功能材料在工业废水治理中的研究进展

陈虹雨, 王庆刚, 胡林, 孙宏杰

陈虹雨, 王庆刚, 胡林, 等. 功能材料在工业废水治理中的研究进展[J]. 复合材料学报, 2024, 41(11): 5924-5934. DOI: 10.13801/j.cnki.fhclxb.20240320.004
引用本文: 陈虹雨, 王庆刚, 胡林, 等. 功能材料在工业废水治理中的研究进展[J]. 复合材料学报, 2024, 41(11): 5924-5934. DOI: 10.13801/j.cnki.fhclxb.20240320.004
CHEN Hongyu, WANG Qinggang, HU Lin, et al. Recent research progress of functional materials in industrial wastewater treatment[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5924-5934. DOI: 10.13801/j.cnki.fhclxb.20240320.004
Citation: CHEN Hongyu, WANG Qinggang, HU Lin, et al. Recent research progress of functional materials in industrial wastewater treatment[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5924-5934. DOI: 10.13801/j.cnki.fhclxb.20240320.004

功能材料在工业废水治理中的研究进展

基金项目: 2023年淮南市科技计划项目(2023A03)
详细信息
    通讯作者:

    陈虹雨,硕士,助理工程师,研究方向为功能材料的制备与性能研究、环境治理 E-mail: 756404475@qq.com

  • 中图分类号: X524;TB332

Recent research progress of functional materials in industrial wastewater treatment

Funds: 2023 Huainan City Science and Technology Program Projects (2023A03)
  • 摘要:

    工业化的不断扩张导致水污染率急剧上升,水体质量不断下降,而人类对淡水资源的需求却与日俱增。面对复杂严峻的水污染形势,各种水处理技术迅速发展。功能材料作为水处理技术发展的基础,越来越受到重视。各类功能材料具有独特的优势,在水污染处理中具有不同的处理作用和效果,但也存在不同的缺陷。本文旨在总结几类功能材料在工业废水领域的有效处理效果,阐述几类功能材料的优缺点,并展望未来可能的研究和探索方向。

     

    Abstract:

    The continuous expansion of industrialization has led to a sharp rise in the rate of water pollution, the quality of water bodies is declining, while the human demand for freshwater resources is increasing day by day. In the face of the complex and severe water pollution situation, a variety of water treatment technologies are rapidly developing. Functional materials as the basis for the development of water treatment technology, more and more attention. Various types of functional materials have unique advantages, and have different processing roles and effects in water pollution treatment, but there are also different defects. The purpose of this paper is to summarize the effective treatment effect of several types of functional materials in the field of industrial wastewater, to describe the advantages and disadvantages of several types of functional materials, and to look forward to the possible future direction of research and exploration.

     

  • Janus材料因其独特的结构或组成的不对称性展现出很多特殊的功能,近年来为人们所广泛关注[1-4]。目前,Janus材料在乳化剂[5]、自驱动马达[6]、药物释放[7]、催化[8]和柔性可穿戴[9]等众多领域都展现出巨大的应用前景。自1991年被诺贝尔奖获得者De Gennes[1]首次提出以来,经过30多年的发展,已经有多种不同组成或形貌结构的Janus材料被合成出来,从组成来分类,主要有聚合物/聚合物型、无机物/无机物型及聚合物/无机物型;从形貌来区分,包括颗粒状[10]、棒状[11]、片状[12]、锥状[13]及雪人状[14]等。

    不同于传统Janus材料,Janus中空球在空间结构上中心对称,其非对称性体现在内外表面的化学组成和性质上,这种独特的结构使其可以用作特殊微容器,用于分离富集、传输和受限反应等[15-19]。但是,研究发现,完整致密的壳层会限制微球和环境之间的物质传输[15]。因此,为了提高Janus微球和环境之间的物质传输速率,引入了贯穿壳层的孔道,即Janus笼。目前,已经有多种功能Janus笼被制备出来,作为高效传输的微反应容器,在水处理、催化,环境响应富集释放等方向展现出一定的应用前景[20-23]

    课题组在之前的工作中,最早提出了乳液界面溶胶凝胶法制备二氧化硅Janus中空球的方法[24]。进而在此基础上通过两种表面活性剂在乳液界面发生微相分离在中空球表面形成通孔,同时引入磁性纳米粒子并在中空球内腔接枝温敏性聚合物,得到热敏性的聚合物-无机物复合功能Janus笼[22]。但是,在之前的研究中也发现,Janus笼的表面孔径很难调控,孔径也只能限制在50 nm以下,如果想要通过增加致孔表面活性剂的量得到更大孔径的笼,不仅孔径变化不大,而且还会导致壳层局部呈不连续结构,在表面形成二氧化硅小颗粒,进而破坏球形结构,无法得到完整的中空球。

    基于这些考虑,在此提出了新的研究思路,先用烷基和末端带卤素基团的硅烷偶联剂代替带活性双键的硅烷偶联剂,壳层依旧引入磁性纳米颗粒,先制备出支撑性良好、孔径大范围可调的无机Janus笼,进而利用可控自由基聚合代替自由基聚合,在更温和的反应条件下在内腔接枝pH响应性聚合物,得到支撑性好、孔径大范围可调的功能有机/无机功能复合Janus笼,并验证了其可以在改变环境pH的条件下实现对油相的可控吸收和释放,以及在磁操控下实现装载物的定向传输,有望用于药物装载和体内靶向释放等领域。

    无水三氯化铁(FeCl3,分析纯)、油酸钠(分析纯)、油酸(分析纯)、吐温80(Tween 80,化学纯)、十二烷基硫酸钠(SDS,化学纯)、铜粉(分析纯)和52#石蜡(熔点50~52℃)购自国药集团化学试剂有限公司;3-氨丙基三乙氧基硅烷(APTES,98%)、香豆素-6 (98%)、荧光素5-异硫氰酸酯(FITC,95%)、三乙胺(99%)、正辛基三乙氧基硅烷(98%)和2-溴-2-甲基丙酰溴(98%)购自北京百灵威科技有限公司;正硅酸乙酯(分析纯)、甲醇(分析纯)、正癸烷(分析纯)和甲苯(分析纯)购自西陇科学股份有限公司;1, 1-双十八烷基-3, 3, 3, 3-四甲基吲哚羰花青高氯酸盐(dil-C18,98%)和甲基丙烯酸二乙氨基乙酯(DEAEMA,>98.5%)购自西格玛奥德里奇(上海)贸易有限公司(Sigma-Aldrich);三[2-(二甲氨基)乙基]胺(Me6TREN,97%)购自梯希爱(上海)化成工业发展有限公司(TCI);预水解的苯乙烯马来酸酐共聚物水溶液(HSMA,10wt%)为自制。

    (1) 磁性无机Janus笼的制备。取0.3 g合成的油溶性磁性Fe3O4颗粒[25]、1.1 g APTES、0.88 g正辛基三乙氧基硅烷和5.2 g正硅酸乙酯加入到25 g正癸烷中混合均匀作为油相;将15 mL 10wt%的HSMA的水溶液加入75 mL水中,用2 mol/L HCl调pH为3~4。然后再加入0.03 g Tween 80,混合均匀,作为水相。混合水油两相,用高速剪切机(Fluko FA25,德国Fluko)在12000 r/min的速度下剪切乳化3 min。将剪切所得乳液转移至三口瓶中,70℃反应12 h,得到磁性无机Janus笼。

    (2) 末端Br基硅烷偶联剂的合成。将4.31 g APTES和2.55 g三乙胺(TEA)加入到20 mL甲苯中,通氮气30 min。再将5.95 g溴代异丁酰溴(BiBB)溶解于10 mL甲苯中,加入到恒压漏斗中。在冰浴条件下,缓慢的将溴代异丁酰溴甲苯溶液缓慢滴加到体系中,磁力搅拌过夜后,离心除去下层白色沉淀后,旋蒸除去甲苯,即得到末端为溴基的硅烷偶联剂。

    (3) pH响应性磁性复合Janus笼的制备。将10 mg 铜粉和50 mg上述步骤(1)合成的磁性无机Janus笼分散到36 mL水中,通氮气30 min。将0.2 g DEAEMA和30 μL配体Me6TREN分散到18 mL甲醇中,通氮气30 min后和水相混合,在50℃水浴中反应12 h。磁分离,用乙醇洗涤3次,真空干燥,得到内表面接枝有PDEAEMA的磁性聚合物/无机磁性复合Janus笼。

    (1) 复合Janus笼对油相的pH响应性吸释和磁分离。在0.2 g甲苯中加入少量油溶性荧光染料dil-C18染色,在样品瓶中将10 mg磁性复合Janus笼分散在5 g水中,再加入染色甲苯,调节pH至5,此时水油两相明显分层,再调节pH至9,振荡吸附,甲苯层消失,用磁铁吸附,吸附有甲苯的复合Janus笼即在磁铁一侧的瓶壁处富集,将pH调回5,振荡静置后用磁铁吸附,甲苯层重新出现;同样在0.2 g甲苯中加入少量油溶性荧光染料dil-C18染色,在样品瓶中将10 mg磁性复合Janus笼分散在5 g水中,再加入染色甲苯,调节pH至5,此时水油两相明显分层,保持pH值不变,振荡后用磁铁吸附,甲苯无法被复合Janus笼吸附。

    (2) 复合Janus笼在荧光显微镜下的pH响应性吸释:将50 mg磁性复合Janus笼分散在10 g水中,加入水溶性荧光燃料FITC进行染色标记。将0.5 g加入少量香豆素-6荧光染料染色的甲苯加入到溶解有10 mg表面活性剂SDS的10 g水中,超声乳化得到水包油乳液。将FITC标记的复合Janus笼水分散液加入到乳液中,调节pH至9左右,避光搅拌,分别在磁分离复合Janus笼前后在荧光显微镜(Olympus IX83,日本Olympus)下观察;再调节pH至5左右,避光搅拌,同样分别在磁分离复合Janus笼前后在荧光显微镜下观察。

    在之前制备复合Janus笼时,课题组是将硅烷前驱体和聚合物单体同时溶解在油相中,一步得到有机/无机复合Janus多孔球[22]。但是多孔球的孔径只能在50 nm左右且难以调节,对应的致孔表面活性剂Tween 80在水相的浓度在0.22wt%以下,当Tween 80浓度继续升高时,会使多孔球外表面生成SiO2小颗粒,进而破坏球形结构。

    本文用正辛基三乙氧基硅烷代替含活性双键的硅烷偶联剂作为球壳内侧接枝亲油基团的硅前驱体,同时将制备的油溶性Fe3O4纳米颗粒分散在油相中,得到外侧为氨基,内侧为烷基的磁性无机Janus笼。样品分别在扫描电子显微镜(SEM,带有元素分析 EDX的Quanta FEG 250,美国 FEI)和透射电子显微镜(TEM,JEM-1011,日本 JEOL)下进行观察,如图1所示。Janus笼的直径约为1~3 μm,孔径约为200~400 nm (图1(a)图1(b)),同时不同于内侧接枝活性双键的无机Janus笼,即使没有聚合物的支撑,内侧为正辛基硅烷修饰的Janus笼也不会塌缩。进而对无机Janus笼进行超声粉碎,可以得到表面具有孔道的磁性Janus片(图1(c))。对得到的Janus片进行包埋切片,在TEM下观察,如图1(d)所示,可以看到磁性纳米粒子镶嵌在壳层中。

    调节致孔表面活性剂Tween 80的加入量,即可对Janus笼球壳表面的通孔孔径进行调节。如图2所示,Tween 80在水相的浓度分别为0.01wt% (图2(a))、0.02wt% (图2(b))、0.04wt% (图2(c))和0.08wt% (图2(d))时,其表面孔径可从40 nm左右增加到约1 μm。

    图  1  内侧修饰正辛基的磁性无机Janus笼的SEM图像 (a) 和TEM图像 (b);由磁性无机Janus笼破碎得到的Janus多孔片的SEM图像 (c) 和甲基丙烯酸甲酯(MMA)包埋切片后的TEM图像 (d)
    Figure  1.  SEM image (a) and TEM image (b) of magnetic organic Janus cage with octyl group grafted onto interior surface; SEM image (c) of Janus porous nanosheets crushed from magnetic inorganic Janus cage and cross section TEM image (d) of slice of magnetic inorganic Janus cage after embedding in methyl methacrylate (MMA) and section
    图  2  水相中不同Tween 80添加量制备得的无机Janus笼的SEM图像:(a) 0.01wt%;(b) 0.02wt%;(c) 0.04wt%;(d) 0.08wt%
    Figure  2.  SEM images of the inorganic Janus cages synthesized at varied Tween 80 concentrations in aqueous phase: (a) 0.01wt%; (b) 0.02wt%; (c) 0.04wt%; (d) 0.08wt%

    在之前的工作中,即使Tween 80的含量提高近10倍,孔径的大小变化也不明显[22],相比之下,本文孔径对Tween 80的量变化更敏感。这是由于在之前工作中,由于无机/有机壳层是一锅法制备,因而在油相中加入了大量的聚合物单体,其和Tween 80相容性比烷烃溶剂要差,使Tween 80在界面的微相分区面积较小,即使浓度增加,对分区面积影响也不大,因而难以对孔径进行大范围调节,继续增加Tween 80的浓度只能破坏壳层。而本文先构建无机壳层,油相中只添加了硅前驱体,同时用烷基硅烷偶联剂代替带有活性双键的硅前驱体,使油相和Tween 80非极性部分的基团极性相近,使Tween 80微区可以在界面更加铺展,因而能够通过改变Tween 80的量来实现孔径的大范围调节。为了进一步验证,在不改变其他条件,仅仅不添加聚合物单体的情况下重复之前的制备过程,如图3所示,腔内不一步接枝聚合物时,制备的无机笼的孔径明显变大且孔径对Tween 80的含量更加敏感,但是失去聚合物的支撑,无机笼壳层本身支撑性差,呈塌缩状态。

    图  3  (a) 水相中Tween 80添加量为0.22wt%制备的无机/有机复合Janus笼的SEM图像;(b) 水相中Tween 80添加量为0.04wt%制备的无机笼的SEM图像
    Figure  3.  (a) SEM image of the polymer/inorganic composite Janus cages synthesized at 0.22wt% of Tween 80 in aqueous phase; (b) SEM image of inorganic Janus cages synthesized at 0.04wt% of Tween 80 without addition of monomer in aqueous phase

    研究发现,用带烷基的硅前驱体替代带活性双键的硅前驱体能够得到支撑性良好的无机笼,但是单纯的烷基链修饰内侧使得无机笼没有活性位点去接枝功能性的聚合物,限制了Janus笼的应用。考虑到自由基聚合难以控制,本工作基于“铜媒介”可控自由基聚合法(CuCRP)代替自由基聚合,在笼内侧接枝了pH响应性聚合物[26]

    为了在无机Janus笼内表面接枝聚合物,先要在内侧修饰上卤素基团。通过氨丙基三乙氧基硅烷和溴代异丁酰溴在等物质的量的条件下进行反应,制备出末端为溴基的硅烷偶联剂。对产物进行核磁共振(1H NMR,Bruker Avance III 400 HD,德国 Bruker)表征,各个H原子峰已在图4(a)中标注,其中,化学位移在6.96×10−6的峰对应着酰胺上与N相连的H,且积分结果为1 ,证明末端为溴基的硅烷偶联剂成功合成。再以摩尔比1∶1的比例将合成的末端Br基硅烷偶联剂和正辛基三乙氧基硅烷一起加入油相作为亲油一侧的修饰基团,得到内表面接枝Br基的Janus笼。如图4(b)所示,对Janus笼进行EDX元素分析,证明Br的成功引入。

    图  4  (a) 合成的末端带Br基的硅烷偶联剂的核磁共振图谱;(b) 内表面接枝Br基的磁性无机Janus笼的SEM图像及内嵌EDX图谱(方框为元素分析所选区域)
    Figure  4.  (a) 1H NMR spectrum of synthesized silane end with Br group; (b) SEM image and inset EDX spectrum of magnetic inorganic Janus cage with Br group grafted onto the interior surface (Box is the selected area for element analysis)

    成功在壳层内侧引入溴基以后,采用“铜媒介”可控自由基聚合法(CuCRP)制备pH响应性Janus笼[26],将磁性无机Janus笼分散在水相,pH响应性单体DEAEMA和配体分散在甲醇中,混溶后加入铜粉作为催化剂,壳层内侧的溴基引发聚合,接枝上pH响应性聚合物PDEAEMA,即得到pH响应的磁性聚合物/无机复合Janus笼。其反应体系温和简单,在水和甲醇混溶体系就可以聚合油溶性单体,更加清洁无污染,反应体系耐氧性高。在扫描电镜下观察,其形貌未有明显变化(图5(a))。将接枝功能聚合物的复合Janus笼用预聚物甲基丙烯酸甲酯(MMA)包埋,再进行切片并在TEM下观察,如图5(b)所示,发现Janus笼壳层内出现衬度较低的一层,说明PDEAEMA仅接枝在Janus笼的内表面(为了便于观察,包埋切片的Janus笼未复合磁性纳米颗粒)。将复合Janus笼超声破碎得到复合多孔片,发现内侧接枝聚合物之后变得粗糙(图5(c)),用HF刻蚀除去无机层,得到聚合物笼(图5(d))。

    对复合Janus笼分别进行红外图谱(FTIR,Bruker EQUINOX 55,德国 Bruker)和热失重(TGA, Perkin-Elmer Pyris 1, 美 国 Perkin-Elmer)分析。其红外图谱如图6(a)所示,接枝聚合物后的Janus笼(曲线2)对比于无机磁性Janus笼(曲线1),在1725 cm−1出现新的特征峰,对应着聚合物PDEAEMA的酯基峰。此外,1050~1150 cm−1对应着二氧化硅Si—O—Si的非对称伸缩振动峰,1633 cm−1对应的为氨基的特征峰,595 cm−1对应着的Fe—O特征峰。通过TGA分析可测得复合Janus笼中聚合物的含量(图6(b))。图中曲线1为无机磁性Janus笼的热失重曲线,其残余63.1wt%,失重的原因主要为有机基团热解和硅前驱体进一步缩合造成。而曲线2为接枝聚合物后的复合Janus笼的曲线,其热解后残余36.8wt%,因而计算出复合Janus笼中聚合物质量含量为41.7wt%。

    图  5  (a) 内表面接枝聚甲基丙烯酸二乙氨基乙酯(PDEAEMA)的磁性无机/有机复合Janus笼的SEM图像;(b) 未复合磁性纳米颗粒的内表面接枝PDEAEMA无机/有机复合Janus笼切片的TEM图像;(c) 复合Janus笼破碎后的多孔片的SEM图像;(d) 用HF酸刻蚀除去无机壳层后的有机笼的SEM图像
    Figure  5.  (a) SEM image of magnetic composite Janus cage with polydiethylaminoethyl methacrylate (PDEAEMA) grafted onto interior surface; (b) Cross-section TEM image of composite Janus cage with PDEAEMA grafted onto interior surface (without Fe3O4 nanoparticles); (c) SEM image of Janus porous nanosheets crushed from composite Janus cage; (d) SEM image of organic cage obtained by etching inorganic shell with HF
    图  6  (a) 磁性无机Janus笼(曲线1)和磁性有机/无机复合Janus笼(曲线2)的FTIR图谱;(b) 磁性无机Janus笼(曲线1)和磁性有机/无机复合Janus笼(曲线2)的在空气中的热失重曲线
    Figure  6.  (a) FTIR spectra of magnetic inorganic Janus cage ( curve 1) and magnetic composite Janus cage (curve 2); (b) Thermogravimetric analysis (TGA) curves in air of magnetic inorganic Janus cage (curve 1) and magnetic composite Janus cage (curve 2)

    PDEAEMA为pH响应性聚合物,pKa约为7.2,当环境pH值大于其pKa时,PDEAEMA表现为疏水,反之则为亲水。Janus笼接枝pH响应性聚合物后,可以通过调节pH值来改变Janus笼内部的亲疏水环境,实现磁操控的pH响应性油水分离,进而可用于药物在体内的靶向释放等。

    首先对复合Janus笼进行磁操控pH响应性吸释和磁分离实验,如图7所示。先将油溶性荧光染料dil-C18加入到少量甲苯中以便后续观察,将甲苯加入到分散有复合Janus笼的水中并调节水相pH值为5,两者不互溶形成界限分明的两相(图7(a))。再将水相pH值调至9,振荡吸附,甲苯和水相分层消失,体系呈浑浊的均相,再用磁铁进行磁分离,发现不再出现两相分层,而是甲苯都随着复合Janus笼被吸附在瓶壁上(图7(b))。将pH调回5,振荡后静置,再用磁铁进行磁分离,发现油水分相重新出现,当环境变为酸性时,油相重新被Janus笼释放出来(图7(c))。作为对照,保持水相pH值为5不变,重复上述实验,发现油相无法在酸性条件下被复合笼吸入(图7(d)图7(e))。由此,复合Janus笼可对环境中的油进行pH响应性的吸释并可在磁操控下定向运输。

    图  7  内表面接枝PDEAEMA的磁性复合Janus笼对油相的pH响应性及磁操控分离实验:(a) 分散有复合Janus笼的水(下层)和甲苯(上层)分相照片,甲苯中加入1, 1-双十八烷基-3, 3, 3, 3-四甲基吲哚羰花青高氯酸盐 (dil-C18)染料以便于观察,水相pH值为5;(b) 调节pH至9,振荡后磁分离吸收甲苯的复合Janus笼的照片;(c) 调节pH至5,振荡静置后磁铁吸附复合Janus笼的照片;(d) 分散有复合Janus笼的水(下层)和经dil-C18染色的甲苯(上层)分相照片,水相pH值为5;(e) 保持pH为5不变,振荡静置后磁铁吸附复合Janus笼的照片
    Figure  7.  pH-responsive absorption and release of the oil and magnetic manipulation of magnetic composite Janus cage with PDEAEMA grafted onto interior surface: (a) Immiscible mixture of toluene (top)/aqueous dispersion of composite Janus cage (bottom), oil soluble dye 1, 1'-dioctadecyl-3, 3, 3', 3'-tetramethylindodicarbocyanine perchlorate (dil-C18) is added in toluene and the pH value of aqueous dispersion is 5; (b) pH value is modulated to 9 and oil contained magnetic Janus cages are collected by magnets after vibration; (c) pH value is modulated back to 5 and magnetic Janus cages are collected by magnets after vibration with the release of dyed oil; (d) Immiscible mixture of toluene (top)/aqueous dispersion of composite Janus cage (bottom), oil soluble dye dil-C18 is added in toluene and the pH value of aqueous dispersion is 5; (e) pH value remains to be 5 and magnetic Janus cages are collected by magnets after vibration while dyed oil remains unchanged

    进而在荧光显微镜下观察复合Janus笼对油相pH响应性的吸释过程,如图8所示。将甲苯加入香豆素-6荧光染料标记后再用十二烷基硫酸钠(SDS)为乳化剂和水乳化得到水包油乳液,乳液液滴在荧光显微镜下呈现蓝色。将pH响应性复合Janus笼先用FITC进行荧光标记,染料可吸附在Janus笼壳层便于后续观察。再将标记后的Janus笼加入上述荧光标记的水和甲苯的乳液中,分散均匀,调节pH为9左右,避光搅拌后再置于荧光显微镜下观察,发现蓝色的甲苯液滴(圆圈内)被吸入到Janus笼腔体内(图8(a)),磁分离Janus笼后取水相置于荧光显微镜下观察,蓝色液滴消失(图8(b)),证明在pH=9的条件下,Janus笼将甲苯完全吸入腔内;把pH调至5,壳层内聚合物由疏水转变为亲水,甲苯被挤出,此时在荧光显微镜下仅仅看到Janus笼呈现绿色的光圈,腔内蓝色液滴消失(图8(c)),磁分离后对水相取样观察,出现蓝色液滴(球形),证明甲苯被Janus笼响应性释放(图8(d)),说明复合Janus笼可通过改变环境pH值可以实现可控的油水分离。

    图  8  pH=9时复合Janus笼吸附荧光染色甲苯的荧光显微镜图像(a)和用磁铁分离吸附甲苯的Janus笼后,上层水样的荧光显微镜图像(b); pH=5时Janus笼释放出甲苯后的荧光显微镜图像(c)和磁铁分离Janus笼后上层水样的荧光显微镜图像(d)
    Figure  8.  Fluorescence microscopy images of the Janus composite cage after absorption of toluene with pH of the circumstance of 9 (a) and the supernatant water after magnetic collection of the Janus cage (b); Fluorescence microscopy images of the Janus composite cage after release of toluene with pH of the circumstance of 5 (c) and the supernatant water after magnetic collection of the Janus cage (d)

    (1) 通过乳液界面溶胶凝胶和两种表面活性剂在界面微相分离先制备磁性无机Janus笼,内部修饰的烷基基团使无机笼壳层具有良好支撑性,同时可通过调节吐温80 (Tween 80)含量实现孔径在40 nm~1 μm可调,进一步利用同样修饰在内表面的卤素基团,通过“Cu媒介”的活性自由基聚合法在温和的反应条件下成功在内表面接枝pH响应性聚合物得到功能无机/有机复合Janus笼。

    (2) 将复合Janus笼用于油水分离,证明了其可通过调控环境pH来实现对油相的响应性吸收和释放。这种pH敏感性的微容器且表面带有增强传质的孔道,有望用于药物的装载和体内靶向释放等领域。

  • 图  1   杂化膜制备示意图[20]

    B-lg—Beta-lactoglobulin

    Figure  1.   Schematic diagram of hybridized membrane preparation[20]

    图  2   苯并咪唑化碳纳米管(BI@MWCNTs)的制备示意图[27]

    Figure  2.   Schematic representation of the preparation of benzimidazolylated carbon nanotubes (BI@MWCNTs)[27]

    图  3   吸附日落黄(FCF)染料分子的磁性埃洛石纳米管(HNTs)[30]

    Figure  3.   Magnetic halloysite nanotubes (HNTs) adsorbing sundown (FCF) dye molecules[30]

    图  4   海藻酸盐-明胶-聚吡咯(Alg-Gel-PPy)水凝胶制备示意图[39]

    SDS—Sodium dodecyl sulfate

    Figure  4.   Schematic presentation of alginate-gelatin-polypyrrole (Alg-Gel-PPy) hydrogel preparation[39]

    图  5   聚乙烯醇-共乙烯-聚苯胺(EVOH/PANI)复合气凝胶的制备示意图[44]

    NFAs—Aerogel

    Figure  5.   Schematic diagrams of the preparation of polyvinyl alcohol-co-ethylene-polyaniline (EVOH/PANI) composite aerogel[44]

    图  6   聚噻吩-普鲁士红 (PTh-PR) 纳米复合材料吸附示意图[47]

    Figure  6.   Adsorption schematic of polythiophene-Prussian Red (PTh-PR) nanocomposites[47]

    图  7   Fe3O4@SiO2-NH2核壳纳米粒子合成示意图[51]

    APTES—(3-amino-propyl) triethoxysilane

    Figure  7.   Schematic of Fe3O4@SiO2-NH2 core-shell nanoparticle synthesis[51]

    图  8   三乙醇胺(TEA)-CoFe2O4的吸附示意图[55]

    Figure  8.   Schematic diagram of adsorption of triethanolamine (TEA)-CoFe2O4[55]

    图  9   壳聚糖气凝胶(MCS)的吸附示意图[67]

    Figure  9.   Schematic diagram of adsorption of chitosan aerogel (MCS)[67]

    图  10   合成醋酸纤维素(CAS)的反应机制[71]

    DMF—N, N-dimethylformamide

    Figure  10.   Reaction mechanism diagram for synthesizing cellulose acetate (CAS)[71]

  • [1]

    WEI J, JIA J, TONG L. Highly selective adsorption of dyes by functional hypercrosslinked-polymers prepared in a facile and chemically stable manner[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110555. DOI: 10.1016/j.jece.2023.110555

    [2]

    DA C J S, ANDRÉ R F. Polypyrrole/stearic acid-coated Luffa cylindrica for enhanced removal of sodium diclofenac from water: Batch and continuous adsorption studies[J]. Journal of Cleaner Production, 2023, 389: 136084. DOI: 10.1016/j.jclepro.2023.136084

    [3]

    MAHESH R, VORA K, HANUMANTHAIAH M, et al. Removal of pollutants from wastewater using alumina based nanomaterials: A review[J]. Korean Journal of Chemical Engineering, 2023, 40: 2035-2045. DOI: 10.1007/s11814-023-1419-x

    [4]

    WANG W L, LYU Y P, LIU H J, et al. Recent advances in application of polypyrrole nanomaterial in water pollution control[J]. Separation and Purification Technology, 2023, 330: 125265.

    [5]

    HASSAN M E D R, BARAKAT M E S, YOSEF E H E. Synthesis and evaluation of core-shell nanocomposites for the photodegradation of liner alkyl-benzene sulfonate water contaminations[J]. International Journal of Environmental Science and Technology, 2023, 21(3): 1-16.

    [6]

    KOLI, MITIL M, SINGH S P. Surface modified ultrafiltration and nanofiltration membranes for selective removal of heavy metals and inorganic groundwater contaminants: A review[J]. Environmental Science: Water Research & Technology, 2023, 11: 2803-2829 .

    [7]

    SALINAS G, FRONTANA-URIBE B A. Electrochemical analysis of heavy metal ions using conducting polymer interfaces[J]. Electrochem, 2022, 3(3): 492-506. DOI: 10.3390/electrochem3030034

    [8]

    TUNDWAL A, KUMAR H, BINOJ B J, et al. Conducting polymers and carbon nanotubes in the field of environmental remediation: Sustainable developments[J]. Coordination Chemistry Reviews, 2024, 500: 215533. DOI: 10.1016/j.ccr.2023.215533

    [9]

    SINGH R, SAMUEL M S, RAVIKUMAR M, et al. Processing of carbon-based nanomaterials for the removal of pollutants from water/wastewater application[J]. Water, 2023, 15(16): 3003.

    [10]

    ERGUN C. A current review on conducting polymer-based catalysts: Advanced oxidation processes for the removal of aquatic pollutants[J]. Water, Air & Soil Pollution, 2023, 234(8): 524.

    [11]

    CHADHA U, SELVARAJ S K, THANU S V, et al. A review of the function of using carbon nanomaterials in membrane filtration for contaminant removal from wastewater[J]. Materials Research Express, 2022, 9(1): 1-23.

    [12]

    STOCCO T D, ZHANG T, DIMITROV E, et al. Carbon nanomaterial-based hydrogels as scaffolds in tissue engineering: A comprehensive review[J]. International Journal of Nanomedicine, 2023, 18: 6153-6183.

    [13]

    SINGH R, SAMUEL M S, RAVIKUMAR M, et al. Processing of carbon-based nanomaterials for the removal of pollutants from water/wastewater application[J]. Water, 2023, 15(16): 3003. DOI: 10.3390/w15163003

    [14]

    SAHU P S, VERMA R P, TEWARI C, et al. Facile fabrication and application of highly efficient reduced graphene oxide (rGO)-wrapped 3D foam for the removal of organic and inorganic water pollutants[J]. Environmental Science and Pollution Research, 2023, 30(40): 93054-93069. DOI: 10.1007/s11356-023-28976-x

    [15]

    LEÃO M B, BORDIN J R, DE M C F. Specific surface area versus adsorptive capacity: An application view of 3D graphene-based materials for the removal of emerging water pollutants[J]. Water, Air & Soil Pollution, 2023, 234(2): 136.

    [16]

    HIRANIRAJAN A K, ASIF A H, RAFIQUE N, et al. Three-dimensional nitrogen-doped graphene oxide beads for catalytic degradation of aqueous pollutants[J]. Chemical Engineering Journal, 2022, 446: 137042. DOI: 10.1016/j.cej.2022.137042

    [17]

    NASSAR G, YOUSSEF S, HABCHI R. Nitrogen-doped graphene aerogels for highly efficient toluene removal from water[J]. Graphene and 2D Materials, 2022, 7(1-2): 51-57. DOI: 10.1007/s41127-022-00049-9

    [18]

    ZHANG R, LIU L, MENG Q. Ultralight, fire-resistant, lamellar nitrogen-doped graphene aerogels for highly efficient selective organic pollutant cleanup[J]. Journal of Materials Science, 2023, 58(28): 11697-11710. DOI: 10.1007/s10853-023-08762-3

    [19]

    TEE W T, LOH N Y L, LAI K C, et al. Application of 3D heteroatom-doped graphene in adsorptive removal of water pollutants: Review on hydrothermal synthesis and its influencing factors[J]. Separation and Purification Technology, 2023, 320: 124072.

    [20]

    ALSALME A. Organic-inorganic hybrid membrane for simultaneous heavy metal removal at drinking water pollution concentration levels[J]. Microchemical Journal, 2023, 195: 109447.

    [21]

    KAVAK Ö, CAN B, BAT E. Water-based route for dopamine and reduced graphene oxide aerogel production[J]. ACS Omega, 2023, 8(49): 46728-46737.

    [22]

    AL-SAKKAF M K, BASFER I, IDDRISU M, et al. An up-to-date review on the remediation of dyes and phenolic compounds from wastewaters using enzymes immobilized on emerging and nanostructured materials: Promises and challenges[J]. Nanomaterials, 2023, 13(15): 2152. DOI: 10.3390/nano13152152

    [23]

    ZAKARIA A F, KAMARUZAMAN S, ABDUL R N, et al. Sodium alginate/β-cyclodextrin reinforced carbon nanotubes hydrogel as alternative adsorbent for nickel (II) metal ion removal[J]. Polymers, 2022, 14(24): 5524.

    [24]

    DE L P, SICILIANO C, BNAGY J, et al. Treatment of water contaminated with diesel using carbon nanotubes[J]. Applied Sciences, 2023, 13(10): 6226. DOI: 10.3390/app13106226

    [25]

    GANGADHAR A, RAMESH A M, PURUSHOTHAM D, et al. Fabrication of carbon nanotubes coated electrode to remove pharmaceutical pollutant in treated effluent[J]. Chemical Papers, 2023, 77: 3855-3866. DOI: 10.1007/s11696-023-02747-x

    [26]

    LIANG Y H, YUAN F Z, XU X J, et al. Bioinspired polydopamine-sheathed carbon nanotubes as environmentally safe, efficient, and durable adsorbents for organic pollutant capturing via hydrogen bonding[J]. Carbon, 2023, 214: 118354. DOI: 10.1016/j.carbon.2023.118354

    [27]

    ELGHAMRY I, GOUDA M, AL-FAYIZ Y S S. Synthesis of chemically modified acid-functionalized multiwall carbon nanotubes with benzimidazole for removal of lead and cadmium ions from wastewater[J]. Polymers, 2023, 15(6): 1421. DOI: 10.3390/polym15061421

    [28]

    VASCO G, ARIMA V, BOUDJELIDA S, et al. Polymeric membranes doped with halloysite nanotubes imaged using proton microbeam microscopy[J]. Nanomaterials, 2023, 13(22): 2970. DOI: 10.3390/nano13222970

    [29]

    SHANMUGARAJ K, MANGALARAJA R C V, CRISTIAN H, et al. Cu-Ni bimetallic nanoparticles anchored on halloysite nanotubes for the environmental remediation[J]. Surfaces and Interfaces, 2023, 41: 103257. DOI: 10.1016/j.surfin.2023.103257

    [30]

    NGUYEN N Q, JEONG Y, ABELMANN L, et al. Enhanced magnetic halloysite nanotubes for dye removal at different pH conditions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 680: 132631.

    [31]

    GAO H, SOTO M A, LI Z Z, et al. Cellulose nanocrystal/halloysite nanotube composite aerogels for water purification[J]. Dalton Transactions, 2023, 52(36): 12968-12977.

    [32]

    ZHANG X C, WANG M X, LIN P G, et al. L-cysteine functionalized halloysite nanotubes/PVDF ultrafiltration membrane for improving anti-fouling performance[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111400. DOI: 10.1016/j.jece.2023.111400

    [33]

    ATASHGAR A, EMADZADEH D, AKBARI S, et al. Incorporation of functionalized halloysite nanotubes (HNTs) into thin-film nanocomposite (TFN) nanofiltration membranes for water softening[J]. Membranes, 2023, 13(2): 245. DOI: 10.3390/membranes13020245

    [34]

    ZHAO L, ZHOU Z, CHEN W Q, et al. Polypyrrole supported Pd/Fe bimetallic nanoparticles with enhanced catalytic activity for simultaneous removal of 4-chlorophenol and Cr(VI)[J]. Science of the Total Environment, 2022, 831: 154754-154760. DOI: 10.1016/j.scitotenv.2022.154754

    [35]

    LU H, DONG C Y, ZHANG L F, et al. Polypyrrole nanomaterials: Structure, preparation and application[J]. Polymers, 2022, 14(23): 5139. DOI: 10.3390/polym14235139

    [36]

    WANG T, YAN L L, HE Y J, et al. Application of polypyrrole-based adsorbents in the removal of fluoride: A review[J]. RSC Advances, 2022, 12(6): 3505-3517.

    [37]

    XU H, DAI J C, FANG K J, et al. BiOI/PPy/cotton photocatalytic fabric for efficient organic dye contaminant degradation and self-cleaning application[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674: 131862.

    [38]

    FAROOQ A, ALAM J, RIAZ U. Photocatalytic applications of polypyrrole/polythiophene Co-oligomers for the degradation of bisphenol A[J]. ChemistrySelect, 2023, 8(37): e202300438. DOI: 10.1002/slct.202300438

    [39]

    BENHALIMA T, CHICHA W, FERFERA-HARRAR H. Sponge-like biodegradable polypyrrole-modified biopolymers for selective adsorption of basic red 46 and crystal violet dyes from single and binary component systems[J]. International Journal of Biological Macromolecules, 2023, 253: 127532.

    [40]

    MOHANTY N, PATRA B N. Polypyrrole-sodium alginate nanocomposites for enhanced removal of toxic organic and metal pollutants from wastewater[J]. Materials Today Communications, 2023, 34: 105325. DOI: 10.1016/j.mtcomm.2023.105325

    [41]

    TALUKDER M M, KHAN M M R, AMIN M K. A review on polyaniline (PANI) based nanocomposites for water purification[J]. South African Journal of Chemical Engineering, 2023, 44(1): 276-282.

    [42]

    ZAIDALKILANI A T, FARHAN A M, SAYED I R, et al. Steric and energetic studies on the synergetic enhancement effect of integrated polyaniline on the adsorption properties of toxic basic and acidic dyes by polyaniline/zeolite-A composite[J]. Molecules, 2023, 28(20): 7168. DOI: 10.3390/molecules28207168

    [43]

    MEENA P L, SAINI J K, SURELA A K. Granite waste mediated synthesis of polyaniline nanofibers for the catalytic reduction of hazardous organic water toxins[J]. Inorganic Chemistry Communications, 2023, 152: 110688. DOI: 10.1016/j.inoche.2023.110688

    [44]

    ZHU J S, LU H, SONG J N. Fabrication of EVOH/PANI composite nanofibrous aerogels for the removal of dyes and heavy metal ions[J]. Materials, 2023, 16(6): 2393.

    [45]

    KURT A, EŞSIZ S, SARI B. Preparation of composites doped with conducting polymer, characterization and using them in adsorption of some radioactive ions[J]. Polymer Science, Series A, 2022, 64(6): 882-897. DOI: 10.1134/S0965545X22700596

    [46]

    CHEN J, DONG R, CHEN S, et al. Selective adsorption towards heavy metal ions on the green synthesized polythiophene/MnO2 with a synergetic effect[J]. Journal of Cleaner Production, 2022, 338: 130536.

    [47]

    MUSTAFA M, BASHIR S, MOOSVI S K, et al. Hybrid polymer composite of prussian red doped polythiophene for adsorptive wastewater treatment application[J]. Acta Chimica Slovenica, 2022, 69(4): 848-862.

    [48]

    SAHARE S P, WANKHADE A V, SINHA A K, et al. Modified cobalt ferrite entrapped chitosan beads as a magnetic adsorbent for effective removal of malachite green and copper (II) ions from aqueous solutions[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33(1): 266-286. DOI: 10.1007/s10904-022-02491-x

    [49]

    ZHANG K, SONG X L, LIU M, et al. Review on the use of magnetic nanoparticles in the detection of environmental pollutants[J]. Water, 2023, 15(17): 3077.

    [50]

    RASHEED T. Magnetic nanomaterials: Greener and sustainable alternatives for the adsorption of hazardous environmental contaminants[J]. Journal of Cleaner Production, 2022, 362: 132338. DOI: 10.1016/j.jclepro.2022.132338

    [51]

    LIU Z G, LEI M, ZENG W, et al. Synthesis of magnetic Fe3O4@SiO2-(—NH2/—COOH) nanoparticles and their application for the removal of heavy metals from wastewater[J]. Ceramics International, 2023, 49(12): 20470-20479. DOI: 10.1016/j.ceramint.2023.03.177

    [52]

    HUA Y W, XU D H, LIU Z X, et al. Effective adsorption and removal of malachite green and Pb2+ from aqueous samples and fruit juices by pollen-inspired magnetic hydroxyapatite nanoparticles/hydrogel beads[J]. Journal of Cleaner Production, 2023, 411: 137233. DOI: 10.1016/j.jclepro.2023.137233

    [53]

    LABRAG J, ABBADI M, HNINI M, et al. Antibiotic photocatalysis and antimicrobial activity of low-cost multifunctional Fe3O4@HAp nanocomposites[J]. Journal of Environmental Health Science and Engineering, 2023, 21(2): 429-440. DOI: 10.1007/s40201-023-00869-8

    [54]

    SONIA, KUMAR A, KUMAR P. ZnFe2O4/CeO2 nanocomposites with enhanced photocatalytic performance under UV light[J]. Applied Physics A, 2023, 129(10): 724. DOI: 10.1007/s00339-023-06959-6

    [55]

    BUI N T, LE L C, HOANG T T, et al. Effective aqueous chromate treatment using triethanolamine anacardate coated magnetic nanoparticles[J]. Environmental Research, 2023, 226: 115675. DOI: 10.1016/j.envres.2023.115675

    [56]

    ABULYAZIED D E, ISAWI H, ALI E S, et al. Fabrication and characterization of magnetic cobalt ferrite intercalated chitosan grafted polyaniline ternary nanocomposites for removing some heavy metals simultaneously[J]. Journal of Molecular Liquids, 2024, 393: 123527. DOI: 10.1016/j.molliq.2023.123527

    [57]

    GHOBADIFAR V, MARANDI G B, KURD ABAR M, et al. Removal of Pb(II) and Cd(II) by MnFe2O4@SiO2@VTMS nanocomposite hydrogel from aqueous solutions[J]. Journal of Polymers and the Environment, 2023, 31: 2686-2704. DOI: 10.1007/s10924-022-02670-4

    [58]

    WAHEED I F, AL-JANABI O Y T, FOOT PETER J S. Novel MgFe2O4-CuO/GO heterojunction magnetic nanocomposite: Synthesis, characterization, and batch photocatalytic degradation of methylene blue dye[J]. Journal of Molecular Liquids, 2022, 357: 119084. DOI: 10.1016/j.molliq.2022.119084

    [59]

    SUKA K, FRIDA E, RIANNA M, et al. Investigation of calcination duration on the surface morphology and specific surface area of zeolite-chitosan composite with oil palm ash for potential water contaminant remediation[C]//Journal of Physics: Conference Series. Medan City: IOP Publishing, 2023, 2672(1): 12008.

    [60]

    ABDULLAH N H, BORHAN A, SAADON S Z A H. Biosorption of wastewater pollutants by chitosan-based porous carbons: A sustainable approach for advanced wastewater treatment[J]. Bioresource Technology Reports, 2023, 25: 101705.

    [61]

    BALAKRISHNAN A, APPUNNI S, CHINTHALA M, et al. Chitosan-based beads as sustainable adsorbents for wastewater remediation: A review[J]. Environmental Chemistry Letters, 2023, 21: 1881-1905. DOI: 10.1007/s10311-023-01563-9

    [62]

    MORALES-JIMÉNEZ M, PALACIO D A, PALENCIA M, et al. Bio-based polymeric membranes: Development and environmental applications[J]. Membranes, 2023, 13(7): 625. DOI: 10.3390/membranes13070625

    [63]

    SAIGL Z, TIFOUTI O, ALKHANBASHI B, et al. Chitosan as adsorbent for removal of some organic dyes: A review[J]. Chemical Papers, 2023, 77: 2363-2405.

    [64]

    SUYAMBULINGAM I, GANGADHAR L, SANA S S, et al. Chitosan biopolymer and its nanocomposites: Emerging material as adsorbent in wastewater treatment[J]. Advances in Materials Science and Engineering, 2023, 2023(1): 9387016.

    [65]

    ALYASI H, MACKEY H, MCKAY G. Adsorption of methyl orange from water using chitosan bead-like materials[J]. Molecules, 2023, 28(18): 6561. DOI: 10.3390/molecules28186561

    [66]

    LAU K S, AZMI N A S C, SIEW X, et al. Chitosan-bead-encapsulated polystyrene sulfonate for adsorption of methylene blue and regeneration studies: Batch and continuous approaches[J]. Polymers, 2023, 15(5): 1269.

    [67]

    WANG Q Z, LI Y. Facile and green fabrication of porous chitosan aerogels for highly efficient oil/water separation and metal ions removal from water[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109689. DOI: 10.1016/j.jece.2023.109689

    [68]

    NAN Y F, GOMEZ-MALDONADO D, WHITEHEAD D, et al. Comparison between nanocellulose-polyethyleneimine composites synthesis methods towards multiple water pollutants removal: A review[J]. International Journal of Biological Macromolecules, 2023, 232: 123342. DOI: 10.1016/j.ijbiomac.2023.123342

    [69]

    SHARMA R, NATH P C, MOHANTA Y K, et al. Recent advances in cellulose-based sustainable materials for wastewater treatment: An overview[J]. International Journal of Biological Macromolecules, 2023, 256(2): 128517.

    [70]

    IVBANIKARO A E, OKONKWO J O, SADIKU E R, et al. Recent development in the formation and surface modification of cellulose-bead nanocomposites as adsorbents for water purification: A comprehensive review[J]. Journal of Polymer Engineering, 2023, 43(8): 680-714. DOI: 10.1515/polyeng-2023-0056

    [71]

    PARK S, YOO S, CHO S M, et al. Production of single-component cellulose-based hydrogel and its utilization as adsorbent for aqueous contaminants[J]. International Journal of Biological Macromolecules, 2023, 243: 125085. DOI: 10.1016/j.ijbiomac.2023.125085

    [72]

    ENACHE A C, GRECU I, SAMOILA P, et al. Magnetic ionotropic hydrogels based on carboxymethyl cellulose for aqueous pollution mitigation[J]. Gels, 2023, 9(5): 358.

    [73]

    YAP J X, LEO C P, CHAN D J C, et al. Chlorella vulgaris nanocellulose in hydrogel beads for dye removal[J]. Separation and Purification Technology, 2023, 324: 124613. DOI: 10.1016/j.seppur.2023.124613

  • 期刊类型引用(10)

    1. 翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 连续光纤激光切割金属薄壁材料工艺研究. 红外与激光工程. 2024(02): 33-43 . 百度学术
    2. 陶洋,李存静,逄增媛,张典堂. 展宽布/网胎针刺C/C复合材料制备及力学性能. 复合材料学报. 2024(04): 1934-1944 . 本站查看
    3. 董志刚,王中旺,冉乙川,鲍岩,康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展. 机械工程学报. 2024(09): 26-56 . 百度学术
    4. 席翔,李海龙,陈友元,裴景奇,廖城坤,薛琳,储洪强,冉千平. 碳纤维增强碳基复合材料的介电性能对应力的自感知. 高分子材料科学与工程. 2024(05): 115-124 . 百度学术
    5. 钱奇伟,张昕,杨贞军,沈镇,校金友. 基于CT图像深度学习的三维编织C/C复合材料微观组分与缺陷智能识别. 复合材料学报. 2024(07): 3536-3543 . 本站查看
    6. 翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 基于正交试验的金属薄壁材料激光切割工艺优化. 中国机械工程. 2024(07): 1279-1289 . 百度学术
    7. 何金玲. 纤维复材浆料流变性能分析及矿混匀质量应用研究. 粘接. 2024(09): 87-90 . 百度学术
    8. 姚先龙. 碳基复合材料的应用及相关制备方法. 信息记录材料. 2023(01): 36-38 . 百度学术
    9. 石磊,罗浩,罗瑞盈. 胶层厚度对C/C复合材料剪切粘接性能的影响. 炭素技术. 2023(04): 22-26 . 百度学术
    10. 刘科众,陈舟,王泽鹏,韩保恒. C/C复合材料增密过程孔隙结构及演化研究. 机械设计与制造工程. 2022(10): 33-36 . 百度学术

    其他类型引用(10)

  • 目的 

    工业化的不断扩张导致水污染率急剧上升,水体质量不断下降,水资源问题持续恶化。但人类对淡水资源的需求却与日俱增,这使得如何有效处理工业废水、优化和恢复水资源质量成为了一个亟待解决的问题,因此,改进和更新水处理技术成为人们迫在眉睫的目标。随着科学技术的进步,各种功能材料被广泛应用于工业废水处理领域,功能材料作为水处理技术发展的基础,研究功能材料的优势和缺陷以及在工业废水领域的治理效果,可以为未来水处理技术的发展和完善提供一些启发。

    方法 

    通过深入阅读大量关于水资源治理的文献,从中归纳总结出近3年来水治理技术中最常用的几类功能材料,如碳纳米材料、导电聚合物、磁性纳米材料和生物基聚合物等,再通过文献查阅了解总结上述功能材料在工业废水治理中的独特优势和需要克服的问题和挑战。

    结果 

    通过总结归纳可以知道:①碳纳米材料中的石墨烯应其高度的团聚现象发展受到限制,目前大多采用杂原子掺杂、化学和热处理等方法对石墨烯进行改性,可减少团聚现象,经过化学和热处理的石墨烯衍生物具有更多的官能团,可与污染物离子发生配位作用,实现化学吸附。 CNT只有羟基官能团,化学修饰的机会较少,但与石墨烯相比,它不易团聚,独特的中空结构和高比表面积可通过物理吸附捕获污染物离子。HNTs 是一种天然无机材料,经济环保,可以大大降低废水处理的成本,同样,HNTs 只有羟基一个官能团,只能通过物理和静电吸附,吸附效率较低。②导电聚合物PPy是一种环保型功能材料,可通过模板法制备,不易团聚,产率高,对工业废水中的染料有较强的吸附能力,主要通过π-π共轭作用吸附污染物,通过增加表面官能团可提高化学吸附能力。 PANI含有的胺基和亚胺官能团能与污染物发生络合反应或氧化还原反应,去除废水中的污染物,但 PANI 容易聚集且制备过程中需要使用对环境有害的有毒试剂,应用范围有限。PTh 中的硫原子可与金属离子或其他活性基团形成配位键或络合物来完成吸附,且 PTh 中的噻吩环具有富电子的 π 系,可通过 π-π 相互作用或电子转移来吸附污染物,但PTh 的合成通常需要高温和较长的时间,以及昂贵的催化剂和溶剂,成本较高,无法广泛应用。③磁性纳米材料常见的有FeO和铁氧体磁性材料,它们被广泛应用于吸附剂和光催化剂领域,FeO和铁氧体磁性材料的吸附原理都是基于它们的亚铁磁性和磁场与物质之间的相互作用力,它们在磁性环境中较难均匀分散,在高温或高湿环境中磁性会降低,而且铁氧体磁性材料的制备工艺较复杂,经济性较差。可以用特定的官能团或配位体对FeO和铁氧体颗粒进行改性,或与其他材料复合,以提高其吸附选择性和吸附容量,还可以使用合适的分散剂或稳定剂来防止FeO和铁氧体颗粒团聚,提高其分散性和稳定性。④CS的主要吸附机制有化学吸附和静电作用 ,CS分子中的氨基和羟基,能与重金属离子发生配位作用,形成稳定的络合物;同时,CS表面带有正电荷,能与带负电荷的重金属离子发生静电作用,形成吸附结构,实现对重金属离子的去除。但CS吸附剂力学性能较差、易收缩、干燥后易变形,且在酸性溶液中易于溶解而流失导致成本增加。纤维素分子中含有大量羟基,表现出较强的亲水性,且纤维素较大的比表面积提供了丰富的吸附位点,具有较优异的吸附能力。但是,纤维素的吸附性能易受温度、pH 值等环境因素的影响,导致吸附性能不稳定。

    结论 

    未来,在水污染治理领域可以从以下几个方面进行改进和创新:(1)继续推广具有可控选择性的特定任务吸附剂及其相关设计原则,改进吸附剂选择性、抗干扰吸附功能和吸水性等功能,进一步提高吸附效率;(2)对同时去除多种有害污染物的治理手段深入探索,不再局限于对特定污染物的去除;(3)目前已有同时吸附和光催化以及固液分离的水处理技术,对于多种治理技术结合使用,来提高水污染治理效率是一个探索方向;(4)新的功能材料的探索也应该是未来研究的热门方向;(5)还可致力于探究新的去除水污染物的机制,开发出更加先进的治理手段和技术,应用于水环境修复中。

图(10)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  155
  • PDF下载量:  28
  • 被引次数: 20
出版历程
  • 收稿日期:  2024-01-25
  • 修回日期:  2024-02-25
  • 录用日期:  2024-03-08
  • 网络出版日期:  2024-03-20
  • 发布日期:  2024-03-20
  • 刊出日期:  2024-11-14

目录

/

返回文章
返回