留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酚醛树脂浸渍石英纤维复合材料烧蚀过程数值模拟

侯鹏飞 赵璧 胡胜利 王俊胜

侯鹏飞, 赵璧, 胡胜利, 等. 酚醛树脂浸渍石英纤维复合材料烧蚀过程数值模拟[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 侯鹏飞, 赵璧, 胡胜利, 等. 酚醛树脂浸渍石英纤维复合材料烧蚀过程数值模拟[J]. 复合材料学报, 2024, 42(0): 1-11.
HOU Pengfei, ZHAO Bi, HU Shengli, et al. Numerical simulation of the ablation process in phenolic resin impregnated quartz fiber composites[J]. Acta Materiae Compositae Sinica.
Citation: HOU Pengfei, ZHAO Bi, HU Shengli, et al. Numerical simulation of the ablation process in phenolic resin impregnated quartz fiber composites[J]. Acta Materiae Compositae Sinica.

酚醛树脂浸渍石英纤维复合材料烧蚀过程数值模拟

基金项目: 国家自然科学基金 (U2037206)
详细信息
    通讯作者:

    王俊胜,博士,研究员,研究方向为防火阻燃材料和消防员个人防护装备 E-mail: wangjunsheng@tfri.com.cn

  • 中图分类号: TB332

Numerical simulation of the ablation process in phenolic resin impregnated quartz fiber composites

Funds: National Natural Science Foundation of China (U2037206)
  • 摘要: 针对酚醛树脂浸渍石英纤维复合材料(PISF)烧蚀热响应过程受热边界难处理的问题,建立了PISF的三维流-热-烧蚀多场耦合模型,预测了高温环境下材料受热过程和散热过程的瞬态温度分布,模拟了体积烧蚀和表面烧蚀过程,分析了各项参数对PISF传热的影响。结果表明:随着受热时间的增长,材料表面温度逐渐升高,流入表面的热流迅速减少。受热面中心点处受到的热流最大,约3.6 s后开始发生烧蚀,烧蚀最为明显。材料表面受热后迅速分解,产气速率迅速达到峰值,后期由于表面热阻效应,产气速率逐渐降低。一定条件下,提高导热系数会降低烧蚀后退速率和提高产气速率,背温升高,不利于材料隔热;提高热容会降低烧蚀后退速率和产气速率,背温降低,有利于材料隔热;显著提高渗透率会增强流体流动传热,提高烧蚀后退速率和产气速率,背温升高,不利于材料隔热。研究结果可以提高对PISF烧蚀热响应过程的认识,并为热防护材料的优化设计提供参考。

     

  • 图  1  热解机制图

    Figure  1.  Pyrolysis mechanism diagram

    图  2  边界分布图

    Figure  2.  Boundary distribution

    图  3  耦合方案示意图

    Figure  3.  Diagram of coupling scheme

    图  4  系统的流速(a)、压力(b)和温度分布(c)

    Figure  4.  Velocity(a), pressure(b), and temperature(c) distribution of the system

    图  5  PISF不同时刻的温度场云图

    Figure  5.  Temperature contours at various times of PISF

    图  6  PISF受热面及不同深度的温度变化

    Figure  6.  Temperature variation of heated surface and different depths for PISF

    图  7  PISF受热面平均热流密度(a)和不同位置的热流分布(b)

    Figure  7.  Average heat flux density on the heated surface (a) and heat flux distribution at different positions (b) for PISF

    图  8  PISF不同位置的后退距离(a)和受热面中心烧蚀后退速率变化(b)

    Figure  8.  Retreat distance at different positions and erosion backward rate history at the center of the heated surface for PISF

    图  9  PISF不同时刻的密度云图

    Figure  9.  Density contours at various times for PISF

    图  10  PISF产气速率变化

    Figure  10.  Gas production rate history of PISF

    图  11  不同烧蚀后退速率下10 s和100 s时PISF材料中轴线上的温度分布

    Figure  11.  Temperature distribution along the axis of the PISF material at t=10 s and t=100 s under different erosion backward rates

    图  12  不同产气速率下10 s和100 s时PISF材料中轴线上的温度分布

    Figure  12.  Temperature distribution along the axis of the material at t=10 s and t=100 s under different gas production rate for PISF

    图  13  不同导热系数下10 s和100 s时PISF中轴线温度分布(a)和总后退量和产气量(b)

    Figure  13.  Temperature distribution along the axis at t=10 s and t=100 s (a) and total retreat and gas production (b) at different thermal conductivity for PISF

    图  14  不同热容下10 s和100 s时PISF中轴线温度分布(a)和总后退量和产气量(b)

    Figure  14.  Temperature distribution along the axis at t=10 s and t=100 s (a) and total retreat and gas production (b) at different heat capacities for PISF

    图  15  不同渗透率下10 s和100 s时PISF中轴线温度分布(a)和总后退量、产气量和监测点流速(b)

    Figure  15.  Temperature distribution along the axis at t=10 s and t=100 s (a) and total retreat, gas production and velocity of monitor point (b) at different permeability for PISF

    表  1  酚醛树脂浸渍石英纤维复合材料参数

    Table  1.   Parameters of phenolic resin impregnated quartz fiber composites

    Property Value Ref.
    Density of virgin material $ {\rho }_{\mathrm{s}} $/(kg·m−3) 1553 *
    Density of product $ {\rho }_{\mathrm{c}} $/(kg·m−3) 1920 *
    Porosity of virgin material $ \mathrm{ \varepsilon } $ 0.68 *
    Porosity of product $ \varepsilon $ 0.8 *
    Activation energy $ {E}_{\mathrm{a}} $/(J·mol−1) 7.88×104 [8]
    Reaction rate constant $ {A}_{0} $/(kg·m−3·s−1) 1.94×105 [8]
    Order of reaction n 1 [8]
    Permeability of virgin material $ {K}_{\mathrm{s}} $/m2 6.18×10−18 [8]
    Permeability of product $ {K}_{\mathrm{c}} $/m2 4.85×10−15 [8]
    Specific heat of virgin material $ {c}_{\mathrm{p}\mathrm{s}} $/(J·(kg·K)−1) 783.55+0.976T [21]
    Specific heat of product $ {c}_{\mathrm{p}\mathrm{c}} $/(J·(kg·K)−1) 672.52+0.76T [21]
    Thermal conductivity of virgin material $ {k}_{\mathrm{v}} $/(W·(m·K)−1) 0.72+2.76×10−4T [21]
    Thermal conductivity of product $ {k}_{\mathrm{c}} $/(W·(m·K)−1) 0.32+4.25×10−3T−8.43×10−6T2+5.32×
    10−9T3
    [21]
    Heat of decomposition $ \Delta {h}_{\mathrm{t}\mathrm{r}\mathrm{e}} $/(kJ·kg−1) −418.7 [21]
    reaction enthalpy $ \Delta {H}_{\mathrm{P}} $/(kJ·kg−1) 615 [21]
    Enthalpy of ablation Hv/(kJ·kg−1) −12686 [9]
    Note: *—Measured value.
    下载: 导出CSV
  • [1] MEURISSE J, LACHAUD J, PANERAI F, et al. Multidimensional material response simulations of a full-scale tiled ablative heatshield[J]. Aerospace science and technology, 2018, 76(MAY): 497-511.
    [2] RIVIER M, LACHAUD J, CONGEDO P M. Ablative thermal protection system under uncertainties including pyrolysis gas composition[J]. Aerospace Science and Technology, 2019, 84: 1059-1069. doi: 10.1016/j.ast.2018.11.048
    [3] NIU B, SHEN H, LI T, et al. 2.5 D quartz fabric reinforced nanoporous phenolic composites with weakened heat transfer and optimized mechanical properties[J]. Composites Science and Technology, 2022, 230: 109726. doi: 10.1016/j.compscitech.2022.109726
    [4] WILLARD J M. Low-Density Resin-Based Ablative Heat Protection Materials[J]. Science Insights, 2022, 40(6): 541-544. doi: 10.15354/si.22.re063
    [5] PAGLIA L, TIRILLÒ J, MARRA F, et al. Carbon-phenolic ablative materials for re-entry space vehicles: plasma wind tunnel test and finite element modeling[J]. Materials & Design, 2016, 90: 1170-1180.
    [6] LI W, LIANG J, GE J. Novel designs of charring composites based on pore structure control and evaluation of their thermal protection performance[J]. International Journal of Heat and Mass Transfer, 2019, 129: 59-73. doi: 10.1016/j.ijheatmasstransfer.2018.09.094
    [7] WENG H, MARTIN A. Multidimensional modeling of pyrolysis gas transport inside charring ablative materials[J]. Journal of Thermphysics and Heat Transfer, 2014, 28(4): 583-597. doi: 10.2514/1.T4434
    [8] SHI S, LI L, LIANG J, et al. Surface and volumetric ablation behaviors of SiFRP composites at high heating rates for thermal protection applications[J]. International Journal of Heat and Mass Transfer, 2016, 102: 1190-1198. doi: 10.1016/j.ijheatmasstransfer.2016.06.085
    [9] SHI S, LIANG J, LIN G, et al. High temperature thermomechanical behavior of silica-phenolic composite exposed to heat flux environments[J]. Composites science and technology, 2013, 87: 204-209. doi: 10.1016/j.compscitech.2013.08.012
    [10] FERGUSON J C, PANERAI F, LACHAUD J, et al. Modeling the oxidation of low-density carbon fiber material based on micro-tomography[J]. Carbon, 2016, 96(2): 57-65.
    [11] CHEN Y K, MILOS F S. Multidimensional finite volume fully implicit ablation and thermal response code[J]. Journal of Spacecraft and Rockets, 2018, 55(4): 914-927. doi: 10.2514/1.A34184
    [12] 张拜, 李旭东. 三维编织碳/酚醛复合材料高温热响应的数值计算[J]. 航空材料学报, 2019, 39(2): 75-83. doi: 10.11868/j.issn.1005-5053.2018.000074

    ZHANG Bai, LI Xudong. Numerical calculation of high temperature thermal response of 3D braided carbon/phenolic composite[J]. Journal of aeronautical materials, 2019, 39(2): 75-83(in Chinese). doi: 10.11868/j.issn.1005-5053.2018.000074
    [13] 张拜, 李旭东. 碳/酚醛防热复合材料烧蚀行为的数值模拟[J]. 复合材料学报, 2018, 35(10): 2786-2792.

    ZHANG Bai, LI Xudong. Numerical simulation of ablation behavior of carbon/phenolic thermal protection system composite[J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2786-2792(in Chinese).
    [14] WANG Y, RISCH T K, KOO J H. Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator[J]. Aerospace Science and Technology, 2019, 91: 301-309. doi: 10.1016/j.ast.2019.05.039
    [15] TATAR M. Two-dimensional study of charring ablative materials using finite volume method[J]. International Journal of Thermal Sciences, 2021, 159: 106642. doi: 10.1016/j.ijthermalsci.2020.106642
    [16] WANG P, ZHOU X, LI L, et al. Modeling and validation of ablative thermal response combined with microscopic heat transfer for porous ablative materials[J]. Thermal Science and Engineering Progress, 2024, 47: 102256. doi: 10.1016/j.tsep.2023.102256
    [17] VIGNOLES G L, TURCHI A, BIANCHI D, et al. Ablative and catalytic behavior of carbon-based porous thermal protection materials in nitrogen plasmas[J]. Carbon, 2018, 134: 376-390. doi: 10.1016/j.carbon.2018.03.087
    [18] LI W, HUANG H, XU X, et al. A new mechanism of surface ablation of charring materials for a vehicle during reentry[J]. Applied Thermal Engineering, 2016, 106: 838-849. doi: 10.1016/j.applthermaleng.2016.06.055
    [19] LI X, HOU W, HAN B, et al. Thermal response during volumetric ablation of carbon fiber composites under a high intensity continuous laser irradiation[J]. Surfaces and Interfaces, 2021, 23: 101032. doi: 10.1016/j.surfin.2021.101032
    [20] YANG J, ZHANG T, CAI J, et al. Investigating the pyrolysis mechanisms of three archetypal ablative resins through pyrolysis experiments and ReaxFF MD simulations[J]. Materials Today Communications, 2023, 36: 106683. doi: 10.1016/j.mtcomm.2023.106683
    [21] 时圣波. 高硅氧/酚醛复合材料的烧蚀机理及热—力学性能研究[D]. 哈尔滨工业大学, 2013.

    SHI Shengbo. Ablation mechanism and thermo-mechanical behavior of silica/phenolic composites[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
    [22] GUO J, HUANG H, XU X. Protective effect of pyrolysis gases combustion against surface ablation under different Mach numbers[J]. Acta Astronautica, 2020, 166: 209-217. doi: 10.1016/j.actaastro.2019.10.032
    [23] 李玮洁. 变密度炭化复合材料的热防护模型及其数值模拟[D]. 北京交通大学, 2017.

    LI Weijie. Thermal protection models and numerical simulation for variable density charring materials[D]. Beijing: Beijing Jiaotong University, 2017(in Chinese).
    [24] LIU S, AHMADI-SENICHAULT A, LEVET C, et al. Experimental investigation on the validity of the local thermal equilibrium assumption in ablative-material response models[J]. Aerospace Science and Technology, 2023, 141: 108516. doi: 10.1016/j.ast.2023.108516
    [25] DING C, LIU X, XIE F, et al. Heat transfer and pyrolysis gas flow characteristics of light-weight ablative thermal protection system in the blunt body[J]. International Journal of Thermal Sciences, 2023, 186: 108122. doi: 10.1016/j.ijthermalsci.2022.108122
    [26] XU Y, YE H, ZHANG L, et al. Investigation on the effective thermal conductivity of carbonized high silica/phenolic ablative material[J]. International Journal of Heat and Mass Transfer, 2017, 115: 597-603. doi: 10.1016/j.ijheatmasstransfer.2017.08.073
    [27] FAN W, LI J, ZHENG Y, et al. Influence of thermo-oxidative aging on the thermal conductivity of carbon fiber fabric reinforced epoxy composites[J]. Polymer degradation and stability, 2016, 123: 162-169. doi: 10.1016/j.polymdegradstab.2015.11.016
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 修回日期:  2024-04-28
  • 录用日期:  2024-05-07
  • 网络出版日期:  2024-06-05

目录

    /

    返回文章
    返回