留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的准各向同性缎纹C/SiC拉伸-剪切损伤演化机制

陈鹏 王龙 张大旭 杜永龙 郭纬愉 陈超

陈鹏, 王龙, 张大旭, 等. 基于深度学习的准各向同性缎纹C/SiC拉伸-剪切损伤演化机制[J]. 复合材料学报, 2024, 41(9): 4852-4862. doi: 10.13801/j.cnki.fhclxb.20240228.001
引用本文: 陈鹏, 王龙, 张大旭, 等. 基于深度学习的准各向同性缎纹C/SiC拉伸-剪切损伤演化机制[J]. 复合材料学报, 2024, 41(9): 4852-4862. doi: 10.13801/j.cnki.fhclxb.20240228.001
CHEN Peng, WANG Long, ZHANG Daxu, et al. Deep learning based tensile-shear damage evolution mechanism of quasi-isotropic satin weave C/SiC composites[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4852-4862. doi: 10.13801/j.cnki.fhclxb.20240228.001
Citation: CHEN Peng, WANG Long, ZHANG Daxu, et al. Deep learning based tensile-shear damage evolution mechanism of quasi-isotropic satin weave C/SiC composites[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4852-4862. doi: 10.13801/j.cnki.fhclxb.20240228.001

基于深度学习的准各向同性缎纹C/SiC拉伸-剪切损伤演化机制

doi: 10.13801/j.cnki.fhclxb.20240228.001
基金项目: 国家自然科学基金 (12072192;52202082)
详细信息
    通讯作者:

    王龙,博士,高级工程师,研究方向为航天结构强度 E-mail: lwang@spacechina.com

    张大旭,博士,教授,博士生导师,研究方向为陶瓷基复合材料力学 E-mail: daxu.zhang@sjtu.edu.cn

  • 中图分类号: TB332

Deep learning based tensile-shear damage evolution mechanism of quasi-isotropic satin weave C/SiC composites

Funds: National Natural Science Foundation of China (12072192; 52202082)
  • 摘要: 利用4D X射线CT原位拉伸试验和深度学习技术,表征拉伸作用下准各向同性铺层缎纹C/SiC的损伤失效过程,揭示(0°/90°)铺层拉伸和(±45°)铺层剪切耦合作用的材料损伤演化机制。基于深度学习图像分割方法对载荷作用下基体裂纹、分层等损伤进行智能识别,提取损伤特征开展定量分析,结合断口形貌探究损伤与失效机制。研究发现:基体裂纹中±45°斜裂纹占主要部分,演化过程为初期裂纹不断扩展;横向裂纹虽然少于斜裂纹,但其长度和裂纹张开位移发展快;基体裂纹沿层间界面偏转诱发分层。(0°/90°)缎纹铺层组织点区90°纤维束出现横向开裂,浮长区伴随纤维束弯曲;组织点区0°纤维束发生断裂,浮长区伴随纤维束纵向劈裂。(±45°)缎纹铺层发生−45°(或+45°)纤维束斜向劈裂和相对错动,同层+45°(或−45°)纤维束则发生纤维束断裂,伴随纤维桥连弯曲。

     

  • 图  1  5枚缎纹组织结构:(a) (0°/90°)铺层;(b) (±45°)铺层

    Figure  1.  Structure of the 5 satin organization: (a) (0°/90°) lay-up; (b) (±45°) lay-up

    ROI—Region of interest

    图  2  X射线CT原位试验装置和试验件:(a) X射线CT的内部结构; (b)试验件尺寸

    Figure  2.  X-ray CT in-situ loading device and specimen: (a) Internal structure of X-ray CT; (b) Dimension of specimen

    图  3  缎纹C/SiC复合材料试验件力-位移曲线

    Figure  3.  Force-displacement curve of satin weave C/SiC composites

    图  4  深度学习流程

    Figure  4.  Deep learning process

    图  5  缎纹C/SiC复合材料试验件细观结构三维重构图:(a)试验件感兴趣区域(ROI);(b)叠加材料的孔隙三维渲染

    Figure  5.  3D visualization of region of interest (ROI) of the satin weave C/SiC composite specimen (a) and spatial distribution of pore (b)

    图  6  缎纹C/SiC复合材料90°纤维束横向裂纹演化:(a) 10 N;(b) 800 N;(c) 1507 N;(d) 41 N

    Figure  6.  Transverse crack evolution in 90° tows of satin weave C/SiC composites: (a) 10 N; (b) 800 N; (c) 1507 N; (d) 41 N

    图  7  缎纹C/SiC复合材料0°纤维束纵向裂纹演化:(a) 10 N;(b) 800 N;(c) 1507 N; (d) 41 N

    Figure  7.  Longitudinal crack evolution in 0° tows of satin weave C/SiC composites: (a) 10 N; (b) 800 N; (c) 1507 N; (d) 41 N

    图  8  缎纹C/SiC复合材料±45°纤维束斜向裂纹演化:(a) 10 N;(b) 800 N;(c) 1507 N;(d) 41 N

    Figure  8.  Oblique crack evolution in ±45° tows of satin weave C/SiC composites: (a) 10 N; (b) 800 N; (c) 1507 N; (d) 41 N

    图  9  缎纹C/SiC复合材料横向、纵向、斜向裂纹演化三维可视化表征:(a) 10 N;(b) 800 N;(c) 1507 N;(d) 41 N

    Figure  9.  3D visual characterization of damage evolution for transverse, longitudinal and oblique cracks of satin weave C/SiC composites: (a) 10 N; (b) 800 N; (c) 1507 N; (d) 41 N

    图  10  缎纹C/SiC复合材料裂纹体积分数随载荷变化曲线

    Figure  10.  Curve of variation of crack volume fraction with load of satin weave C/SiC composites

    图  11  缎纹C/SiC复合材料裂纹数量随载荷变化曲线

    Figure  11.  Curve of variation of crack number with load of satin weave C/SiC composites

    图  12  缎纹C/SiC复合材料裂纹萌生和扩展比例

    Figure  12.  Proportion of crack initiation and propagation of satin weave C/SiC composites

    图  13  缎纹C/SiC复合材料裂纹长度随载荷变化曲线

    Figure  13.  Curve of variation of crack length with load of satin weave C/SiC composites

    图  14  缎纹C/SiC复合材料裂纹张开位移(COD)随载荷变化曲线

    Figure  14.  Curve of variation of crack opening distance (COD) with load of satin weave C/SiC composites

    图  15  缎纹C/SiC复合材料分层二维形貌和三维渲染:(a)、(c)1507N;(b)、(d)41N

    Figure  15.  2D morphology and 3D rendering of delamination of satin weave C/SiC composites: (a), (c) 1507N; (b), (d) 41N

    图  16  缎纹C/SiC复合材料分层沿厚度方向(Z轴)体积分布曲线

    Figure  16.  Spatial distribution of the delamination of satin weave C/SiC composites along Z axis

    图  17  缎纹C/SiC复合材料分层扩展路径:(a) 41 N;(b) 1507 N

    Figure  17.  Propagation path of delamination of satin weave C/SiC composites: (a) 41 N; (b) 1507 N

    图  18  缎纹C/SiC复合材料铺层断裂面三维视图:(a) (0°/90°)铺层;(b) (±45°)铺层

    Figure  18.  3D view of fracture surface of satin weave C/SiC composites: (a) (0°/90°) lay-up; (b) (±45°) lay-up

    图  19  缎纹C/SiC复合材料(0°/90°)铺层断口:(a)组织点区域;((b)~(d))浮长区域

    Figure  19.  (0°/90°) lay-up fracture of satin weave C/SiC composites: (a) Tissue point region; ((b)-(d)) Floating length region

    图  20  缎纹C/SiC复合材料(±45°)铺层断口:(a) −45°纤维束断口;(b) 45°纤维束断口

    Figure  20.  (±45°) lay-up fracture of satin weave C/SiC composites: (a) −45° fibre tow fracture; (b) 45° fibre tow fracture

    图  21  缎纹C/SiC复合材料0°纤维束微观损伤: (a)组织点区域;(b)浮长区域

    Figure  21.  Microscopic damage of 0° fibre tow of satin weave C/SiC composites: (a) Tissue point region; (b) Floating length region

    图  22  缎纹C/SiC复合材料(0°/90°)铺层失效机制示意图:((a)~(c)) 组织点区域;((d)~(f)) 浮长区域

    Figure  22.  Schematic of failure mechanism for (0°/90°) lay-up of satin weave C/SiC composites: ((a)-(c)) Tissue point region; ((d)-(f)) Floating length region

    图  23  缎纹C/SiC复合材料(±45°)铺层失效机制示意图:((a)~(c))组织点区域

    Figure  23.  Schematic of failure mechanism for (±45°) lay-up of satin weave C/SiC composites: ((a)-(c)) Tissue point region

  • [1] PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials, 2016, 15(8): 804-809. doi: 10.1038/nmat4687
    [2] 张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术, 2003(1): 24-32. doi: 10.3969/j.issn.1671-833X.2003.01.009

    ZHANG Litong, CHENG Laifei, XU Yongdong. Progress in research work of new CMC-SiC[J]. Aerospace Manufacturing Technology, 2003(1): 24-32(in Chinese). doi: 10.3969/j.issn.1671-833X.2003.01.009
    [3] 冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报, 2022, 39(9): 4187-4195.

    FENG Zhihai, LI Junning, TIAN Yuelong, et al. Research progress of advanced composite materials for aerospace applications[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4187-4195(in Chinese).
    [4] KRENKEL W, BERNDT F. C/C-SiC composites for space applications and advanced friction systems[J]. Materials Science and Engineering: A, 2005, 412(1): 177-181.
    [5] 杨成鹏, 矫桂琼, 王波, 等. 2D-C/SiC复合材料的拉伸损伤研究[J]. 航空材料学报, 2010, 30(6): 87-92.

    YANG Chengpeng, JIAO Guiqiong, WANG Bo, et al. Tensile damage behavior of 2D-C/SiC composite[J]. Journal of aerospace materials, 2010, 30(6): 87-92(in Chinese).
    [6] 常岩军, 矫桂琼, 陶永强, 等. 2.5D-C/SiC复合材料的拉伸损伤研究[J]. 无机材料学报, 2008(3): 509-514.

    CHANG Yanjun, JIAO Guiqiong, TAO Yongqiang, et al. Damage behavior of 2.5-C/SiC composite under tensile loading[J]. Journal of Inorganic Materials, 2008(3): 509-514(in Chinese).
    [7] ZHANG D, HAYHURST D R. Stress-strain and fracture behaviour of 0°/90° and plain weave ceramic matrix composites from tow multi-axial properties[J]. International Journal of Solids and Structures, 2010, 47(21): 2958-2969. doi: 10.1016/j.ijsolstr.2010.06.023
    [8] RAO M P, PANTIUK M, CHARALAMBIDES P G. Modeling the geometry of satin weave fabric composites[J]. Journal of Composite Materials, 2008, 43(1): 19-56.
    [9] ZHANG D, HAYHURST D R. Prediction of stress-strain and fracture behaviour of an 8-Harness satin weave ceramic matrix composite[J]. International Journal of Solids and Structures, 2014, 51(21): 3762-3775.
    [10] RAJAN V P, SHAW J H, ROSSOL M N, et al. An elastic–plastic constitutive model for ceramic composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2014, 66: 44-57. doi: 10.1016/j.compositesa.2014.06.013
    [11] 杨强, 解维华, 孟松鹤, 等. 复合材料多尺度分析方法与典型元件拉伸损伤模拟[J]. 复合材料学报, 2015, 32(3): 617-624.

    YANG Qiang, XIE Weihua, MENG Songhe, et al. Multi-scale analysis method of composites and damage simulation of typical component under tensile load[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 617-624(in Chinese).
    [12] BALE H, BLACKLOCK M, BEGLEY M R, et al. Characterizing three-dimensional textile ceramic composites using synchrotron X-ray micro-computed-tomography[J]. Journal of the American Ceramic Society, 2012, 95(1): 392-402. doi: 10.1111/j.1551-2916.2011.04802.x
    [13] BALE H A, HABOUB A, MACDOWELL A A, et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1600 ℃[J]. Nature Materials, 2013, 12(1): 40-46. doi: 10.1038/nmat3497
    [14] 刘海龙, 张大旭, 祁荷音, 等. 基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化[J]. 上海交通大学学报, 2020, 54(10): 1074-1083.

    LIU Hailong, ZHANG Daxu, QI Heyin, et al. Tensile damage evolution of plain weave SiC/SiC composites based on in-situ X-ray CT tests[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1074-1083(in Chinese).
    [15] CHEN Y S, SHI Y, CHATEAU C, et al. In situ X-ray tomography characterisation of 3D deformation of C/C-SiC composites loaded under tension[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106390. doi: 10.1016/j.compositesa.2021.106390
    [16] AI S, SONG W, CHEN Y. Stress field and damage evolution in C/SiC woven composites: Image-based finite element analysis and in situ X-ray computed tomography tests[J]. Journal of the European Ceramic Society, 2021, 41(4): 2323-2334. doi: 10.1016/j.jeurceramsoc.2020.12.026
    [17] WANG L, YUAN K, LUAN X, et al. 3D characterizations of pores and damages in C/SiC composites by using X-ray computed tomography[J]. Applied Composite Materials, 2019, 26(2): 493-505. doi: 10.1007/s10443-018-9712-2
    [18] WANG L, ZHANG W, LI H, et al. 3D in-situ characterizations of damage evolution in C/SiC composite under monotonic tensile loading by using X-ray computed tomography[J]. Applied Composite Materials, 2020, 27(3): 119-130. doi: 10.1007/s10443-020-09796-5
    [19] NIU G, ZHU R, LEI H, et al. Internal damage evolution investigation of C/SiC composites using in-situ tensile X-ray computed tomography testing and digital volume correlation at 1000 ℃[J]. Composites Part A: Applied Science and Manufacturing, 2022, 163: 107247. doi: 10.1016/j.compositesa.2022.107247
    [20] DU Y, ZHANG D, WANG L, et al. Damage mechanism characterisation of plain weave ceramic matrix composites under in-plane shear using in-situ X-ray micro-CT and deep-learning-based image segmentation[J]. Journal of the European Ceramic Society, 2024, 44(1): 142-153. doi: 10.1016/j.jeurceramsoc.2023.09.022
    [21] ZHANG D, LIU Y, LIU H, et al. Characterisation of damage evolution in plain weave SiC/SiC composites using in situ X-ray micro-computed tomography[J]. Composite Structures, 2021, 275: 114447. doi: 10.1016/j.compstruct.2021.114447
    [22] KHAN A, KO D K, LIM S C, et al. Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network[J]. Composites Part B: Engineering, 2019, 161: 586-594. doi: 10.1016/j.compositesb.2018.12.118
    [23] SINCHUK Y, KIBLEUR P, AELTERMAN J, et al. Variational and deep learning segmentation of very-low-contrast X-ray computed tomography images of carbon/epoxy woven composites[J]. Materials, 2020, 13(4): 936. doi: 10.3390/ma13040936
    [24] SUN R, GUO L, LI Z, et al. A novel approach to assessing yarn/matrix (or yarn/yarn) in situ interfacial strength in 3D woven composites[J]. Composites Science and Technology, 2021, 213: 108893. doi: 10.1016/j.compscitech.2021.108893
    [25] 王波, 吴亚波, 郭洪宝, 等. 2D-C/SiC 复合材料偏轴拉伸力学行为研究[J]. 材料工程, 2017, 45(7): 91-96.

    WANG Bo, WU Yabo, GUO Hongbao, et al. Investigation on off-axis tensile mechanical behaviors of 2D-C/SiC composites[J]. Journal of Materials Engineering, 2017, 45(7): 91-96(in Chinese).
  • 加载中
图(23)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  220
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-01-28
  • 录用日期:  2024-02-21
  • 网络出版日期:  2024-02-28
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回