Development, antibacterial activity and pharmacokinetic characteristics of usnic acid nano-micelles
-
摘要: 松萝酸(usnic acid, UA)具有优良的抗菌活性,但水溶性差、生物利用度低极大地限制了其临床应用。本研究采用薄膜水合法利用聚己内酯-聚乙二醇(polycaprolactone-polyethylene glycol, PCL-PEG)高分子材料构建UA胶束,利用单因素试验及Box-Behnken响应面法优化制备条件,从而提高UA的水溶性及生物利用度。表征及评价UA胶束的粒径、zeta电位、微观形貌、包埋效果、水溶性、体外释药、稳定性及安全性。并明确UA胶束对四种常见细菌的体外抗菌活性及其对金黄色葡萄球菌感染小鼠的体内治疗效果。考察UA胶束在大鼠体内的药代动力学特征。结果显示制得的UA胶束呈现为大小均匀、表面光滑的球体,粒径为120.4 nm,zeta电位为-7.8 mV,包封率与载药量分别为80.66%和9.47%,且UA被成功包埋在胶束的疏水性内核中,水溶性提高19.11倍。UA胶束具备一定的缓释性能,48 h药物累计释放度为76.26%,在4℃贮存60天后,稳定性良好,用药安全性良好,对多种常见细菌均具有一定抗菌活性,且UA胶束对金黄色葡萄球菌感染小鼠的治疗效果比UA原药更好。与UA原药相比,UA胶束在大鼠体内的相对生物利用度提高156%,Cmax提高1.34倍,半衰期延长21.38%,清除率降低32.39%。本研究可为UA胶束的临床应用提供一定理论依据。Abstract: Usnic acid (UA) has excellent antibacterial activity, but its poor water solubility and low bioavailability greatly limit its clinical application. In this study, polycaprolactone-polyethylene glycol (PCL-PEG) polymer material was used to construct UA micelles by film dispersion method. Single-factor test and Box-Behnken response surface method were used to optimize the preparation conditions, so as to improve the water solubility and bioavailability of UA. The particle size, zeta potential, microstructure, embedding effect, water solubility, drug release in vitro, stability and safety of UA micelles were characterized. The antibacterial activity of UA micelles against four common bacteria in vitro and the therapeutic effect on Staphylococcus aureus infected mice in vivo were investigated. The pharmacokinetic characteristics of UA micelles in rats were clarified. The results show that UA micelles are uniform size and smooth surface spheres with a particle size of 120.4 nm, zeta potential of −7.8 mV, encapsulation rate and drug loading of 80.66% and 9.47%, respectively. UA is successfully embedded in the hydrophobic core of the micelles, and the water solubility is increased by 19.11 times. UA micelles have a certain slow-release performance, and the cumulative drug release rate is 76.26% after 48 h. After 60 days of storage at 4℃, it shows good stability and good drug safety, and has certain antibacterial activity against many common bacteria. In addition, the therapeutic effect of UA micelles on Staphylococcus aureus infected mice is better than that of the original UA drug. Compared with the original UA drug, the relative bioavailability of UA micelles in rats is improved by 156%, Cmax of UA micelles is increased by 1.34 times, the half-life of UA micelles is extended by 21.38%, and clearance rate of UA micelles is decreased by 32.39%. This study can provide a theoretical basis for the clinical application of UA micelles.
-
图 4 UA胶束的部分表征结果
(a) UA胶束粒径分布图;(b) TEM观察UA胶束的微观形貌(2.5 k×);(c) 1H NMR结果;(d) 红外光谱测定结果;(e) UA胶束体外释放行为;(f) UA胶束溶血试验结果
Figure 4. Partial characterization of UA micelles
(a) Particle size distribution of UA micelles; (b) The morphology of UA micelles observed by TEM; (c) 1H NMR results; (d) Infrared spectroscopic results; (e) In vitro release behavior of UA micelles; (f) Hemolysis test results of UA micelles
表 1 松萝酸(UA)的HPLC检测梯度洗脱程序
Table 1. HPLC gradient elution procedure for detection of usnic acid (UA)
Time/min Methanol 15 mmol/L KH2PO4∶triethylamine=500∶1 0 60% 40% 3 70% 30% 7 75% 25% 15 60% 40% 表 2 Box-Behnken响应面法的试验设计及结果
Table 2. Experimental design and results of Box-Behnken response surface design
Formula PBS volume UA dosage Trichloromethane :
MethanolPBS pH value Encapsulation
Efficiency/%Drug loading/% 1 25 mL 3 mg 1∶1 8.0 72.25 8.39 2 25 mL 3 mg 2∶1 7.4 68.71 8.03 3 25 mL 5 mg 2∶1 7.4 72.35 8.9 4 25 mL 3 mg 1∶1 6.5 42.55 6.21 5 25 mL 4 mg 1∶2 6.5 47.36 6.33 6 20 mL 4 mg 2∶1 7.4 74.54 8.76 7 30 mL 3 mg 1∶1 7.4 67.4 7.98 8 25 mL 3 mg 1∶2 7.4 72.72 8.43 9 25 mL 5 mg 1∶2 7.4 75.48 9.02 10 20 mL 3 mg 1∶1 7.4 68.7 8.02 11 25 mL 4 mg 2∶1 6.5 48.62 6.66 12 20 mL 4 mg 1∶1 8.0 72.01 8.71 13 25 mL 4 mg 1∶1 7.4 79.59 9.36 14 30 mL 4 mg 1∶1 8.0 66.18 8.44 15 20 mL 5 mg 1∶1 7.4 70.37 8.62 16 30 mL 4 mg 1∶1 6.5 49.45 6.70 17 30 mL 4 mg 1∶2 7.4 70.35 8.56 18 20 mL 4 mg 1∶2 7.4 72.16 8.68 19 20 mL 4 mg 1∶1 6.5 43.55 6.28 20 25 mL 4 mg 1∶1 7.4 78.4 9.25 21 25 mL 5 mg 1∶1 6.5 49.92 6.98 22 25 mL 4 mg 1∶1 7.4 78.62 9.27 23 25 mL 4 mg 1∶2 8.0 73.33 8.69 24 25 mL 5 mg 1∶1 8.0 67.67 8.59 25 25 mL 4 mg 2∶1 8.0 71.04 8.62 26 30 mL 4 mg 2∶1 7.4 72.97 8.72 27 30 mL 5 mg 1∶1 7.4 70.26 8.60 28 25 mL 4 mg 1∶1 7.4 77.48 9.11 29 25 mL 4 mg 1∶1 7.4 78.31 9.24 表 3 UA胶束在不同温度下避光贮存不同时间的包封率和载药量
Table 3. Encapsulation efficiency and drug loading of UA micelles stored at different temperatures for different times and away from light
Storage temperature 0 day 15 day 30 day 45 day 60 day Encapsulation efficiency/% 4℃ 80.60±0.31 72.88±0.78 68.13±1.76 64.72±2.06 61.11±3.36 25℃ 80.60±0.31 65.81±1.13 60.06±1.77 58.64±2.31 55.90±2.89 Drug loading/% 4℃ 9.10±0.35 8.43±0.92 7.96±1.12 7.46±1.43 7.17±1.19 25℃ 9.10±0.35 7.53±0.66 7.01±2.02 6.77±0.62 6.60±1.15 表 4 UA胶束和UA原药对四种细菌的最小抑菌浓度(minimal inhibitory concentration, MIC)和最小杀菌浓度(minimal bactericidal concentration, MBC)[29]
Table 4. MIC and MBC of UA micelles and original UA against four bacteria
Staphylococcus aureus ATCC 29213 MRSA-5 MRSA-66 MRSA-70 ATCC 29213 MRSA-5 MRSA-66 MRSA-70 MIC/(μg·mL−1) MBC/(μg·mL−1) Free UA 8 4 8 16 64 32 32 64 UA micelles 16 8 8 16 64 32 32 64 Arcanobacterium pyogenes ATCC 19411 HC-H12 HC-H02-2 BMH06-3 ATCC 19411 HC-H12 HC-H02-2 BMH06-3 MIC/(μg·mL−1) MBC/(μg·mL−1) Free UA 16 32 32 16 64 128 128 64 UA micelles 16 32 64 32 64 128 256 128 Escherichia coli ATCC 25922 Streptococcus pneumoniae ATCC 49619 MIC/(μg·mL−1) MBC/(μg·mL−1) MIC/(μg·mL−1) MBC/(μg·mL−1) Free UA 256 >512 128 >512 UA micelles 256 >512 128 >512 表 5 尾静脉注射给药后血浆中的药动学参数
Table 5. Pharmacokinetic parameters in plasma after administration by tail vein injection
Parameters Unit Original UA UA micelles AUC(0-t) mg/(L·h) 37.481±4.847 58.423±4.946 AUC(0-∞) mg/(L·h) 43.511±6.764 64.375±4.877 Cmax mg/L 24.493±2.848 32.799±2.620 t1/2 h 3.807±0.132 4.621±1.194 CL L/(h·kg) 0.46±0.013 0.311±0.028 Vz L/kg 3.065±0.067 1.707±0.053 MRT(0-t) h 2.817±0.176 2.969±0.295 Notes:AUC(0-t) is area under the blood concentration time curve from 0 to t; AUC(0-∞) is area under the blood concentration time curve from 0 to ∞; Cmax is maximum blood concentration; t1/2 is plasma half-life of the drug; CL is the volume of drug-containing plasma eliminated from the body per unit time; Vz is apparent volume of distribution; MRT(0-t) is mean residence time from 0 to t. -
[1] ARAUJO A A, MELO MG DE, RABELO T K, et al. Review of the biological properties and toxicity of usnic acid[J]. Natural Product Research, 2015, 29(23): 2167-2180. doi: 10.1080/14786419.2015.1007455 [2] SIENIAWSKA E, SAWICKI R, TRUSZKIEWICZ W, et al. Usnic acid treatment changes the composition of mycobacterium tuberculosis cell envelope and alters bacterial redox status[J]. mSystems, 2021, 6(3): e00097-21. [3] POMPILIO A, RIVIELLO A, CROCETTA V, et al. Evaluation of antibacterial and antibiofilm mechanisms by usnic acid against methicillin-resistant Staphylococcus aureus[J]. Future Microbiology, 2016, 11: 1315-1338. doi: 10.2217/fmb-2016-0049 [4] 郭红艳. 松萝酸衍生物的抗弓形虫活性研究及人参三醇衍生物的抗肿瘤活性研究[D]. 吉林: 延边大学, 2021.GUO Hongyan. Study on toxoplasma gondii activity of usnea acid derivatives and the anti-tumor activity of panaxotriol derivatives[D]. Jilin: Yanbian University, 2021. (in Chinese). [5] DERICI MK, CANSARAN-DUMAN D, TAYLAN-ÖZKAN A. Usnic acid causes apoptotic-like death in Leishmania major, L. infantum and L. tropica[J]. 3 Biotech, 2018, 8(9): 384-390. doi: 10.1007/s13205-018-1409-6 [6] GALANTY A, ZAGRODZKI P, GDULA-ARGASIŃSKA J, et al. A comparative survey of anti-melanoma and anti-inflammatory potential of usnic acid enantiomers-a comprehensive in vitro approach[J]. Pharmaceuticals (Basel), 2021, 14(9): 945. doi: 10.3390/ph14090945 [7] KUMAR K, MISHRA JPN, SINGH RP. Usnic acid induces apoptosis in human gastric cancer cells through ROS generation and DNA damage and causes up-regulation of DNA-PKcs and γ-H2A. X phosphorylation[J]. Chemico-Biological Interactions, 2020, 315: 108898-108910. doi: 10.1016/j.cbi.2019.108898 [8] 苏祖清. 松萝酸对小鼠急性肺损伤以及肺纤维化的保护作用[D]. 广东: 广州中医药大学, 2015.SU Zuqing. The protective effects of Usnic acid on lipopolysaccharide-induced acute lung injury and bleomycin-induced pulmonary fibrosis in mice[D]. Guangdong: Guangzhou University of Chinese Medicine, 2015. (in Chinese). [9] 李德. 松萝酸钠在大鼠皮肤伤口愈合过程中对成纤维细胞的影响[D]. 黑龙江: 东北农业大学, 2016.LI De. Effect of sodium usnic acid for the fibroblasts on rat skin wound healing[D]. Heilongjiang: Northeast Agricultural University, 2016. (in Chinese). [10] 郑宇. 松萝酸钠对皮肤创伤愈合的影响及临床应用实验[D]. 黑龙江: 东北农业大学, 2016.ZHENG Yu. The effects of sodium usnic acid on skin wound healing and clinical experiments[D]. Heilongjiang: Northeast Agricultural University, 2016. (in Chinese). [11] 杨帆. 松萝酸纳米给药系统的制备及减毒作用的初步研究[D]. 重庆: 重庆理工大学, 2020.YANG Fan. Preliminary study on preparation and attenuation of usnic acid nano-drug delivery system[D]. Chongqing: Chongqing University of Technology, 2020. (in Chinese). [12] BATTISTA S, BELLIO P, CELENZA G, et al. Correlation of physicochemical and antimicrobial properties of liposomes loaded with (+)-usnic acid[J]. Chempluschem, 2020, 85(5): 1014-1021. doi: 10.1002/cplu.202000125 [13] FRANCOLINI I, GIANSANTI L, PIOZZI A, et al. Glucosylated liposomes as drug delivery systems of usnic acid to address bacterial infections[J]. Colloids and Surfaces B-Biointerfaces, 2019, 181: 632-638. doi: 10.1016/j.colsurfb.2019.05.056 [14] ZUGIC A, TADIC V, SAVIC S. Nano- and microcarriers as drug delivery systems for usnic acid: review of literature[J]. Pharmaceutics, 2020, 12(2): 156-180. doi: 10.3390/pharmaceutics12020156 [15] 宋婷, 宋丹, 管海燕, 等. 松萝酸磷脂复合物在大鼠体内的药动学及组织分布研究[J]. 中草药, 2018, 49(6): 1358-1364. doi: 10.7501/j.issn.0253-2670.2018.06.019SONG Ting, SONG Dan, GUAN Haiyan, et al. Pharmacokinetics and tissue distribution of usnic acid phospholipid complex in rats[J]. Chinese Traditional and Herbal Drugs, 2018, 49(6): 1358-1364(in Chinese). doi: 10.7501/j.issn.0253-2670.2018.06.019 [16] 王永中, 方晓玲. 聚合物胶束作为肿瘤靶向给药载体的研究[J]. 中国新药杂志, 2005, 14(10): 1127-1131. doi: 10.3321/j.issn:1003-3734.2005.10.003WANG Yongzhong, FANG Xiaoling. Polymeric micelles and targeting drug delivery systems for cancer therapy[J]. Chinese Journal of New Drugs, 2005, 14(10): 1127-1131(in Chinese). doi: 10.3321/j.issn:1003-3734.2005.10.003 [17] CHO HK, CHO JH, JEONG SH, et al. Polymeric vehicles for topical delivery and related analytical methods[J]. Archives of Pharmacal Research, 2014, 37(4): 423-434. doi: 10.1007/s12272-014-0342-4 [18] MATSUMURA Y. The drug discovery by nanomedicine and its clinical experience[J]. Japanese Journal of Clinical Oncology, 2014, 44(6): 515-525. doi: 10.1093/jjco/hyu046 [19] YOKOYAMA M. Polymeric micelles as drug carriers: their lights and shadows[J]. Journal of Drug Targeting, 2014, 22(7): 576-583. doi: 10.3109/1061186X.2014.934688 [20] GOU M, WEI X, MEN K, et al. PCL/PEG copolymeric nanoparticles: potential nanoplatforms for anticancer agent delivery[J]. Current Drug Targets, 2011, 12(8): 1131-1150. doi: 10.2174/138945011795906642 [21] 苑莹芝. pH响应型抗肿瘤纳米药物载体的合成及药物控释[D]. 甘肃: 西北师范大学, 2017.YUAN Yingzhi. Synthesis and drug controlled release of pH-responsive antitumor nano-drug delivery systems[D]. Gansu: Northwest Normal University, 2017. (in Chinese). [22] GHEZZI M, PESCINA S, PADULA C, et al. Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions[J]. Journal of Controlled Release, 2021, 332: 312-336. doi: 10.1016/j.jconrel.2021.02.031 [23] MAJUMDER N, G DAS N, DAS SK. Polymeric micelles for anticancer drug delivery[J]. Therapeutic Delivery, 2020, 11(10): 613-635. doi: 10.4155/tde-2020-0008 [24] 蔡杰慧, 杨英全, 郑燕菲. 载姜黄素类化合物PCL-PEG-PCL微球的制备及释药性、抗氧化性研究[J]. 现代化工, 2022, 42(7): 201-206.CAI Jiehui, YANG Yingquan, ZHENG Yanfei. Preparation of curcuminoids-loaded PCL-PEG-PCL microspheres, and study on their drug delivery and antioxidant activity[J]. Modern Chemical Industry, 2022, 42(7): 201-206(in Chinese). [25] 苏晓梅, 张丹参, 赵凯燕, 等. 以PCL-PEG为载体的人参皂苷Rg3纳米粒的制备及表征[J]. 应用化工, 2018, 47(3): 525-529. doi: 10.3969/j.issn.1671-3206.2018.03.026SU Xiaomei, ZHANG Danshen, ZHAO Kaiyan, et al. Preparation and characterization of ginsenoside Rg3 nanoparticles based on PCL-PEG[J]. Applied Chemical Industry, 2018, 47(3): 525-529(in Chinese). doi: 10.3969/j.issn.1671-3206.2018.03.026 [26] LI J, DU YT, SU HT, et al. Interfacial properties and micellization of triblock poly(ethylene glycol)-poly(ε-caprolactone)-polyethyleneimine copolymers[J]. Acta Pharmaceutica Sinica B, 2020, 10(6): 1122-1133. doi: 10.1016/j.apsb.2020.01.006 [27] REDDY BP, YADAV HK, NAGESHA DK, et al. Polymeric micelles as novel carriers for poorly soluble drugs-a review[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(6): 4009-4018. doi: 10.1166/jnn.2015.9713 [28] LI Q, LAI KL, CHAN PS, et al. Micellar delivery of dasatinib for the inhibition of pathologic cellular processes of the retinal pig-ment epithelium[J]. Colloids and Surfaces B-Biointerfaces, 2016, 140: 278-286. doi: 10.1016/j.colsurfb.2015.12.053 [29] Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing: M100S[S]. New York: Infobase Publishing, 2017.
计量
- 文章访问数: 27
- HTML全文浏览量: 22
- 被引次数: 0