留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自由变形技术的二维机织物细观模型

高梓越 陈利 赵世波

高梓越, 陈利, 赵世波. 基于自由变形技术的二维机织物细观模型[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 高梓越, 陈利, 赵世波. 基于自由变形技术的二维机织物细观模型[J]. 复合材料学报, 2022, 40(0): 1-11
Ziyue GAO, Li CHEN, Shibo ZHAO. Meso-model of 2D woven fabric based on free-form deformation technique[J]. Acta Materiae Compositae Sinica.
Citation: Ziyue GAO, Li CHEN, Shibo ZHAO. Meso-model of 2D woven fabric based on free-form deformation technique[J]. Acta Materiae Compositae Sinica.

基于自由变形技术的二维机织物细观模型

基金项目: 国家重点研发计划(2019YFC0311802);国家科技重大专项 (2017-VII-0011-0177);天津市高等学校创新团队(TD13—5043)
详细信息
    通讯作者:

    陈利,博士,教师,博士生导师,研究方向为先进纺织增强材料及其复合材料 E-mail: chenli@tiangong.edu.cn

  • 中图分类号: TB332

Meso-model of 2D woven fabric based on free-form deformation technique

  • 摘要: 为了避免理想化织物模型横截面恒定、纱线间相互渗透的问题,生成具有真实感的二维机织物三维细观模型,提出一种基于自由变形技术的几何变形方法。首先通过理想化的纱线中心线轨迹、横截面建立织物初始几何模型,然后应用自由变形技术对纱线进行变形。在变形过程中,所有纱线横截面在空间位置和参数的约束下进行自由变形,所有横截面变形后的控制网格组成纱线的控制网格,以驱动纱线的整体变形,最终生成具有真实感的织物细观模型。变形过程中纱线间的接触应用基于射线的碰撞检测技术处理。该方法可以扩展并应用于其他织物结构,且可以输出到其他软件中进行模拟计算。

     

  • 图  1  平纹织物的不同表示方法

    Figure  1.  Different representations of plain weave fabric

    图  2  纱线几何模型生成流程

    Figure  2.  Generation process of yarn geometric model

    图  3  纬纱纱线路径分段表示示意图

    Figure  3.  Diagram of weft yarn path segmentation

    图  4  纱线横截面局部坐标示意图

    Figure  4.  Diagram of local coordinates of yarn cross section

    图  5  纱线表面形成示意图

    Figure  5.  Diagram of yarn surface formation

    图  6  不同组织的织物几何模型

    Figure  6.  Geometric models of different fabrics

    图  7  纱线自由变形流程

    Figure  7.  Process of yarn free-form deformation

    图  8  自由变形示例

    Figure  8.  Example of free-form deformation

    图  9  射线碰撞检测与层次包围盒

    Figure  9.  Ray collision detection and hierarchical bounding box

    图  10  纬纱横截面视图下纱线变形过程

    Figure  10.  View of weft yarn cross-section during the process of yarn deformation

    图  11  纬纱横截面控制网格变形过程

    Figure  11.  Deformation process of weft cross-section control grid

    图  12  经纱横截面控制网格变形过程

    Figure  12.  Deformation process of warp cross-section control grid

    图  13  不同织物模型与实际织物的对比

    Figure  13.  Comparison of different models and actual fabric

    图  14  不同织物模型与实际织物的数据对比

    Figure  14.  Data comparisons of different models and actual fabric

    图  15  不同结构织物细观模型

    Figure  15.  Meso-model of different fabric structures

    图  16  FFD模型与输出OBJ文件对比

    Figure  16.  Comparison of FFD model and output OBJ file

    表  1  不同控制网格的纱线截面变形

    Table  1.   Yarn cross-section deformation of different control meshes

    Control
    grid type
    Initial StatusDeformed status
    1×1
    2×2
    3×3
    下载: 导出CSV

    表  2  初始织物模型参数

    Table  2.   Initial fabric model parameters

    ParameterWarpWeft
    Thickness/mm0.15800.1209
    Width/mm0.61720.7471
    Spacing/mm0.74710.7471
    下载: 导出CSV
  • [1] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72.

    CHEN Li, JIAO Wei, WANG Xinmiao, LIUJunling. Research progress on mechanical properties of 3D woven composites[J]. Journal of materials engineering,2020,48(8):62-72(in Chinese).
    [2] HIVET G, BOISSE P. Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis[J]. Finite Elements in Analysis & Design,2005,42(1):25-49.
    [3] LOMOV S V, HUYSMANS G, VERPOEST I. Hierarchy of Textile Structures and Architecture of Fabric Geometric Models[J]. Textile Research Journal,2001,71(6):534-543. doi: 10.1177/004051750107100611
    [4] HALLAL A, YOUNES R, FARDOUN F. Improved analytical model to predict the effective elastic properties of a 2.5D interlock woven fabric composite[J]. Composite Structures,2012,94(10):3009-3028. doi: 10.1016/j.compstruct.2012.03.019
    [5] BUCHANAN S, GRIGORASH A, ARCHER E, et al. Analytical elastic stiffness model for 3D woven orthogonal interlock composites[J]. Composites Science and Technology,2010,70(11):1597-1604. doi: 10.1016/j.compscitech.2010.05.019
    [6] LIN H, ZENG X, SHERBURN M, et al. Automated geometric modelling of textile structures[J]. Textile Research Journal,2012,82:1689-702. doi: 10.1177/0040517511418562
    [7] GAO Z, CHEN L. A review of multi-scale numerical modeling of three-dimensional woven fabric[J]. Composite Structures,2021,263:113685. doi: 10.1016/j.compstruct.2021.113685
    [8] LOMOV S V, PERIE G, IVANOV D S, et al. Modelling 3D fabrics and 3D-reinforced composites: challenges and solutions[J]. Textile Research Journal,2011,81:28-41. doi: 10.1177/0040517510385169
    [9] SHERBURN M, LONG A, JONES A, et al. Prediction of textile geometry using an energy minimization approach[J]. West Virginia Medical Journal,2012,66(3):72-72.
    [10] STIG F, HALLSTRM S. Extended framework for geometric modelling of textile architectures[J]. Composite Structures,2020,244:112239. doi: 10.1016/j.compstruct.2020.112239
    [11] NILAKANTAN G. Virtual microstructure generation using thermal growth: case study of a plain-weave Kevlar fabric[J]. Finite Elements in Analysis and Design,2018,147:21-33. doi: 10.1016/j.finel.2018.05.002
    [12] 张代雨, 王志东, 凌宏杰, 朱信尧. 基于FFD和轴变形方法的翼身融合水下滑翔机外形参数化建模[J]. 舰船科学技术, 2014, 35(3):695-705.

    Zhang D Y, Wang Z D, Ling H J, et al. Shape parameterization of blended-wing-body underwater glider based on FFD and axis deformation method[J]. SHIP SCIENCE AND TECHNOLOGY,2014,35(3):695-705(in Chinese).
    [13] 陈颂, 白俊强, 孙智伟, 王丹. 基于DFFD技术的翼型气动优化设计[J]. 航空学报, 2014, 35(3):695-705.

    CHEN S, BAI J Q, SUN Z W, et al. Aerodynamic optimization design of airfoil using DFFD technique[J]. Acla Aeronautica et Astronautica Sinica,2014,35(3):695-705(in Chinese).
    [14] WANG Y, LIU Z, LIU N, et al. A new geometric modelling approach for 3D braided tubular composites base on Free Form Deformation[J]. Composite Structures,2016,136:75-85. doi: 10.1016/j.compstruct.2015.09.036
    [15] LIU J, LONG J, LIANG K, et al. Reverse modeling of complicated folded fabric[J]. Journal of industrial textiles,2016,46(2):417-435. doi: 10.1177/1528083715584140
    [16] ISART N, MAYUGO J A, BLANCO N, et al. Geometric model for 3D through-thickness orthogonal interlock composites[J]. Composite Structures,2015,119:787-98. doi: 10.1016/j.compstruct.2014.09.044
    [17] 李栓, 徐东亮, 周旭东, 胡斌, 汤保峰. 基于OpenGL的纤维铺放可视化系统研究[J]. 玻璃钢/复合材料, 2016(12):49-54+42.

    LI Shuan, XU Dongliang, ZHOU Xudong, et al. Stidy on the visualization system of fiber placement based on OpenGL[J]. Journal of fiber reinforce plastic/composite material,2016(12):49-54+42(in Chinese).
    [18] 于广元. 基于自由变形技术的伴随方法优化设计大曲率扩压通道[D]. 南京航空航天大学, 2014.

    YU Guangyuang. Aerodynamic design of large curvature diffuser channel by using adjoint method based on FFD technique[D]. Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese).
    [19] 李星, 傅妍芳, 王亮, 陆承涛. 基于射线检测的动态碰撞优化算法[J]. 系统仿真学报, 2019, 31(11):2393-2401.

    LI Xing, FUYanfang, WANG Liang, et al. Dynamic collision optimization algorithm based on ray detection[J]. Journal of system simulation,2019,31(11):2393-2401(in Chinese).
    [20] 李玉虎, 王宗彦. 基于混合层次包围盒碰撞算法的改进[J]. 华东交通大学学报, 2019, 36(6):112-118.

    LI Yuhu, WANG Zongyan. Improvement of collision algorithm based on mixed level bounding box[J]. Journal of East China Jiaotong University,2019,36(6):112-118(in Chinese).
  • 加载中
计量
  • 文章访问数:  104
  • HTML全文浏览量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26
  • 录用日期:  2022-01-18
  • 修回日期:  2022-01-04
  • 网络出版日期:  2022-02-19

目录

    /

    返回文章
    返回