留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能材料在工业废水治理中的研究进展

陈虹雨 王庆刚 胡林 孙宏杰

陈虹雨, 王庆刚, 胡林, 等. 功能材料在工业废水治理中的研究进展[J]. 复合材料学报, 2024, 41(11): 5790-5800.
引用本文: 陈虹雨, 王庆刚, 胡林, 等. 功能材料在工业废水治理中的研究进展[J]. 复合材料学报, 2024, 41(11): 5790-5800.
CHEN Hongyu, WANG Qinggang, HU Lin, et al. Recent research progress of functional materials in industrial wastewater treatment[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5790-5800.
Citation: CHEN Hongyu, WANG Qinggang, HU Lin, et al. Recent research progress of functional materials in industrial wastewater treatment[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5790-5800.

功能材料在工业废水治理中的研究进展

基金项目: 2023年淮南市科技计划项目(2023A03)
详细信息
    通讯作者:

    陈虹雨,硕士,助理工程师,研究方向:功能材料的制备与性能研究;环境治理 E-mail: 756404475@qq.com

  • 中图分类号: X524; TB332

Recent research progress of functional materials in industrial wastewater treatment

Funds: 2023 Huainan City Science and Technology Program Projects (No.2023A03)
  • 摘要: 工业化的不断扩张导致水污染率急剧上升,水体质量不断下降,而人类对淡水资源的需求却与日俱增。面对复杂严峻的水污染形势,各种水处理技术迅速发展。功能材料作为水处理技术发展的基础,越来越受到重视。各类功能材料具有独特的优势,在水污染处理中具有不同的处理作用和效果,但也存在不同的缺陷。本文旨在总结几类类功能材料在工业废水领域的有效处理效果,阐述几类功能材料的优缺点,并展望未来可能的研究和探索方向。

     

  • 图  1  杂化膜制备示意图[20]

    Figure  1.  Schematic diagram of hybridized membrane preparation[20]

    图  2  BI@MWCNTs 的制备示意图[27]

    Figure  2.  Schematic representation of the preparation of BI@MWCNTs [27]

    图  3  吸附FCF染料分子的磁性HNTs[30]

    Figure  3.  Magnetic HNTs adsorbing FCF dye molecules[30]

    图  4  Alg-Gel-PPy水凝胶制备示意图[39]

    Figure  4.  A schematic presentation of Alg-Gel-PPy hydrogel preparation[39]

    图  5  EVOH/PANI复合NFAs的制备示意图[44]

    Figure  5.  The schematic diagrams of the preparation of EVOH/PANI composite NFAs[44]

    图  6  PTh-PR 纳米复合材料吸附示意图[48]

    Figure  6.  Adsorption schematic of PTh-PR nanocomposites[48]

    图  7  Fe3O4@SiO2-NH2核壳纳米粒子合成示意图[52]

    Figure  7.  Schematic of Fe3O4@SiO2-NH2 core-shell nanoparticle synthesis[52]

    图  8  TEA-CoFe2O4的吸附示意图[56]

    Figure  8.  Schematic diagram of adsorption of TEA-CoFe2O4 [56]

    图  9  MCS气凝胶的吸附示意图[68]

    Figure  9.  Schematic diagram of adsorption of MCS aerogel[68]

    图  10  合成CAS的反应机制图[72]

    Figure  10.  Reaction mechanism diagram for synthesizing CAS[72]

  • [1] WEI J, JIA J, TONG L. Highly selective adsorption of dyes by functional hypercrosslinked-polymers prepared in a facile and chemically stable manner[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110555. doi: 10.1016/j.jece.2023.110555
    [2] DA C J S, ANDRÉ R F. Polypyrrole/stearic acid-coated Luffa cylindrica for enhanced removal of sodium diclofenac from water: Batch and continuous adsorption studies[J]. Journal of Cleaner Production, 2023, 389: 136084. doi: 10.1016/j.jclepro.2023.136084
    [3] MAHESH R, VORA K, HANUMANTHAIAH M, et al. Removal of pollutants from wastewater using alumina based nanomaterials: A review[J]. Korean Journal of Chemical Engineering, 2023, 40: 2035-2045. doi: 10.1007/s11814-023-1419-x
    [4] WANG W L, LV Y P, LIU H J, et al. Recent advances in application of polypyrrole nanomaterial in water pollution control[J]. Separation and Purification Technology, 2023, 330: 125265.
    [5] HASSAN M E-D R, BARAKAT M E S, YOSEF E H E. Synthesis and evaluation of core–shell nanocomposites for the photodegradation of liner alkyl-benzene sulfonate water contaminations[J]. International Journal of Environmental Science and Technology, 2023: 1-16.
    [6] KOLI, MITIL M, SINGH S P. Surface modified ultrafiltration and nanofiltration membranes for selective removal of heavy metals and inorganic groundwater contaminants: A review[J]. Environmental Science:Water Research & Technology, 2023, 11: 2803-2829 .
    [7] SALINAS G, FRONTANA-URIBE B A. Electrochemical analysis of heavy metal ions using conducting polymer interfaces[J]. Electrochem, 2022, 3(3): 492-506. doi: 10.3390/electrochem3030034
    [8] TUNDWAL A, KUMAR H, BINOJ B J, et al. Conducting polymers and carbon nanotubes in the field of environmental remediation: Sustainable developments[J]. Coordination Chemistry Reviews, 2024, 500: 215533. doi: 10.1016/j.ccr.2023.215533
    [9] SINGH R, SAMUEL M S. , RAVIKUMAR M , et al. Processing of Carbon-Based Nanomaterials for the Removal of Pollutants from Water/Wastewater Application[J]. Water, 2023, 15(16): 3003.
    [10] ERGUN C. A current review on conducting polymer-based catalysts: advanced oxidation processes for the removal of aquatic pollutants[J]. Water, Air, & Soil Pollution, 2023, 234(8): 524.
    [11] CHADHA U, SELVARAJ S K, THANU S V, et al. A review of the function of using carbon nanomaterials in membrane filtration for contaminant removal from wastewater[J]. Materials Research Express, 2022, 9(1): 1-23.
    [12] STOCCO T D, ZHANG T, DIMITROV E, et al. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review[J]. International Journal of Nanomedicine, 2023: 6153-6183.
    [13] SINGH R, SAMUEL M S, RAVIKUMAR M, et al. Processing of Carbon-Based Nanomaterials for the Removal of Pollutants from Water/Wastewater Application[J]. Water, 2023, 15(16): 3003. doi: 10.3390/w15163003
    [14] SAHU P S, VERMA R P, TEWARI C, et al. Facile fabrication and application of highly efficient reduced graphene oxide (rGO)-wrapped 3D foam for the removal of organic and inorganic water pollutants[J]. Environmental Science and Pollution Research, 2023, 30(40): 93054-93069. doi: 10.1007/s11356-023-28976-x
    [15] LEÃO M B, BORDIN J R, DE M C F. Specific Surface Area Versus Adsorptive Capacity: an Application View of 3D Graphene-Based Materials for the Removal of Emerging Water Pollutants[J]. Water, Air, & Soil Pollution, 2023, 234(2): 136.
    [16] HIRANIRAJAN A K, ASIF A H, RAFIQUE N, et al. Three-dimensional nitrogen-doped graphene oxide beads for catalytic degradation of aqueous pollutants[J]. Chemical Engineering Journal, 2022, 446: 137042. doi: 10.1016/j.cej.2022.137042
    [17] NASSAR G, YOUSSEF S, HABCHI R. Nitrogen-doped graphene aerogels for highly efficient toluene removal from water[J]. Graphene and 2D Materials, 2022, 7(1-2): 51-57. doi: 10.1007/s41127-022-00049-9
    [18] ZHANG R, LIU L, MENG Q. Ultralight, fire-resistant, lamellar nitrogen-doped graphene aerogels for highly efficient selective organic pollutant cleanup[J]. Journal of Materials Science, 2023, 58(28): 11697-11710. doi: 10.1007/s10853-023-08762-3
    [19] TEE W Ti, LOH N Y L, LAI K C, et al. Application of 3D heteroatom-doped graphene in adsorptive removal of water pollutants: Review on hydrothermal synthesis and its influencing factors[J]. Separation and Purification Technology, 2023: 124072.
    [20] ALSALME A. ALSALME A. Organic-Inorganic hybrid membrane for simultaneous heavy metal removal at drinking water pollution concentration levels[J]. Microchemical Journal, 2023, 195: 109447.
    [21] KAVAK Ö, CAN B, BAT E. Water-Based Route for Dopamine and Reduced Graphene Oxide Aerogel Production[J]. ACS omega, 2023.
    [22] AL-SAKKAF M K, BASFER I, IDDRISU M, et al. An Up-to-Date Review on the Remediation of Dyes and Phenolic Compounds from Wastewaters Using Enzymes Immobilized on Emerging and Nanostructured Materials: Promises and Challenges[J]. Nanomaterials, 2023, 13(15): 2152. doi: 10.3390/nano13152152
    [23] ZAKARIA A F , KAMARUZAMAN S, ABDUL R N, et al. Sodium Alginate/β-Cyclodextrin Reinforced Carbon Nanotubes Hydrogel as Alternative Adsorbent for Nickel (II) Metal Ion Removal[J]. Polymers, 2022, 14(24): 5524.
    [24] DE L P, SICILIANO C, B NAGY J. , et al. Treatment of Water Contaminated with Diesel Using Carbon Nanotubes[J]. Applied Sciences, 2023, 13(10): 6226. doi: 10.3390/app13106226
    [25] GANGADHAR A, RAMESH A M, PURUSHOTHAM D, et al. Fabrication of carbon nanotubes coated electrode to remove pharmaceutical pollutant in treated effluent[J]. Chemical Papers, 2023, 77: 3855-3866. doi: 10.1007/s11696-023-02747-x
    [26] LIANG Y H, YUAN F Z, XU X J, et al. Bioinspired polydopamine-sheathed carbon nanotubes as environmentally safe, efficient, and durable adsorbents for organic pollutant capturing via hydrogen bonding[J]. Carbon, 2023, 214: 118354. doi: 10.1016/j.carbon.2023.118354
    [27] ELGHAMRY I, GOUDA M, AL-FAYIZ Y S S. Synthesis of Chemically Modified Acid-Functionalized Multiwall Carbon Nanotubes with Benzimidazole for Removal of Lead and Cadmium Ions from Wastewater[J]. Polymers, 2023, 15(6): 1421. doi: 10.3390/polym15061421
    [28] VASCO G, ARIMA V, BOUDJELIDA S, et al. Polymeric Membranes Doped with Halloysite Nanotubes Imaged using Proton Microbeam Microscopy[J]. Nanomaterials, 2023, 13(22): 2970. doi: 10.3390/nano13222970
    [29] SHANMUGARAJ K, MANGALARAJA R C V, CRISTIAN H, et al. Cu-Ni bimetallic nanoparticles anchored on halloysite nanotubes for the environmental remediation[J]. Surfaces and Interfaces, 2023, 41: 103257. doi: 10.1016/j.surfin.2023.103257
    [30] NGUYEN N Q, JEONG Y, ABELMANN L, et al. Enhanced magnetic halloysite nanotubes for dye removal at different pH conditions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 680: 132631. doi: 10.1016/j.colsurfa.2023.132631
    [31] GAO H, SOTO M A , LI Z Z, et al. Cellulose nanocrystal/halloysite nanotube composite aerogels for water purification[J]. Dalton Transactions, 2023, 52(36): 12968-12977.
    [32] ZHANG X C, WANG M X, LIN P G, et al. L-Cysteine functionalized halloysite nanotubes/PVDF ultrafiltration membrane for improving anti-fouling performance[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111400. doi: 10.1016/j.jece.2023.111400
    [33] ATASHGAR A, EMADZADEH D, AKBARI S, et al. Incorporation of Functionalized Halloysite Nanotubes (HNTs) into Thin-Film Nanocomposite (TFN) Nanofiltration Membranes for Water Softening[J]. Membranes, 2023, 13(2): 245. doi: 10.3390/membranes13020245
    [34] ZHAO L, ZHOU Z, CHEN W Q, et al. Polypyrrole supported Pd/Fe bimetallic nanoparticles with enhanced catalytic activity for simultaneous removal of 4-chlorophenol and Cr(VI)[J]. Science of The Total Environment, 2022, 831: 154754-154760. doi: 10.1016/j.scitotenv.2022.154754
    [35] LU H, DONG C Y, ZHANG L F, et al. Polypyrrole Nanomaterials: Structure, Preparation and Application[J]. Polymers, 2022, 14(23): 5139. doi: 10.3390/polym14235139
    [36] WANG T, YAN L L, HE Y J, et al Application of polypyrrole-based adsorbents in the removal of fluoride: a review[J]. RSC Advances, 2022, 12, 3505-3517.
    [37] XU H, DAI J C FANG K J, et al. BiOI/PPy/cotton photocatalytic fabric for efficient organic dye contaminant degradation and self-cleaning application[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023: 131862.
    [38] FAROOQ A, ALAM J, RIAZ U. Photocatalytic Applications of Polypyrrole/Polythiophene Co-Oligomers for the Degradation of Bisphenol A[J]. ChemistrySelect, 2023, 8(37): e202300438. doi: 10.1002/slct.202300438
    [39] BENHALIMA T, CHICHA W , FERFERA-HARRAR H. Sponge-like biodegradable polypyrrole-modified biopolymers for selective adsorption of basic red 46 and crystal violet dyes from single and binary component systems[J]. International Journal of Biological Macromolecules, 2023, 253: 127532.
    [40] MOHANTY N, PATRA B N. Polypyrrole-sodium alginate nanocomposites for enhanced removal of toxic organic and metal pollutants from wastewater[J]. Materials Today Communications, 2023, 34: 105325. doi: 10.1016/j.mtcomm.2023.105325
    [41] TALUKDER M. M, KHAN M M R, AMIN M. K. A review on polyaniline (PANI) based nanocomposites for water purification[J]. South African Journal of Chemical Engineering, 2023, 44(1): 276-282.
    [42] ZAIDALKILANI A T, FARHAN A M, SAYED I R, et al. Steric and Energetic Studies on the Synergetic Enhancement Effect of Integrated Polyaniline on the Adsorption Properties of Toxic Basic and Acidic Dyes by Polyaniline/Zeolite-A Composite[J]. Molecules, 2023, 28(20): 7168. doi: 10.3390/molecules28207168
    [43] MEENA P L, SAINI J K, SURELA A K. Granite waste mediated synthesis of polyaniline nanofibers for the catalytic reduction of hazardous organic water toxins[J]. Inorganic Chemistry Communications, 2023, 152: 110688. doi: 10.1016/j.inoche.2023.110688
    [44] ZHU J S , LU H, SONG J N. Fabrication of EVOH/PANI Composite Nanofibrous Aerogels for the Removal of Dyes and Heavy Metal Ions[J]. Materials, 2023, 16(6): 2393.
    [45] KURT A, EŞSIZ S, SARI B. Preparation of Composites Doped with Conducting Polymer, Characterization and Using Them in Adsorption of Some Radioactive Ions[J]. Polymer Science, Series A, 2022, 64(6): 882-897. doi: 10.1134/S0965545X22700596
    [46] FAROOQ A, ALAM J, RIAZ U. Photocatalytic Applications of Polypyrrole/Polythiophene Co-Oligomers for the Degradation of Bisphenol A[J]. Chemistry Select, 2023, 8(37): e202300438.
    [47] CHEN J , DONG R , CHEN S, et al. Selective adsorption towards heavy metal ions on the green synthesized polythiophene/MnO2 with a synergetic effect[J]. Journal of Cleaner Production, 2022, 338: 130536.
    [48] MUSTAFA M, BASHIR S , MOOSVI S K, et al. Hybrid Polymer Composite of Prussian Red Doped Polythiophene forAdsorptive Wastewater Treatment Application[J]. Acta Chimica Slovenica, 2022, 69(4): 848-862.
    [49] SAHARE S P, WANKHADE A V, SINHA A K, et al. Modified cobalt ferrite entrapped chitosan beads as a magnetic adsorbent for effective removal of malachite green and copper (II) ions from aqueous solutions[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33(1): 266-286. doi: 10.1007/s10904-022-02491-x
    [50] ZHANG K , SONG X L, LIU M, et al. Review on the Use of Magnetic Nanoparticles in the Detection of Environmental Pollutants[J]. Water, 2023, 15(17): 3077.
    [51] RASHEED T. magnetic nanomaterials: Greener and sustainable alternatives for the adsorption of hazardous environmental contaminants[J]. Journal of Cleaner Production, 2022, 362: 132338. doi: 10.1016/j.jclepro.2022.132338
    [52] LIU Z G, LEI M, ZENG W, et al. Synthesis of magnetic Fe3O4@ SiO2-(-NH2/-COOH) nanoparticles and their application for the removal of heavy metals from wastewater[J]. Ceramics International, 2023, 49(12): 20470-20479. doi: 10.1016/j.ceramint.2023.03.177
    [53] HUA Y W, XU D H, LIU Z X, et al. Effective adsorption and removal of malachite green and Pb2+ from aqueous samples and fruit juices by pollen–inspired magnetic hydroxyapatite nanoparticles/hydrogel beads[J]. Journal of Cleaner Production, 2023, 411: 137233. doi: 10.1016/j.jclepro.2023.137233
    [54] LABRAG J, ABBADI M, HNINI M, et al. Antibiotic photocatalysis and antimicrobial activity of low-cost multifunctional Fe3O4@ HAp nanocomposites[J]. Journal of Environmental Health Science and Engineering, 2023, 21(2): 429-440. doi: 10.1007/s40201-023-00869-8
    [55] SONIA, KUMAR A, KUMAR P. ZnFe2O4/CeO2 nanocomposites with enhanced photocatalytic performance under UV light[J]. Applied Physics A, 2023, 129(10): 724. doi: 10.1007/s00339-023-06959-6
    [56] BUI N T, LE L C, HOANG T T, et al. Effective aqueous chromate treatment using triethanolamine anacardate coated magnetic nanoparticles[J]. Environmental Research, 2023, 226: 115675. doi: 10.1016/j.envres.2023.115675
    [57] ABULYAZIED D E, ISAWI H, ALI E S, et al. Fabrication and characterization of magnetic cobalt ferrite intercalated chitosan grafted polyaniline ternary nanocomposites for removing some heavy metals simultaneously[J]. Journal of Molecular Liquids, 2024, 393: 123527. doi: 10.1016/j.molliq.2023.123527
    [58] GHOBADIFAR V, MARANDI G B, KURD ABAR M, et al. Removal of Pb (II) and Cd (II) by MnFe2O4@ SiO2@ VTMS Nanocomposite Hydrogel from Aqueous Solutions[J]. Journal of Polymers and the Environment, 2023, 31: 2686-2704. doi: 10.1007/s10924-022-02670-4
    [59] WAHEED I F, AL-JANABI O Y T, FOOT PETER J S. Novel MgFe2O4-CuO/GO heterojunction magnetic nanocomposite: Synthesis, characterization, and batch photocatalytic degradation of methylene blue dye[J]. Journal of Molecular Liquids, 2022, 357: 119084. doi: 10.1016/j.molliq.2022.119084
    [60] SUKA K, FRIDA E, RIANNA, M, et al. Investigation of Calcination Duration on the Surface Morphology and Specific Surface Area of Zeolite-Chitosan Composite with Oil Palm Ash for Potential Water Contaminant Remediation[C]//Journal of Physics: Conference Series. IOP Publishing, 2023, 2672(1): 12008.
    [61] ABDULLAH N H, BORHAN A, SAADON S Z A H. Biosorption of wastewater pollutants by chitosan-based porous carbons: A sustainable approach for advanced wastewater treatment[J]. Bioresource Technology Reports, 2023, 25: 101705.
    [62] BALAKRISHNAN A, APPUNNI S, CHINTHALA M, et al. Chitosan-based beads as sustainable adsorbents for wastewater remediation: A review[J]. Environmental Chemistry Letters, 2023, 21: 1881-1905. doi: 10.1007/s10311-023-01563-9
    [63] MORALES-JIMÉNEZ M, PALACIO D A, PALENCIA M, et al. Bio-Based Polymeric Membranes: Development and Environmental Applications[J]. Membranes, 2023, 13(7): 625. doi: 10.3390/membranes13070625
    [64] SAIGL Z, TIFOUTI O, ALKHANBASHI B, et al. Chitosan as adsorbent for removal of some organic dyes: a review[J]. Chemical Papers, 2023: 1-43.
    [65] SUYAMBULINGAM I, GANGADHAR Li, SANA S S, et al. Chitosan biopolymer and its nanocomposites: emerging material as adsorbent in wastewater treatment[J]. Advances in Materials Science and Engineering, 2023: 1-20.
    [66] ALYASI H, MACKEY H, MCKAY G. Adsorption of Methyl Orange from Water Using Chitosan Bead-like Materials[J]. Molecules, 2023, 28(18): 6561. doi: 10.3390/molecules28186561
    [67] LAU K S , AZMI N A S C, SIEW X, et al. Chitosan-Bead-Encapsulated Polystyrene Sulfonate for Adsorption of Methylene Blue and Regeneration Studies: Batch and Continuous Approaches[J]. Polymers, 2023, 15(5): 1269.
    [68] WANG Q Z, LI Y. Facile and green fabrication of porous chitosan aerogels for highly efficient oil/water separation and metal ions removal from water[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109689. doi: 10.1016/j.jece.2023.109689
    [69] NAN Y F, GOMEZ-MALDONADO D, WHITEHEAD D, et al. Comparison between nanocellulose-polyethyleneimine composites synthesis methods towards multiple water pollutants removal: A review[J]. International Journal of Biological Macromolecules, 2023, 232: 123342. doi: 10.1016/j.ijbiomac.2023.123342
    [70] SHARMA R, NATH P C, MOHANTA Y K, et al. Recent advances in cellulose-based sustainable materials for wastewater treatment: An overview[J]. International Journal of Biological Macromolecules, 2023, 256(2): 128517.
    [71] IVBANIKARO A E, OKONKWO J O, SADIKU E R, et al. Recent development in the formation and surface modification of cellulose-bead nanocomposites as adsorbents for water purification: a comprehensive review[J]. Journal of Polymer Engineering, 2023, 43(8): 680-714. doi: 10.1515/polyeng-2023-0056
    [72] PARK S, YOO S, CHO S-M, et al. Production of single-component cellulose-based hydrogel and its utilization as adsorbent for aqueous contaminants[J]. International Journal of Biological Macromolecules, 2023, 243: 125085. doi: 10.1016/j.ijbiomac.2023.125085
    [73] ENACHE A-C , GRECU I, SAMOILA P, et al. Magnetic Ionotropic Hydrogels Based on Carboxymethyl Cellulose for Aqueous Pollution Mitigation[J]. Gels, 2023, 9(5): 358.
    [74] YAP J X, LEO C P, CHAN D J C, et al. Chlorella vulgaris nanocellulose in hydrogel beads for dye removal[J]. Separation and Purification Technology, 2023, 324: 124613. doi: 10.1016/j.seppur.2023.124613
  • 加载中
图(10)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  91
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-26
  • 修回日期:  2024-02-26
  • 录用日期:  2024-03-09
  • 网络出版日期:  2024-04-13
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回