留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中温蠕变条件下SiCf/SiC复合材料界面的微观结构及其力学性能演变规律

陈乐 管皞阳 朱思雨 王佳璇 唐睿 何宗倍 张程煜

陈乐, 管皞阳, 朱思雨, 等. 中温蠕变条件下SiCf/SiC复合材料界面的微观结构及其力学性能演变规律[J]. 复合材料学报, 2024, 42(0): 1-8.
引用本文: 陈乐, 管皞阳, 朱思雨, 等. 中温蠕变条件下SiCf/SiC复合材料界面的微观结构及其力学性能演变规律[J]. 复合材料学报, 2024, 42(0): 1-8.
CHEN Le, GUAN Haoyang, ZHU Siyu, et al. Evolution on the microstructure and mechanical properties of the interface of crept SiCf/SiC at intermediate temperatures[J]. Acta Materiae Compositae Sinica.
Citation: CHEN Le, GUAN Haoyang, ZHU Siyu, et al. Evolution on the microstructure and mechanical properties of the interface of crept SiCf/SiC at intermediate temperatures[J]. Acta Materiae Compositae Sinica.

中温蠕变条件下SiCf/SiC复合材料界面的微观结构及其力学性能演变规律

基金项目: 国家自然科学基金(U2241239);国防科技基础加强计划(No. 2023-JCJQ-LB-071)
详细信息
    通讯作者:

    张程煜,博士,教授,博士生导师,研究方向为陶瓷基复合材料 E-mail: cyzhang@nwpu.edu.cn

  • 中图分类号: TB332

Evolution on the microstructure and mechanical properties of the interface of crept SiCf/SiC at intermediate temperatures

Funds: National Natural Science Foundation of China (U2241239); The Basic Strengthening Program of China (No. 2023-JCJQ-LB-071)
  • 摘要: 连续碳化硅纤维增强碳化硅复合材料(SiCf/SiC)在中温(500~1000 ℃)范围内会发生蠕变断裂时间显著缩短的脆化现象,其机制主要与界面的微观结构和力学性能有关。为此,本文开展了国产二代平纹编织SiCf/SiC (2D-SiCf/SiC) 复合材料在中温范围的蠕变脆化失效机制研究。利用TEM分析了中温下不同蠕变条件后2D-SiCf/SiC的界面微观结构,进一步利用微纳力学测试技术表征界面力学性能。结果表明:纤维/界面侧在500 ℃下出现多孔隙的富碳层;800 ℃时,界面出现自发氧化,同时SiO2填充了部分BN界面因氧化消耗后产生的空隙。当温度进一步升高至1000 ℃后,氧元素主要分布于纤维/基体一侧。2D-SiCf/SiC的中温脆化机制与界面结合状态高度相关,蠕变断裂时间与界面结合的强弱呈现明显的反比关系,表明过强的界面结合不能发挥界面脱粘、纤维拔出等相关增韧机制,此时裂纹直接贯穿纤维,显著缩短其中温蠕变断裂时间。

     

  • 图  1  纤维推入试验典型载荷-位移曲线

    Figure  1.  Typical load-displacement curve in push-in test

    图  2  国产二代2D-SiCf/SiC复合材料纤维 push-in测试的位置选择

    Figure  2.  SEM images of positions on the domestic 2nd-2D-SiCf/SiC for fiber push-in testing

    图  3  国产二代2D-SiCf/SiC复合材料中纤维的微观结构演变:(a) 原始试样;(b) 500℃/120 MPa;(c) 800℃/120 MPa;(d) 1000℃/120 MPa

    Figure  3.  Microstructure evolution of fibers in the domestic 2nd-2D-SiCf/SiC:(a) As-received;(b) 500℃/120 MPa; c) 800℃/120 MPa;(d) 1000℃/120 MP

    图  4  国产二代2D-SiCf/SiC复合材料蠕变前后界面区域的明场TEM像和元素分布(Si、N、O、C):(a)原始试样;(b) 500℃/120 MPa;(c) 800℃/120 MPa;(d) 1000℃/120 MPa

    Figure  4.  Bright fields TEM images and element distribution of interfacial regions of the domestic 2nd-2D-SiCf/SiC before and after intermediate temperature creep (Si、N、O、C): (a) As-received; (b) 500℃/120 MPa; (c) 800℃/120 MPa; (d) 1000℃/120 MPa

    图  5  国产二代SiCf/SiC界面区域的微观结构演变:(a) 原始试样;(b) 500℃/120 MPa;(c) 800℃/120 MPa;(d) 1000℃/120 MPa

    Figure  5.  Microstructure-evolution of interfacial region in domestic 2nd-generation SiCf/SiC: (a) As-received; (b) 500℃/120 MPa;(c) 800℃/120 MPa; (d) 1000℃/120 MPa

    图  6  不同条件下的国产二代2D-SiCf/SiC复合材料的纤维推入试验载荷-位移曲线

    Figure  6.  Load-displacement curves obtained of the push-in tests of the domestic 2 nd-2D-SiCf/SiC.

    图  7  国产二代2D-SiCf/SiC复合材料的界面力学性能、蠕变断裂时间与温度的关系:(a) IFSS;(b) Gi

    Figure  7.  Mechnical properties of fiber/matrix interphase and creep rupture time of domestic 2 nd-2D-SiCf/SiC at different temperatures: (a) IFSS; (b) Gi

    表  1  本文研究试样的相关信息

    Table  1.   Information about samples used in this study

    Conditions Rupture
    time/h
    Creep
    Rate/s−1
    Creep
    Strain/%
    500℃/120 MPa 490 7.1×10−10 0.37
    800℃/120 MPa 22 5.4×10−9 0.19
    1000℃/120 MPa 33 1.7×10−8 0.39
    下载: 导出CSV

    表  2  基于纤维推入获得的国产二代2D-SiCf/SiC复合材料的界面力学性能

    Table  2.   The interfacial mechanical properties of domestic 2nd-2D-SiCf/SiC generated from push-in test

    Conditions Pc/mN S0/(N·mm−1) IFSS/MPa Gi/(J·m−2)
    As-received 168±35 614±61 97±27 5.0±2.1
    500℃/120 MPa 226±24 829±51 128±9 8.8±1.8
    800℃/120 MPa 350±38 962±60 231±27 21.2±4.5
    1000℃/120 MPa 300±52 848±73 180±44 15.8±5.3
    Notes:Pc is the critical load before interface debonding; S0 is the slope of the second stage; IFSS is the interfacial shear strength; Gi is the interphase debond energy.
    下载: 导出CSV
  • [1] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, (2): 1-6. doi: 10.3321/j.issn:1000-3851.2007.02.001

    ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of conti nuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, (2): 1-6 (in Chinese). doi: 10.3321/j.issn:1000-3851.2007.02.001
    [2] 李世波, 徐永东, 张立同. 碳化硅纤维增强陶瓷基复合材料的研究进展[J]. 材料导报, 2001, (1): 45-49. doi: 10.3321/j.issn:1005-023X.2001.01.016

    LI Shibo, XU Yongdong, ZHANG Litong. Study on silicon carbide fibers reinforced ceramic-matrix composites[J]. Materials Review, 2001, (1): 45-49(in Chinese). doi: 10.3321/j.issn:1005-023X.2001.01.016
    [3] 丁冬海, 周万城, 张标, 等. 连续SiC纤维增韧SiC基体复合材料研究进展[J]. 硅酸盐通报, 2011, 30(2): 356-361.

    DING Donghai, ZHOU Wancheng, ZAHNG Biao, et al. Research progress of SiC composite toughened with continuous SiCf[J]. Bulletion of the Chinese Ceramic Society, 2011, 30(2): 356-361(in Chinese).
    [4] POERSCHKEe D L, ROSSOL M N, ZOK F W. Intermediate temperature oxidative strength degradation of a SiC/SiNC omposite with a polymer-derived matrix[J]. Journal of the American Ceramic Society, 2017, 100(4): 1606-1617. doi: 10.1111/jace.14741
    [5] DIAZ O G, MARQUARDT K, HARRIS S, et al. Degradation mechanisms of SiC/BN/SiC after low temperature humidity exposure[J]. Journal of the European Ceramic Society, 2020, 40(12): 3863-3874. doi: 10.1016/j.jeurceramsoc.2020.05.007
    [6] MALL S. Effects of moisture on fatigue behavior of SiC/SiC composite at elevated temperature[J]. Materials Science and Engineering: A, 2005, 412(1-2): 165-170. doi: 10.1016/j.msea.2005.08.040
    [7] FORIO P, LAVAIRE F, LAMON J. Delayed failure at intermediate temperatures (600°-700°C) in air in silicon carbide multifilament tows[J]. Journal of the American Ceramic Society, 2004, 87(5): 888-893. doi: 10.1111/j.1551-2916.2004.00888.x
    [8] HEREDIA F E, MCNULTY J C, ZOK F W, et al. Oxidation embrittlement probe for ceramic-matrix composites[J]. Journal of the American Ceramic Society, 1995, 78(8): 2097-2100. doi: 10.1111/j.1151-2916.1995.tb08621.x
    [9] LARA-CURZIO E. Stress rupture of Nicalon/SiC continuous fiber ceramic composites in air at 950°C[J]. Journal of the American Ceramic Society, 1997, 80(12): 3268-3272. doi: 10.1111/j.1151-2916.1997.tb03266.x
    [10] MORSCHER G N, HURST J, BREWER D. Intermediate temperature stress rupture of a woven Hi-Nicalon, BN-interphase, SiC-matrix composite in air[J]. Journal of the American Ceramic Society, 2000, 83(6): 1441-1449. doi: 10.1111/j.1151-2916.2000.tb01408.x
    [11] 朱思雨, 张巧君, 洪智亮, 等. 平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制[J]. 复合材料学报, 2023, 40(1): 464-471.

    ZHU Siyu, ZHANG Qiaojun, HONG Zhiliang, et al. Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 464-471(in Chinese).
    [12] JM MOLINA-ALDAREGUÍA, M RODRÍGUEZ, C GONZÁLEZ, et al. An experimental and numerical study of the influence of local effects on the application of the fibre push-in test[J]. Experimental Neurology, 2011, 91(7-9): 1293-1307.
    [13] RODRÍGUEZ M, MOLINA-ALDAREGUÍA J M, GONZÁLEZ C, et al. A methodology to measure the interface shear strength by means of the fiber push-in test[J]. Composites Science and Technology, 2012, 72(15): 1924-1932. doi: 10.1016/j.compscitech.2012.08.011
    [14] 丁金雪. 基于push-in测试研究陶瓷基复合材料界面失效行为 [D]. 西安: 西北工业大学, 2020.

    DINg Jinxue. The interface failure behavior of ceramic matrix composites was studied based on push-in test. [D]. Xi’an: Northwestern Polytechnical University, 2020(in Chinese).
    [15] KHARRAT M, CHATEAUMINOIS A, CARPENTIER L, et al. On the interfacial behaviour of a glass/epoxy composite during a micro-indentation test: assessment of interfacial shear strength using reduced indentation curves[J]. Composites. Part A, Applied science and manufacturing, 1997, 28(1): 39-46. doi: 10.1016/S1359-835X(96)00092-9
    [16] LIU Z L , YUE J L , FU Z Y , et al. Microstructure and mechanical performance of SiCf/BN/SiC mini-composites oxidized at elevated temperature from ambient temperature to 1500°C in air[J]. Journal of the European Ceramic Society, 2020, 40(8): 2821-2827
    [17] BODET R, BOURRAT X, LAMON J, et al. Tensile creep behaviour of a silicon carbide-based fibre with a low oxygen content[J]. Journal of materials science, 1995, 30(3): 661-677. doi: 10.1007/BF00356326
    [18] 王西, 王克杰, 柏辉, 等. 化学气相渗透2D-SiCf/SiC复合材料的蠕变性能及损伤机制[J]. 无机材料学报, 2020, 35(7): 817-821.

    WANG Xi, WANG Kejie, BAI Hui, et al. Creep Properties and Damage Mechanisms of 2D-SiCf/SiC Composites Prepared by CVI[J]. Journal of Inorganic Materials, 2020, 35(7): 817-821(in Chinese).
    [19] 荆开开, 管皞阳, 朱思雨, 等. Cansas-II SiCf/SiC复合材料的高温拉伸蠕变行为[J]. 无机材料学报, 2023, 38(2): 177-183. doi: 10.15541/jim20220441

    JING Kaikai, GUAN Haoyang, ZHU Siyu, et al. Tensile creep behavior of Cansas-II SiCf/SiC composites at high temperatures[J]. Journal of Inorganic Materials, 2023, 38(2): 177-183(in Chinese). doi: 10.15541/jim20220441
    [20] MORSCHER G N. Tensile stress rupture of SiCf/SiCm minicomposites with carbon and boron nitride interphases at elevated temperatures in air[J]. Journal of the American Ceramic Society, 1997, 80(8): 2029-2042. doi: 10.1111/j.1151-2916.1997.tb03087.x
    [21] JACOBSON N S, MORSCHER G N, BRYANT t D R, et al. High-temperature oxidation of boron nitride: II, Boron nitride layers in composites[J]. Journal of the American Ceramic Society, 1999, 6(82): 1473-1482.
    [22] JACOBSON N S, MYERS D L. Active oxidation of SiC[J]. Oxidation of Metals, 2011, 75(1-2): 1-25. doi: 10.1007/s11085-010-9216-4
  • 加载中
计量
  • 文章访问数:  51
  • HTML全文浏览量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 修回日期:  2024-08-16
  • 录用日期:  2024-09-20
  • 网络出版日期:  2024-09-30

目录

    /

    返回文章
    返回