cr2O3)的薄膜材料,并将其制备成气体传感器,对比研究了两种气体传感器对异丁烯的气敏性能,气敏测试结果表明,基于W/Cr2O3薄膜所制备的气体传感器相较于单一的Cr2O3气体传感器对异丁烯气体表现出较高的灵敏度,并展现出良好的稳定性、抗湿性和气体选择性,其性能优良,制备成本较低,有望实现商业化应用。 气体传感器示意图 (a), Cr2O3薄膜的SEM照片 (b), Cr2O3气体传感器对异丁烯气体的灵敏度变化曲线 (c), W/Cr2O3薄膜的SEM照片 (d), W/Cr2O3气体传感器对异丁烯气体的灵敏度变化曲线 (e). Abstract: In order to effectively monitor isobutylene gas, Cr2O3 and W-doped Cr2O3 (W/Cr2O3) films were successfully synthesized via aerosol-assisted chemical vapor deposition (AACVD) technique on the surface of alumina substrate. The microstructure, crystal structure, and elemental binding valence of Cr2O3 and W/Cr2O3 films were analyzed by SEM, TEM, XRD, and XPS. The results show that Cr2O3 film is composed of nanoparticles with the particle size of about 50 nm, a thickness of about 20 μm, and its structure is relatively loose. However, the thin film obtained by W doping Cr2O3 has a compact structure, and the size of nanoparticles is about 15 nm, which is remarkably reduced due to the introduction of W into the Cr2O3 crystal lattice. Both Cr2O3 and W/Cr2O3 films have a single hexagonal crystalline structure. The gas sensitivity test results show that the sensitivity of the gas sensor based on W/Cr2O3 film towards 2×10-5 isobutene increases from 1.11 to 3.55 compared with the Cr2O3 gas sensor at 400°C, and W/Cr2O3 gas sensor exhibits good stability, moisture resistance and gas selectivity.-
Key words:
- W doping /
- Cr2O3 thin films /
- gas sensor /
- isobutylene /
- gas sensing mechanism
-
表 1 传感器的重复性和一致性
Table 1. Repeatability and consistency of gas sensors
Sensors Repeatability RSD% Average response Consistency RSD% Cr2O3-1 0.72 1.04 3.42 Cr2O3-2 1.27 1.11 Cr2O3-3 0.49 1.05 W/Cr2O3-1 3.51 3.67 3.56 W/Cr2O3-2 4.94 3.49 -
[1] SEIYAMA T, KATO A, FUJIISHI K, et al. A new detector for gaseous components using semiconductive thin films[J]. Analytical Chemistry,1962,34(11):1502-1503. doi: 10.1021/ac60191a001 [2] CHEN L, YU Q W, PAN C Y, et al. Chemiresistive gas sensors based on electrospun semiconductor metal oxides: A review[J]. Talanta,2022,246:123527. doi: 10.1016/j.talanta.2022.123527 [3] LI Q T, ZENG W, LI Y Q. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments[J]. Sensors and Actuators B:Chemical,2022,359:131579. doi: 10.1016/j.snb.2022.131579 [4] GUTH U, VONAU W, ZOSEL J. Recent developments in electrochemical sensor application and technology-a review[J]. Measurement Science and Technology,2009,20(4):042002. doi: 10.1088/0957-0233/20/4/042002 [5] 吴煜霞, 杜海英, 张钊睿, 等. 同轴异质In2O3/SnO2复合纤维的构筑及其甲醛敏感性能[J]. 复合材料学报, 2022, 39(5):2249-2257.WU Yuxia, DU Haiying, ZHANG Zhaorui, et al. Fabrication of In2O3/SnO2-coaxial-electrospinning fiber and investigation on its formaldehyde sensing properties[J]. Acta Materiae Compositae Sinica,2022,39(5):2249-2257(in Chinese). [6] TANG H Y, SACCO L N, VOLLEBREGT S, et al. Recent advances in 2 D/nanostructured metal sulfide-based gas sensors: mechanisms, applications, and perspectives[J]. Journal of Materials Chemistry A,2020,8(47):24943-24976. doi: 10.1039/D0TA08190F [7] LEI W, SI W M, XU Y J, et al. Conducting polymer composites with graphene for use in chemical sensors and biosensors[J]. Microchimica Acta,2014,181(7):707-22. [8] KIM M, LEE Y. A Comprehensive Review of Gas Sensors Using Carbon Materials[J]. Journal of Nanoscience & Nanotechnology,2016,16(5):4310. [9] SUN Y H, WANG J, DU H Y, et al. Formaldehyde gas sensors based on SnO2/ZSM-5 zeolite composite nanofibers[J]. Journal of Alloys and Compounds,2021,868:159140. doi: 10.1016/j.jallcom.2021.159140 [10] KIM J W, PORTE Y, KO K Y, et al. Micropatternable double-faced ZnO nanoflowers for flexible gas sensor[J]. ACS Applied Materials & Interfaces,2017,9(38):32876-86. [11] LU S H, ZHANG Y Z, LIU J Y, et al. Sensitive H2 gas sensors based on SnO2 nanowires[J]. Sensors and Actuators B:Chemical,2021,345:130334. doi: 10.1016/j.snb.2021.130334 [12] WANG Q, CHENG X, WANG Y R, et al. Sea urchins-like WO3 as a material for resistive acetone gas sensors[J]. Sensors and Actuators B:Chemical,2022,355:131262. doi: 10.1016/j.snb.2021.131262 [13] BAI J L, KONG Y, LIU Z L, et al. Ag modified Tb-doped double-phase In2O3 for ultrasensitive hydrogen gas sensor[J]. Applied Surface Science,2022,583:152521. doi: 10.1016/j.apsusc.2022.152521 [14] SONG B Y, ZHANG X F, HUANG J, et al. Porous Cr2O3 Architecture assembled by nano-sized cylinders/ellipsoids for enhanced sensing to trace H2S Gas[J]. ACS Applied Materials & Interfaces,2022,14(19):22302-22312. [15] NAKATE U T, LEE G H, AHMAD R, et al. Nano-bitter gourd like structured CuO for enhanced hydrogen gas sensor application[J]. International Journal of Hydrogen Energy,2018,43(50):22705-22714. doi: 10.1016/j.ijhydene.2018.09.162 [16] LI C Y, CHOI P G, KIM K S, et al. High performance acetone gas sensor based on ultrathin porous NiO nanosheet[J]. Sensors and Actuators B:Chemical,2022,367:132143. doi: 10.1016/j.snb.2022.132143 [17] DING C, MA Y L, LAI X Y, et al. Ordered large-pore mesoporous Cr2O3 with ultrathin framework for formaldehyde Sensing[J]. ACS Applied Materials & Interfaces,2017,9(21):18170-18177. [18] POKHREL S, NAGARAJA K. S. Electrical and humidity sensing properties of Chromium(III) oxide–tungsten(VI) oxide composites[J]. Sensors and Actuators B:Chemical,2003,92(1):144-50. [19] 林秉群, 赵国敏, 潘明珠. 基于VOCs传感器敏感材料的研究进展[J]. 复合材料学报, 2022, 39(2):478-488.LIN Bingqun, ZHAO Guomin, PAN Mingzhu. Research progress of sensing materials for VOCs detection[J]. Acta Materiae Compositae Sinica,2022,39(2):478-488(in Chinese). [20] GUSHCHIN P A, LUBIMENKO V A, PETROVA D A, et al. Catalytic oligomerization of isobutylene at the boiling point of liquid nitrogen[J]. Chemical Engineering Science,2020,227:115903. doi: 10.1016/j.ces.2020.115903 [21] DUTTA S, PANDEY A, LEELADHAR, et al. Growth and characterization of ultrathin TiO2-Cr2O3 nanocomposite films[J]. Journal of Alloys and Compounds,2017,696:376-381. doi: 10.1016/j.jallcom.2016.11.284 [22] CAREY J, LEGESSE M, NOLAN M. Low valence cation doping of bulk Cr2O3: Charge compensation and oxygen vacancy formation[J]. The Journal of Physical Chemistry C,2016,120(34):19160-19174. doi: 10.1021/acs.jpcc.6b05575 [23] BARASKAR P, CHOUHAN R, AGRAWAL A, et al. Weak ferromagnetism at room temperature in Ti incorporated Cr2O3 thin film[J]. Physica B:Condensed Matter,2019,571:36-40. doi: 10.1016/j.physb.2019.06.031 [24] SHEN Y B, LI T T, ZHONG X X, et al. Ppb-level NO2 sensing properties of Au-doped WO3 nanosheets synthesized from a low-grade scheelite concentrate[J]. Vacuum,2020,172:109036. doi: 10.1016/j.vacuum.2019.109036 [25] ZHANG W, SHEN Y B, ZHANG J, et al. Low-temperature H2S sensing performance of Cu-doped ZnFe2O4 nanoparticles with spinel structure[J]. Applied Surface Science,2019,470:581-590. doi: 10.1016/j.apsusc.2018.11.164 -