留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

勃姆石/石墨烯多尺度增韧改性碳纤维环氧树脂复合材料

刘蓉 陈杰 龚璋灏 赵伟 马明硕 刘治刚

刘蓉, 陈杰, 龚璋灏, 等. 勃姆石/石墨烯多尺度增韧改性碳纤维环氧树脂复合材料[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 刘蓉, 陈杰, 龚璋灏, 等. 勃姆石/石墨烯多尺度增韧改性碳纤维环氧树脂复合材料[J]. 复合材料学报, 2024, 42(0): 1-10.
LIU Rong, CHEN Jie, GONG Zhanghao, et al. Boehmite/graphene multiscale toughening modification of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica.
Citation: LIU Rong, CHEN Jie, GONG Zhanghao, et al. Boehmite/graphene multiscale toughening modification of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica.

勃姆石/石墨烯多尺度增韧改性碳纤维环氧树脂复合材料

基金项目: 国家自然科学基金 (51902125);吉林市科技发展计划资助项目(20210103092);第七批吉林省青年科技人才托举工程(QT202316)
详细信息
    通讯作者:

    陈杰,博士,副教授,硕士生导师,研究方向为碳纤维复合材料的开发与应用 E-mail: jiechendr@163.com

  • 中图分类号: TB332

Boehmite/graphene multiscale toughening modification of carbon fiber/epoxy composites

Funds: National Natural Science Foundation of China (No. 51902125); Science and Technology Development Plan of Jilin City(No. 20210103092); Seventh batch of Jilin Province young science and technology talents promotion Project (No. QT202316)
  • 摘要: 碳纤维与聚合物基体之间界面结合强度较弱的问题严重限制了碳纤维复合材料在汽车轻量化等领域的实际应用。为解决这一问题,采用水热法制备了不同质量比的勃姆石/石墨烯复合粉体,并通过自组装的方式成功负载到碳纤维表面,实现了对碳纤维/环氧树脂复合材料界面的改性。通过一系列综合测试对改性前后碳纤维复合材料的力学性能进行了研究,发现当勃姆石/石墨烯质量比为1∶2时(BG-2)时,各项性能最佳。与未经改性的复合材料相比,BG-2改性后复合材料的界面剪切强度、层间剪切强度、拉伸强度和弯曲强度分别提升了116.1%、56.0%、61.1%和30.4%。最后,根据扫描电镜和接触角测试结果进一步分析了复合材料力学性能提升的多尺度界面修饰原理。

     

  • 图  1  不同质量比的勃姆石/石墨烯(BG)样品(a)和去浆碳纤维(CF)、勃姆石/石墨烯及勃姆石/石墨烯多尺度改性碳纤维(b)的XRD谱图

    Figure  1.  XRD patterns of BG samples with different mass ratios (a) and CF, BG-2, and BGCF-2 (b).

    图  2  去浆碳纤维(a)、BGCF-0.5(b)、BGCF-1(c)、BGCF-1.5(d)、BGCF-2(e)、BGCF-2.5(f)、BGCF-3(g)的SEM图片和BGCF-2样品的EDS谱图(h)

    Figure  2.  SEM images of CF (a), BGCF-0.5 (b), BGCF-1 (c), BGCF-1.5 (d), BGCF-2 (e), BGCF-2.5 (f), BGCF-3 (g) and EDS spectrum of BGCF-2 (h).

    图  3  BG-2(a-d)和BGCF-2(e-h)样品中C、Al和O元素分布图

    Figure  3.  EDS mapping images of C, Al, and O elements in BG-2 (a-d) and BGCF-2 (e-h) samples, respectively.

    图  4  去浆碳纤维(a)、勃姆石/石墨烯(b)和勃姆石/石墨烯多尺度改性碳纤维(c)的FT-IR光谱图

    Figure  4.  FT-IR spectra of CF (a), BG-2 (b), and BGCF-2 (c).

    图  5  不同碳纤维样品的界面性能图:接触角(a)和表面能(b)

    Figure  5.  Interfacial properties of different CFs: contact angle (a) and surface energy (b).

    图  6  不同碳纤维环氧树脂复合材料的力学性能图:界面剪切强度(a)、层间剪切强度(b)、拉伸强度(c)、弯曲强度(d)、层间剪切应力-应变曲线(e)和拉伸应力-应变曲线(f)

    Figure  6.  Mechanical performance of CF/EPs. IFSS (a), ILSS (b), tensile strength (c), flexural strength (d), shear stress-strain curves (e), and tensile stress-strain curves (f).

    图  7  碳纤维环氧树脂复合材料断裂面的SEM图片

    Figure  7.  SEM images of different CF/EPs fracture surfaces.

    图  8  不同碳纤维环氧树脂复合材料的TGA曲线

    Figure  8.  TGA curves of different CF/EPs.

    图  9  碳纤维环氧树脂复合材料中可能的多尺度界面修饰原理示意图

    Figure  9.  Schematic diagrams of the possible multiscale interfacial modification mechanism in the CF/EPs.

  • [1] ZHANG W, XU J. Advanced lightweight materials for Automobiles: A review[J]. Materials & Design, 2022, 221: 110994.
    [2] 杨福鸿, 叶姣凤, 柴昌盛, 等. 微波辅助MgO改性碳纤维增强增韧环氧树脂复合材料[J]. 复合材料学报, 2024, 41(5): 2428-2435.

    YANG Fuhong, YE Jiaofeng, CHAI Changsheng, et al. Investigation of microwave-assisted MgO-modified carbon fiber-reinforced and toughened epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2428-2435(in Chinese).
    [3] 解江浩. 节能减排背景下汽车碳纤维复合材料应用的关键技术研究[J]. 小型内燃机与车辆技术, 2018, 47(5): 5. doi: 10.3969/j.issn.1671-0630.2018.05.018

    XIE Jianghao. Research on key technology of automobile carbon fiber composite application under the background of energy saving and emission reduction[J]. Small internal combustion engine and vehicle technique, 2018, 47(5): 5(in Chinese). doi: 10.3969/j.issn.1671-0630.2018.05.018
    [4] 高华斌. 开启新时代、新征程、新未来——中国碳纤维复合材料应用技术创新联盟成立[J]. 中国纺织, 2018, 5: 101-103. doi: 10.3969/j.issn.0529-6013.2018.08.029

    GAO Huabin. A new era, a new journey, a new future-China Carbon Fibre Composites Application Technology Innovation Alliance[J]. Chinese Textile, 2018, 5: 101-103(in Chinese). doi: 10.3969/j.issn.0529-6013.2018.08.029
    [5] ZHENG H, ZHANG W, LI B, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review[J]. Composites Part B: Engineering, 2022, 233: 109639. doi: 10.1016/j.compositesb.2022.109639
    [6] 赖鹏辉, 尹洪峰, 张静, 等. 纳米Al2O3-碳纤维多尺度增强聚酰胺基复合材料的制备及力学性能[J]. 复合材料学报, 2018, 35(3): 8.

    LAI Penghui, YI Hongfeng, ZHANG Jing, et al. Preparation and mechanical properties of nano Al2O3-carbon fiber multi-scale reinforced polyamide composites[J]. Acta Materiae Compositae Sinica, 2018, 35(3): 8(in Chinese).
    [7] KIM D K, HAN W, KIM K W, et al. Enhanced Interfacial Properties of Carbon Fiber/Maleic Anhydride-Grafted Polypropylene Composites via Two-Step Surface Treatment: Electrochemical Oxidation and Silane Treatment[J]. Polymers, 2023, 15(18): 3784. doi: 10.3390/polym15183784
    [8] DING R, SUN Y, LEE J, et al. Enhancing interfacial properties of carbon fiber reinforced epoxy composites by grafting MXene sheets (Ti2C)[J]. Composites Part B: Engineering, 2021, 207: 108580. doi: 10.1016/j.compositesb.2020.108580
    [9] LI J, YANG Z, HUANG X, et al. Interfacial reinforcement of composites by the electrostatic self-assembly of graphene oxide and NH3 plasma-treated carbon fiber[J]. Applied Surface Science, 2022, 585: 152717. doi: 10.1016/j.apsusc.2022.152717
    [10] XING Y, LI M, QIU B, et al. Improving the interfacial property of CF composites through constructing multiscale interfacial nanostructures[J]. Polymer, 2023, 283: 126175. doi: 10.1016/j.polymer.2023.126175
    [11] 邓火英, 梁馨, 顾轶卓, 等. MWCNTs对环氧树脂及多尺度MWCNTs-碳纤维/环氧树脂复合材料力学性能的影响[J]. 复合材料学报, 2018, 35(11): 3073-3080.

    DENG H, LIANG X, GU Y, et al. Effect of MWCNTs on mechanical properties of epoxy and multiscale/epoxy composites[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3073-3080(in Chinese).
    [12] ZHANG H, ZHOU H, GE J, et al. Boehmite-graphene oxide hybrid filled epoxy composite: synthesis, characterization, and properties[J]. Journal of Polymer Engineering, 2022, 42(5): 428-435. doi: 10.1515/polyeng-2021-0275
    [13] WANG C, ZHAO M, LI J, et al. Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites[J]. Polymer, 2017, 131: 263-271. doi: 10.1016/j.polymer.2017.10.049
    [14] LI H, WANG S, FENG M, et al. Self-assembly and performances of wrinkled rGO@carbon fiber with embedded SnO2 nanoparticles as anode materials for structural lithium-ion battery[J]. Journal of Materials Science, 2018, 53(16): 11607-11619. doi: 10.1007/s10853-018-2401-6
    [15] ASTM D3039/D3039M-00. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials[S]. ASTM International’s composite materials committee, 2000.
    [16] ASTM D7264/D7264M-15. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials[S]. ASTM International’s composite materials committee, 2016.
    [17] ASTM D2344/D2344M-16. Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates[S]. ASTM International’s composite materials committee, 2015.
    [18] SIOW L T, LEE J R, OOI E H, et al. Application of graphene and graphene derivatives in cooling of photovoltaic (PV) solar panels: A review[J]. Renewable and Sustainable Energy Reviews, 2024, 193: 114288. doi: 10.1016/j.rser.2024.114288
    [19] AMRUTE A P, ŁODZIANA Z, SCHREYER H, et al. High-surface-area corundum by mechanochemically induced phase transformation of boehmite[J]. Science, 2019, 366(6464): 485-489. doi: 10.1126/science.aaw9377
    [20] LI Y, SUN J, LI P, et al. High-performance piezoelectric nanogenerators based on hierarchical ZnO@CF/PVDF composite film for self-powered meteorological sensor[J]. Journal of Materials Chemistry A, 2023, 11(25): 13708-13719. doi: 10.1039/D3TA01886E
    [21] ZHANG X, SUN T, LEI Y, et al. Synergistically optimizing interlaminar behavior of CFRP composites by simultaneously applying amino-rich graphene oxide to carbon fiber and epoxy matrix[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106372. doi: 10.1016/j.compositesa.2021.106372
    [22] GAO B, ZHANG J, HAO Z, et al. In-situ modification of carbon fibers with hyperbranched polyglycerol via anionic ring-opening polymerization for use in high-performance composites[J]. Carbon, 2017, 123: 548-557. doi: 10.1016/j.carbon.2017.08.008
    [23] BAI Z, ZHANG H, ZHU H, et al. PVA/sodium alginate multi-network aerogel fibers, incorporated with PEG and ZnO, exhibit enhanced temperature regulation, antibacterial, thermal conductivity, and thermal stability[J]. Carbohydrate Polymers, 2023, 317: 121037. doi: 10.1016/j.carbpol.2023.121037
    [24] DAI S, YAN F, MA J, et al. Hybridization of cellulose nanocrystals modified ZnO nanoparticles with bio-based hyperbranched waterborne polyurethane sizing agent for superior UV resistance and interfacial properties of CF/PA6 composites[J]. Composites Science and Technology, 2024, 245: 110328. doi: 10.1016/j.compscitech.2023.110328
    [25] HE F, LI W, PANG T, et al. Hydrothermal synthesis of boehmite nanorods from alumina sols[J]. Ceramics International, 2022, 48(13): 18035-18047. doi: 10.1016/j.ceramint.2022.02.212
    [26] QUAN G, WU Y, LI W, et al. Growth of ZnO nanorods/flowers on the carbon fiber surfaces using sodium alginate as medium to enhance the mechanical properties of composites[J]. International Journal of Biological Macromolecules, 2024, 260: 129457. doi: 10.1016/j.ijbiomac.2024.129457
    [27] FENG P, SONG G, LI X, et al. Effects of different “rigid-flexible” structures of carbon fibers surface on the interfacial microstructure and mechanical properties of carbon fiber/epoxy resin composites[J]. Journal of Colloid and Interface Science, 2021, 583: 13-23. doi: 10.1016/j.jcis.2020.09.005
    [28] WU D, YAO Z, SUN X, et al. Mussel-tailored carbon fiber/carbon nanotubes interface for elevated interfacial properties of carbon fiber/epoxy composites[J]. Chemical Engineering Journal, 2022, 429: 132449. doi: 10.1016/j.cej.2021.132449
    [29] WU Q, YANG X, HE J, et al. Improved interfacial adhesion of epoxy composites by grafting porous graphene oxide on carbon fiber[J]. Applied Surface Science, 2022, 573: 151605. doi: 10.1016/j.apsusc.2021.151605
    [30] JIN L, LIU L, FU J, et al. Three-dimensional interconnected Nanosheet architecture as a transition layer and Nanocontainer for interfacial enhancement of carbon fiber/epoxy composites[J]. Industrial & Engineering Chemistry Research, 2019, 58: 21441-21451.
    [31] CHEN Q, WU F, JIANG Z, et al. Improved interlaminar fracture toughness of carbon fiber/epoxy composites by a combination of extrinsic and intrinsic multiscale toughening mechanisms[J]. Composites Part B: Engineering, 2023, 252: 110503. doi: 10.1016/j.compositesb.2023.110503
    [32] HAN S, GUANG X, LI Z, et al. Joining processes of CFRP-Al sheets in automobile lightweighting technologies: A review[J]. Polymer Composites, 2022, 43(12): 8622-8633. doi: 10.1002/pc.27088
    [33] DAI S, YAN F, GUO J, et al. A novel bio-based hyperbranched waterborne polyurethane sizing agent with superior UV-resistance and interfacial properties for CF/PA6 composites[J]. Composites Science and Technology, 2023, 242: 110214. doi: 10.1016/j.compscitech.2023.110214
    [34] LEE S W A, HUANG C Y, CHEN J X, et al. Enhanced thermal conductivity of epoxy composites filled with Al2O3/boron nitride hybrids for underfill encapsulation materials[J]. Polymers, 2021, 13(1): 147. doi: 10.3390/polym13010147
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-13
  • 修回日期:  2024-06-28
  • 录用日期:  2024-07-05
  • 网络出版日期:  2024-07-23

目录

    /

    返回文章
    返回