留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能化纳米复合材料Fe3O4@SiO2-3-氨丙基三甲氧基硅烷的制备及其对Pb(II)的吸附

牛乙涛 包国庆 吴纯鑫 赵德明

牛乙涛, 包国庆, 吴纯鑫, 等. 功能化纳米复合材料Fe3O4@SiO2-3-氨丙基三甲氧基硅烷的制备及其对Pb(II)的吸附[J]. 复合材料学报, 2023, 40(6): 3350-3365. doi: 10.13801/j.cnki.fhclxb.20220905.001
引用本文: 牛乙涛, 包国庆, 吴纯鑫, 等. 功能化纳米复合材料Fe3O4@SiO2-3-氨丙基三甲氧基硅烷的制备及其对Pb(II)的吸附[J]. 复合材料学报, 2023, 40(6): 3350-3365. doi: 10.13801/j.cnki.fhclxb.20220905.001
NIU Yitao, BAO Guoqing, WU Chunxin, et al. Preparation of functionalized nanocomposites Fe3O4@SiO2-3-aminopropyltrimethoxysilane and its adsorption to Pb(Ⅱ)[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3350-3365. doi: 10.13801/j.cnki.fhclxb.20220905.001
Citation: NIU Yitao, BAO Guoqing, WU Chunxin, et al. Preparation of functionalized nanocomposites Fe3O4@SiO2-3-aminopropyltrimethoxysilane and its adsorption to Pb(Ⅱ)[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3350-3365. doi: 10.13801/j.cnki.fhclxb.20220905.001

功能化纳米复合材料Fe3O4@SiO2-3-氨丙基三甲氧基硅烷的制备及其对Pb(II)的吸附

doi: 10.13801/j.cnki.fhclxb.20220905.001
基金项目: 浙江省自然科学基金(LY19B070006);浙江省基础公益研究计划项目(LGF20B070003)
详细信息
    通讯作者:

    赵德明,博士,副教授,硕士生导师,研究方向为功能材料、环境化工 E-mail: dmzhao@zjut.edu.cn

  • 中图分类号: X78;TQ138.1;TB332

Preparation of functionalized nanocomposites Fe3O4@SiO2-3-aminopropyltrimethoxysilane and its adsorption to Pb(Ⅱ)

Funds: Natural Science Foundation of Zhejiang Province (LY19B070006); Basic Public Welfare Research Program of Zhejiang Province (LGF20B070003)
  • 摘要: 为解决磁性纳米Fe3O4颗粒易腐蚀、团聚等问题,对其进行功能化修饰改进。在超声波辐照下以FeCl3和FeSO4为原料,氨水为沉淀剂,然后加入正硅酸乙酯(TEOS)和3-氨丙基三甲氧基硅烷(APTMS)进行功能化修饰,制备得到SiO2包覆的氨基功能化纳米复合材料Fe3O4@SiO2-APTMS,并采用TEM、FTIR、VSM、TGA、低温氮吸附、XRD等对其进行表征测试,证实了超声波辐照下制备的复合材料具有磁响应强度强、耐酸碱性强、分散性高、比表面积大、粒径小等特点,同时探究了纳米复合材料对Pb(Ⅱ)的吸附性能。结果表明:溶液初始pH值为5.86,吸附剂投加量为1.0~1.5 g·L−1时Pb(Ⅱ)吸附效果较好;Langmuir模型适合模拟该等温吸附过程,吉布斯自由能变∆G0<0,吸附过程是一个自发过程;准二级动力学可以较好地描述Pb(Ⅱ)在复合材料上的吸附行为,准二级动力学常数k2=0.0401 g·mg−1·min−1,达到吸附平衡时的吸附量qe=80.041 mg·g−1;推测得到吸附机制主要为离子交换和络合吸附。

     

  • 图  1  纳米复合材料Fe3O4@SiO2-3-氨丙基-三甲氧基硅烷(APTMS)的合成

    Figure  1.  Fe3O4@SiO2-3-aminopropyltrimethoxysilane (APTMS) synthesis diagram of nanocomposites

    图  2  不同方法制备的纳米复合材料Fe3O4@SiO2、Fe3O4@SiO2-APTMS的TEM图像

    Figure  2.  TEM images of Fe3O4@SiO2, Fe3O4@SiO2-APTMS nanocomposites prepared by different methods

    图  3  不同方法制备的纳米复合材料的XRD图谱 (a)、FTIR图谱 (b) 及TG (c) 和DTG曲线 (d)

    Figure  3.  XRD pattern (a), FTIR spectra (b) and TG curves (c) and DTG curves (d) of nanocomposites prepared by different methods

    图  4  Fe3O4@SiO2、无超声波和有超声波下制备的Fe3O4@SiO2-APTMS的磁滞回线

    Figure  4.  Magnetic hysteresis loops of Fe3O4@SiO2 and Fe3O4@SiO2-APTMS synthesized in the absence of ultrasound and in the presence of ultrasound

    图  5  Fe3O4@SiO2、无超声波和有超声波下制备的Fe3O4@SiO2-APTMS对Pb(Ⅱ)吸附效果的影响

    Figure  5.  Effects of Fe3O4@SiO2, Fe3O4@SiO2-APTMS prepared without ultrasound and with ultrasound on the adsorption of Pb(Ⅱ)

    图  6  Fe3O4@SiO2-APTMS的N2吸附脱附等温线及孔径分布图

    Figure  6.  N2 adsorption-desorption isotherm and pore size distribution of Fe3O4@SiO2-APTMS

    STP—Standard temperature and pressure

    图  7  吸附剂投加量、溶液初始pH值、竞争性离子和温度对Fe3O4@SiO2-APTMS吸附Pb(Ⅱ)的影响

    Figure  7.  Effects of adsorbent dosage, initial pH value of solution, competitive ions and temperature on the adsorption of Pb (Ⅱ) by Fe3O4@SiO2-APTMS

    qe—Equilibrium adsorption capacity

    图  8  不同Pb(Ⅱ)浓度下lnK0对1/T

    Figure  8.  lnK0 plots of 1/T at different Pb(Ⅱ) concentrations

    K0—Thermodynamic equilibrium constant; R2—Linear correlation coefficient

    图  9  Fe3O4@SiO2-APTMS对Pb(Ⅱ)的吸附量随时间变化图和动力学模型拟合

    Figure  9.  Fe3O4@SiO2-APTMS adsorption Pb (Ⅱ) adsorption capacity curve with time and kinetics model fitting

    图  10  Pb(Ⅱ)吸附等温线及Pb(Ⅱ)等温吸附模型拟合线

    Figure  10.  Pb(Ⅱ) adsorption isotherm and Pb(Ⅱ) isothermal adsorption model fitting curves

    Ce—Concentration of Pb(Ⅱ) in solution at adsorption equilibrium

    图  11  重复使用次数对Fe3O4@SiO2-APTMS吸附Pb(Ⅱ)的影响

    Figure  11.  Effect of reuse times on Fe3O4@SiO2-APTMS adsorption of Pb(Ⅱ)

    图  12  Fe3O4@SiO2-APTMS复合材料吸附Pb(Ⅱ)前后的FTIR图谱

    Figure  12.  FTIR spectra of Fe3O4@SiO2-APTMS before and after adsorption of Pb (Ⅱ)

    图  13  纳米复合材料 Fe3O4@SiO2-APTMS吸附 Pb(Ⅱ)的机制图

    Figure  13.  Mechanism diagram of adsorption of Pb(Ⅱ) by nanocomposite Fe3O4@SiO2-APTMS

    图  14  Fe3O4@SiO2-APTMS吸附Pb(Ⅱ)、Cu(Ⅱ)和Ni(Ⅱ)的混合溶液各离子吸附量随时间的变化

    Figure  14.  Variation of ion adsorption capacity with time in mixed solution of Pb (Ⅱ), Cu (Ⅱ) and Ni (Ⅱ) adsorbed by Fe3O4@SiO2-APTMS

    表  1  不同吸附剂对Pb(Ⅱ)的吸附效果比较

    Table  1.   Comparison of adsorption effects of different adsorbents for Pb (Ⅱ)

    AdsorbentSaturated adsorption capacity qm/(mg·g−1)Ref.
    Fe3O4-SiO2-NH-COOH208.70[24]
    NaOH modified zeolite260.00[25]
    Fe3O4@PAMAM345.10[26]
    Fe3O4@SiO2-APTMS384.76This study
    Note: PAMAM—Polyamide-amine dendritic polymer.
    下载: 导出CSV

    表  2  Fe3O4@SiO2-APTMS吸附Pb(Ⅱ)热力学常数

    Table  2.   Thermodynamic constants of Pb(Ⅱ) adsorbed by Fe3O4@SiO2-APTMS

    C0/(mg·L−1)ΔG0/(kJ·mol−1)ΔH0/(kJ·mol−1)ΔS0/(J·mol−1·K−1)
    283 K293 K303 K313 K
    50−3.555−4.373−4.827−5.29212.51357.125
    100−3.746−4.067−4.609−5.115 9.39146.227
    150−3.767−4.313−4.871−5.42311.87155.271
    Notes: C0—Initial concentration of Pb (Ⅱ) solution; ∆G0—Gibbs free energy change; ∆H0—Enthalpy change; ∆S0—Entropy change.
    下载: 导出CSV

    表  3  Fe3O4@SiO2-APTMS对Pb(Ⅱ)吸附动力学方程拟合结果

    Table  3.   Fitting results of Pb (Ⅱ) adsorption kinetic equation by Fe3O4@SiO2-APTMS

    Quasi-first order kineticsQuasi-second-order kineticsInternal diffusion equation
    k1qe,calqe,expR2k2qe,calqe,expR2kpCR2
    0.01652.71480.0410.7890.040179.9980.0410.999kp1=2.063969.6750.952
    kp2=0.061679.2230.969
    kp3=0.009279.8230.980
    Notes: qe,cal—Theoretical saturated adsorption capacity; qe,exp—Experimental saturated adsorption capacity; k1—Quasi-first-order kinetic constant; k2—Quasi-second-order kinetic constant; C—Constant related to thickness and boundary layer.
    下载: 导出CSV

    表  4  Fe3O4@SiO2-APTMS对Pb(Ⅱ)的吸附等温线拟合结果

    Table  4.   Adsorption isotherm fitting results of Pb(Ⅱ) by Fe3O4@SiO2-APTMS

    T/KLangmuirFreundlichTemkin
    KLqmRLR2KFR2KtBlR2
    3080.0387401.6060.0252-0.6150.99147.830.9050.53474.270.989
    2980.0323390.6250.0312-0.5700.99339.570.9160.37379.250.988
    2880.0311366.3000.0300-0.6020.99533.410.9460.29981.020.977
    Notes: KL—Langmuir adsorption coefficient (L·mg−1); KF—Freundlich adsorption coefficient (mg1−(1/n)·L1/n·g−1); Kt, Bl—Temkin adsorption isotherm constant; qm—Saturated adsorption capacity (mg·g−1); RL—Separation constant; R2—linear correlation coefficient.
    下载: 导出CSV

    表  5  复合材料耐酸碱腐蚀性研究

    Table  5.   Study on acid and alkali corrosion resistance of compound materials

    ConditionSolutionFe3O4@SiO2Fe3O4@SiO2-APTMS
    Fe/(mg·L−1)Fe/(mg·L−1)TOC/(mg·L−1)
    298 K, soak, 24 h Water 0.135 0.015 0.025
    0.1 mol·L−1 HCl 3.598 0.206 3.420
    1 mol·L−1 HCl 25.542 2.729 8.866
    0.1 mol·L−1 NaOH 0.137 0.149 6.712
    1 mol·L−1 NaOH 0.276 0.186 8.106
    313 K, stirring, 72 h Water 0.138 0.016 0.027
    1 mol·L−1 HCl 24.842 2.629 8.886
    1 mol·L−1 NaOH 0.281 0.189 8.126
    313 K, stirring, 96 h Water 0.140 0.017 0.029
    1 mol·L−1 HCl 25.552 2.749 8.916
    1 mol·L−1 NaOH 0.296 0.191 8.173
    Note: TOC—Total organic carbon.
    下载: 导出CSV
  • [1] 徐峥. 重金属污染水体的环境保护处理技术分析[J]. 信息记录材料, 2021, 22(9):235-237. doi: 10.16009/j.cnki.cn13-1295/tq.2021.09.111

    XU Zheng. Analysis of environmental protection treatment technology of water body polluted by heavy metals[J]. Information Recording Material,2021,22(9):235-237(in Chinese). doi: 10.16009/j.cnki.cn13-1295/tq.2021.09.111
    [2] TADJARODI A, ABBASZADEH A, TAGHIZADEHB M, et al. Solid phase extraction of Cd(II) and Pb(II) ions based on a novel functionalized Fe3O4@SiO2 core-shell nanoparticles with the aid of multivariate optimization methodology[J]. Materials Science and Engineering C,2015,49:416-421. doi: 10.1016/j.msec.2015.01.013
    [3] 郭健, 姚云, 赵小旭, 等. 粮食中重金属铅离子、镉离子的污染现状及对人体的危害[J]. 粮食科技与经济, 2018, 43(3):33-35, 85.

    GUO Jian, YAO Yun, ZHAO Xiaoxu, et al. Pollution status and harm to human body of heavy metal lead ion and cadmium ion in grain[J]. Grain Science, Technology and Economy,2018,43(3):33-35, 85(in Chinese).
    [4] CENDROWSKIA K, SIKORAB P, ZIELINSKAA B, et al. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica[J]. Applied Surface Science,2017,407:391-397. doi: 10.1016/j.apsusc.2017.02.118
    [5] 许端平, 陈丽媛, 孔岳. 纳米级四氧化三铁回收水中铅离子实验[J]. 应用化工, 2021, 50(1):75-77, 82. doi: 10.3969/j.issn.1671-3206.2021.01.018

    XU Duanping, CHEN Liyuan, KONG Yue. Experiment on recovery of lead ion from water by nanometer iron tetroxide[J]. Applied Chemical Industry,2021,50(1):75-77, 82(in Chinese). doi: 10.3969/j.issn.1671-3206.2021.01.018
    [6] 罗超. 二氧化锰和四氧化三铁对碳纳米管改性及其对Cd(Ⅱ)和Cr(Ⅵ)的吸附研究[D]. 兰州: 兰州大学, 2014.

    LUO Chao. Modification of carbon nanotubes by manganese dioxide and ferric oxide and their adsorption for Cd(Ⅱ) and Cr(Ⅵ)[D]. Lanzhou: Lanzhou University, 2014(in Chinese).
    [7] LIU J, ZHANG J, XING L, et al. Magnetic Fe3O4/attapulgite hybrids for Cd(II) adsorption: Performance, mechanism and recovery[J]. Journal of Hazardous Materials,2021,412(14):125-237.
    [8] DUGOSZ O, SZOSTAK K, KRUPINSKI M, et al. Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes[J]. International Journal of Environmental Science and Technology,2021,18(3):561-574. doi: 10.1007/s13762-020-02852-4
    [9] JIN S Y, PARK B C, HAM W S, et al. Effect of the magnetic core size of amino-functionalized Fe3O4-mesoporous SiO2 core-shell nanoparticles on the removal of heavy metal ions[J]. Colloids and Surfaces A,2017,531:133-140.
    [10] 王朝辉, 杨芳. 磺酸基功能化磁性纳米粒子的制备、表征及除去水中Cu(II)的研究[J]. 化学工程师, 2012, 202(7):15-19. doi: 10.3969/j.issn.1002-1124.2012.07.005

    WANG Zhaohui, YANG Fang. Preparation, characterization and removal of Cu(II) from water by sulfonic acid functionalized magnetic nanoparticles[J]. Chemical Engineer,2012,202(7):15-19(in Chinese). doi: 10.3969/j.issn.1002-1124.2012.07.005
    [11] 赵永纲, 沈昊宇, 李勍, 等. 氨基功能化纳米Fe3O4磁性高分子吸附剂对废水中Cr(VI)的吸附研究[J]. 化学学报, 2009, 67(13):1509-1514. doi: 10.3321/j.issn:0567-7351.2009.13.018

    ZHAO Yonggang, SHEN Haoyu, LI Gou, et al. Study on the adsorption of Cr(VI) in wastewater by amino-functionalized nano-Fe3O4 magnetic polymer adsorbent[J]. Journal of Chemistry,2009,67(13):1509-1514(in Chinese). doi: 10.3321/j.issn:0567-7351.2009.13.018
    [12] LIN S, LIU L, YANG Y, et al. Comparison of the adsorption preference using superparamagnetic Fe3O4-SH nanoparticles to remove aqueous heavy metal contaminants[J]. Chemical Engineering Research and Design,2017,125:319-327. doi: 10.1016/j.cherd.2017.07.027
    [13] ZHANG J, ZHAI S, SHI L, et al. Pb(II) removal of Fe3O4@SiO2-NH2 core-shell nanomaterials prepared via a controllable sol-gel process[J]. Chemical Engineering Journal,2013,215:461-471.
    [14] 雷婷. 官能化磁性Fe3O4纳米颗粒的制备及其对污水中重金属离子的吸附性能研究[D]. 昆明: 云南大学, 2020.

    LEI Ting. Preparation of functional magnetic Fe3O4 nanoparticles and their adsorption properties for heavy metal ions in wastewater[D]. Kunming: Yunnan University, 2020(in Chinese).
    [15] ABAZARI R, MAHJOUB A R, MOLAIE S, et al. The effect of different parameters under ultrasound irradiation for synthesis of new nanostructured Fe3O4@bio-MOF as an efficient anti-leishmanial in vitro and in vivo conditions[J]. Ultrasonics Sonochemistry,2018,43:248-261. doi: 10.1016/j.ultsonch.2018.01.022
    [16] ZHAO D M, LI M, ZHANG D X, et al. Reductive dechlorination of 2, 4-dichlorophenol by Pd/Fe nanoparticles prepared in the presence of ultrasonic irradiation[J]. Ultrasonics Sonochemistry,2013,20:864-871.
    [17] 窦国金, 郑莹, 麦欣欣, 等. 二甲酚橙分光光度法测定化学镀镍液中的铅浓度[J]. 材料保护, 2012, 45(5):72-74, 88. doi: 10.16577/j.cnki.42-1215/tb.2012.05.001

    DOU Guojin, ZHENG Ying, MAI Xinxin, et al. Determination of lead in electroless nickel plating bath by xylenol orange spectrophotometry[J]. Material Protection,2012,45(5):72-74, 88(in Chinese). doi: 10.16577/j.cnki.42-1215/tb.2012.05.001
    [18] TA T K H, TRINH M T, LONG N V. Synthesis and surface functionalization of Fe3O4-SiO2 core-shell nanoparticles with 3-glycidoxypropyltrimethoxysilane and 1, 1-carbonyldiimidazole for bio-applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,504:376-383.
    [19] 聂阳, 王永花, 胡良锋, 等. Fe3O4@SiO2-NH2磁性复合材料对水中全氟化合物的检测研究[J]. 分析测试学报, 2016(1):1-7. doi: 10.3969/j.issn.1004-4957.2016.01.001

    NIE Yang, WANG Yonghua, HU Liangfeng, et al. Detection of perfluorinated compounds in water by Fe3O4@SiO2-NH2 magnetic composites[J]. Journal of Analysis and Testing,2016(1):1-7(in Chinese). doi: 10.3969/j.issn.1004-4957.2016.01.001
    [20] 关桦楠, 宋岩, 龚德状. 功能化Fe3O4纳米粒子去除水中Cu2+的研究[J]. 化学工程师, 2018, 32(10):11-14.

    GUAN Hua'nan, SONG Yan, GONG Dezhuang. Study on removal of Cu2+ from Water by Functionalized Fe3O4 nanoparticles[J]. Chemical Engineer,2018,32(10):11-14(in Chinese).
    [21] 胡超凡, 贾丽. 硅烷化试剂修饰Fe3O4磁性微粒的研究进展[J]. 激光生物学报, 2009, 18(4):561-569. doi: 10.3969/j.issn.1007-7146.2009.04.026

    HU Chaofan, JIA Li. Research progress of Fe3O4 magnetic particles modified by silanization reagents[J]. Journal of Laser Biology,2009,18(4):561-569(in Chinese). doi: 10.3969/j.issn.1007-7146.2009.04.026
    [22] 陈华军, 王锐, 丁梧秀, 等. 聚乙二醇聚合度对介孔η-Al2O3纤维形貌及吸附能力的影响[J]. 复合材料学报, 2014, 31(3):845-850.

    CHEN Huajun, WANG Rui, DING Wuxiu, et al. Effect of degree of polymerization of polyethylene glycol on the morphology and adsorption capacity of mesoporous η-Al2O3 fiber[J]. Acta Materiae Compositae Sinica,2014,31(3):845-850(in Chinese).
    [23] 何飞, 赫晓东, 李垚. 掺杂二氧化硅干凝胶孔结构的分形特性[J]. 复合材料学报, 2007(1):81-85. doi: 10.3321/j.issn:1000-3851.2007.01.014

    HE Fei, HE Xiaodong, LI Yao. Fractal characteristics of pore structure of doped silica xerogel[J]. Journal of Composite Materials,2007(1):81-85(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.014
    [24] 李美兰, 豆小喻, 何娇, 等. 羧基化磁性Fe3O4复合材料的制备及其对水体中Pb2+的吸附研究[J]. 中国塑料, 2021, 35(10):37-44.

    LI Meilan, DOU Xiaoyu, HE Jiao, et al. Preparation of carboxylated magnetic Fe3O4 composites and their adsorption of Pb2+ in water[J]. China Plastics,2021,35(10):37-44(in Chinese).
    [25] 刘崇敏, 黄益宗, 于方明, 等. 改性沸石及添加CaCl2和MgCl2对重金属离子Pb2+吸附特性的影响[J]. 环境化学, 2013, 32(5):803-809.

    LIU Chongmin, HUANG Yizong, YU Fangming, et al. Effect of modified zeolite and addition of CaCl2 and MgCl2 on the adsorption characteristics of heavy metal ion Pb2+[J]. Environmental Chemistry,2013,32(5):803-809(in Chinese).
    [26] 孙玉坤. 功能化Fe3O4@PAMAM纳米复合材料的制备及其对重金属离子的去除[D]. 杭州: 浙江大学, 2019.

    SUN Yukun. Preparation of functionalized Fe3O4@PAMAM nanocomposites and their removal of heavy metal ions[D]. Hangzhou: Zhejiang University, 2019(in Chinese).
    [27] 曹玮, 周航, 邓贵友, 等. 改性谷壳生物炭负载磁性Fe去除废水中Pb2+的效果及机制[J]. 环境工程学报, 2017(3):1437-1444. doi: 10.12030/j.cjee.201511081

    CAO Wei, ZHOU Hang, DENG Guiyou, et al. Effect and mechanism of Pb2+ removal from wastewater by magnetic Fe loaded with modified chaff biochar[J]. Journal of Envi-ronmental Engineering,2017(3):1437-1444(in Chinese). doi: 10.12030/j.cjee.201511081
    [28] FENG Z G, ZHU S, GODOI D, et al. Adsorption of Cd2+ on carboxyl-terminated suerparamagnetic iron oxide nanoparticles[J]. Analytical Chemistry,2012,84(8):3764-3770. doi: 10.1021/ac300392k
    [29] 张立志, 易平, 方丹丹, 等. 超顺磁性纳米Fe3O4@SiO2功能化材料对镉的吸附机制[J]. 环境科学, 2021(6):2917-2927.

    ZHANG Lizhi, YI Ping, FANG Dandan, et al. Adsorption mechanism of cadmium on superparamagnetic nano-Fe3O4@SiO2 functionalized materials[J]. Environmental Science,2021(6):2917-2927(in Chinese).
    [30] NASROLLAHZADEH M, ISSAABADI Z, SAJADI S M. Green synthesis of Pd/Fe3O4 nanocomposite using Hibiscus tiliaceus L. extract and its application for reductive catalysis of Cr(VI) and nitrocompounds[J]. Separation and Purification Technology,2018,197:253-260. doi: 10.1016/j.seppur.2018.01.010
    [31] MA J, JIA K F, CHENG G L, et al. Solid-phase extraction of Pb(II) ions based on L-cysteine functionalized Fe3O4/SiO2 core-shell nanoparticles[J]. Journal of Environmental Engineering,2016,142(11):04016062. doi: 10.1061/(ASCE)EE.1943-7870.0001062
    [32] AKPOMIE K G, DAWODU F A. Efficient abstraction of nickel (II) and manganese (II) ions from solution onto an alkaline-modified montmorillonite[J]. Journal of Taibah University for Science,2014,8(4):343-356. doi: 10.1016/j.jtusci.2014.05.001
    [33] 刘嘉丽. 氨基改性Fe3O4@mC复合材料的制备及其对Pb2+的吸附性能研究[D]. 湘潭: 湘潭大学, 2020.

    LIU Jiali. Preparation of amino modified Fe3O4@mC composites and their adsorption properties for Pb2+[D]. Xiangtan: Xiangtan University, 2020(in Chinese).
    [34] XIANG W, LIU X J, XIAO C W, et al. Triethylenetetramine-modified hollow Fe3O4/SiO2/chitosan magnetic nanocomposites for removal of Cr(VI) ions with high adsorption capacity and rapid rate[J]. Microporous and Mesoporous Materials,2020,297(C):110041.
    [35] ZHANG W B, DENG M, SUN C X, et al. Ultrasound-enhanced adsorption of chromium(VI) on Fe3O4 magnetic particles[J]. Industrial and Engineering Chemistry Research,2014,53(1):333-339. doi: 10.1021/ie401497k
    [36] CRUZLOPES L P, MACENA M, ESTEVES B, et al. Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous solution with different adsorbent materials[J]. Open Agriculture,2021,6(1):115-123. doi: 10.1515/opag-2021-0225
    [37] 王彦惠, 冷阳春, 成建峰, 等. Fe3O4@SiO2-NH2粒子对铀(Ⅵ)在阿拉善水相中的吸附性能研究[J]. 核科学与工程, 2020, 40(4):688-695. doi: 10.3969/j.issn.0258-0918.2020.04.025

    WANG Yanhui, LENG Yangchun, CHENG Jianfeng, et al. Study on the adsorption of uranium(VI) by Fe3O4@SiO2-NH2 particles in alxa aqueous phase[J]. Nuclear Science and Engineering,2020,40(4):688-695(in Chinese). doi: 10.3969/j.issn.0258-0918.2020.04.025
    [38] 包炳钦, 张军, 宋卫锋, 等. 磁性复合凝胶球对Pb(Ⅱ)的吸附特性与机制[J]. 复合材料学报, 2021, 38(6):1929-1938. doi: 10.13801/j.cnki.fhclxb.20200924.001

    BAO Bingqin, ZHANG Jun, SONG Weifeng, et al. Adsorption characteristics and mechanism of magnetic compo-site gel spheres for Pb(Ⅱ)[J]. Acta Materiae Compositae Sinica,2021,38(6):1929-1938(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200924.001
    [39] 王申宛, 钟爽, 郑丽丽, 等. 共热解法制备方解石/生物炭复合材料及其吸附Pb(II)性能和机制[J]. 复合材料学报, 2021, 38(12):4282-4293. doi: 10.13801/j.cnki.fhclxb.20210309.002

    WANG Shenwan, ZHONG Shuang, ZHENG Lili, et al. Calcite/biochar composites prepared by co-pyrolysis and their adsorption properties and mechanism of Pb(Ⅱ)[J]. Acta Materiae Compositae Sinica,2021,38(12):4282-4293(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210309.002
    [40] 李安生. 聚天冬氨酸的合成及其与金属离子络合沉淀的研究[D]. 西安: 西北大学, 2005.

    LI Ansheng. Synthesis of polyaspartic acid and its complexation with metal ions[D]. Xi'an: Northwestern University, 2005(in Chinese).
    [41] 刘立华, 周智华, 吴俊, 等. 两性高分子螯合絮凝剂与Cu(Ⅱ)、Pb(Ⅱ)、Cd(Ⅱ)、Ni(Ⅱ)的螯合稳定性[J]. 环境科学学报, 2013(1):79-87.

    LIU Lihua, ZHOU Zhihua, WU Jun, et al. The chelating stability of amphoteric polymer chelating flocculant with Cu (Ⅱ), Pb(Ⅱ), Cd (Ⅱ) and Ni(Ⅱ)[J]. Journal of Environmental Science,2013(1):79-87(in Chinese).
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  872
  • HTML全文浏览量:  965
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-12
  • 修回日期:  2022-08-14
  • 录用日期:  2022-08-26
  • 网络出版日期:  2022-09-06
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回