留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工程水泥基复合材料(ECC)与发泡式聚苯乙烯(EPS)保温板的界面粘结性能

李雨珊 尹世平 徐世烺 侯向明 王宇清 李传秀

李雨珊, 尹世平, 徐世烺, 等. 工程水泥基复合材料(ECC)与发泡式聚苯乙烯(EPS)保温板的界面粘结性能[J]. 复合材料学报, 2022, 40(0): 1-13
引用本文: 李雨珊, 尹世平, 徐世烺, 等. 工程水泥基复合材料(ECC)与发泡式聚苯乙烯(EPS)保温板的界面粘结性能[J]. 复合材料学报, 2022, 40(0): 1-13
Yushan LI, Shiping YIN, Shilang XU, Xiangming HOU, Yuqing WANG, Chuanxiu LI. Bonding properties of the interface between engineering cementitious composite (ECC) and expanded polystyrene (EPS) insulation board[J]. Acta Materiae Compositae Sinica.
Citation: Yushan LI, Shiping YIN, Shilang XU, Xiangming HOU, Yuqing WANG, Chuanxiu LI. Bonding properties of the interface between engineering cementitious composite (ECC) and expanded polystyrene (EPS) insulation board[J]. Acta Materiae Compositae Sinica.

工程水泥基复合材料(ECC)与发泡式聚苯乙烯(EPS)保温板的界面粘结性能

基金项目: 徐州市重点研发计划(产业前瞻与共性关键技术领域)(KC18106)
详细信息
    通讯作者:

    尹世平,博士,教授,博士生导师,研究方向为新型土木工程材料 E-mail: yinshiping2821@163.com

  • 中图分类号: TU528.58

Bonding properties of the interface between engineering cementitious composite (ECC) and expanded polystyrene (EPS) insulation board

  • 摘要: 如今,随着国家对节能减排的倡导,因建筑围护结构隔热性能不足导致的建筑高能耗问题日益突出。对此,采用一种以工程水泥基复合材料(Engineered Cementitious Composites,ECC)为面层、发泡式聚苯乙烯(EPS)板为保温层的三明治(Sandwich)结构墙体来改善围护结构的隔热性能。这种结构不仅能够有效降低能量的耗散,还具有良好的变形和控制裂缝的能力。然而,界面粘结性能是决定其是否能充分发挥各自材料优势并满足使用要求的重要前提。于是,对三明治结构进行了双面剪切试验,研究了制作方式、保温层厚度、有无连接件及插入连接件的角度对ECC面层与EPS保温层界面粘结性能的影响。试验结果表明,EPS预制试件的粘结性能最差,并且其极限荷载的平均值仅为现浇试件的1/4。保温层厚度越大,试件的粘结性能则越差。连接件的加入有助于提高试件的承载能力和界面粘结性能,其中嵌入45°连接件的试件的增强效果最明显。同时,通过对各试件韧性指数的分析发现,有连接件的试件的韧性均较好,无连接件试件中保温层厚度为50 mm的试件在试验后期也具有较好的界面间粘结性能。此外,还基于Teixeira的分析理论推导了试件的抗剪承载力公式,并与试验结果进行对比,结果表明,该计算公式可以用于预测试件的抗剪承载力。

     

  • 图  1  ECC-EPS保温板双面剪切试验尺寸图(单位:mm)

    Figure  1.  Size of ECC-EPS insulation board for double-sided shear test (Unit: mm)

    图  2  ECC-EPS保温板制备过程

    Figure  2.  Preparation process of ECC-EPS insulation board

    图  3  ECC-EPS保温板双面剪切试验

    Figure  3.  Double-sided shear test of ECC-EPS insulation board

    图  4  ECC-EPS保温板破坏形态

    Figure  4.  Failure mode of ECC-EPS insulation board

    图  5  ECC-EPS保温板的荷载-滑移曲线

    Figure  5.  Load-slip curve of ECC-EPS insulation board

    图  6  峰值荷载后的能量Epost计算

    Figure  6.  Calculation of energy value after peak load Epost

    表  1  发泡式聚苯乙烯(EPS)性能参数

    Table  1.   Performance parameters of the expanded polystyrene ( EPS )

    Heat insulatorThermal conductivity/(W·(m·K)−1)Density/(kg·m−3)Tensile strength/MPaCompressive strength/MPa
    EPS0.039200.130.12
    下载: 导出CSV

    表  2  工程水泥基复合材料(ECC)配合比

    Table  2.   Mix proportion of engineered cementitious composites (kg/m3)

    MaterialCementFly ashQuartz sandWaterWater reducing agentPVA fiber
    Mix proportion37988545537917.426
    下载: 导出CSV

    表  3  ECC力学性能

    Table  3.   Mechanical properties of ECC

    Specimen
    number
    Compressive
    strength/MPa
    Ultimate tensile
    strength/MPa
    Ultimate tensile
    strain/%
    Ultimate bending
    load/kN
    Ultimate mid-span
    deflection/mm
    ECC-157.58.763.470.8121.90
    ECC-252.27.122.630.8324.62
    ECC-349.36.343.250.7921.83
    Average value53.07.413.120.8122.78
    Standard deviation3.41.010.360.021.30
    Coefficient of variation0.060.140.120.020.06
    下载: 导出CSV

    表  4  聚乙烯醇(PVA)纤维性能参数

    Table  4.   Performance parameters of polyvinyl alcohol(PVA)fiber

    TypeLength/mmDiameter/mmTensile strength/MPaElastic modulus/GPaDensity/(g·cm−3)
    PVA fiber120.041600421.3
    下载: 导出CSV

    表  5  玄武岩纤维增强树脂复合材料(BFRP)筋的力学性能

    Table  5.   Mechanical properties of basalt fiber reinforced polymer (BFRP) bars

    BFRP diameter/mmUltimate tensile strength/MPaElastic modulus/GPaPercentage elongation/%
    6127960.122.13
    8119460.751.97
    10106655.841.91
    12135059.402.27
    下载: 导出CSV

    表  6  ECC-EPS保温板试验分组

    Table  6.   Test group of ECC-EPS insulation board

    Specimen numberType of insulation
    material
    Production
    method
    Insulating layer
    thickness/mm
    BFRP connector
    or not
    Connector
    insertion angle/(°)
    ECC(X)-EPS(70)EPSCast-in-site70Without-
    ECC(Y) -EPS(70)EPSPrefabrication70Without-
    ECC(X)-EPS(50)EPSCast-in-site50Without-
    ECC(X)-EPS(100)EPSCast-in-site100Without-
    ECC(X)-EPS(70)-BFRP(90)EPSCast-in-site70Having90
    ECC(X)-EPS(70)-BFRP(60)EPSCast-in-site70Having60
    ECC(X)-EPS(70)-BFRP(45)EPSCast-in-site70Having45
    Notes:In specimen number, X—Cast-in-site; Y—Prefabrication; BFRP bar insertion angle refers to the angle between the bar and the specimen in the vertical direction. Insertion depth is 20 mm[18].
    下载: 导出CSV

    表  7  ECC-EPS保温板双面剪切试验结果

    Table  7.   Results of double-sided shear test of ECC-EPS insulation board

    Specimen numberOrder numberLimit load/kNAbsolute deviationDisplacement/mmShear strength/MPaMode of failure
    Front displacementRear displacementAverage valueAbsolute deviation
    ECC(X)-EPS(70) 1 7.25 0.08 15.90 15.68 15.79 0.49 0.060 Interfacial failure
    2 7.43 0.1 17.60 17.86 17.73 1.45 0.062 Interfacial failure
    3 7.30 0.03 15.40 15.23 15.32 0.96 0.060 Interfacial failure
    Average value 7.33 - - - 16.28 - 0.060 -
    ECC(Y) -EPS(70) 1 1.92 0.4 3.73 3.87 3.80 0.51 0.016 Interfacial failure
    2 2.87 0.55 5.73 4.20 4.97 0.66 0.024 Interfacial failure
    3 2.18 0.14 4.35 3.95 4.15 0.16 0.018 Interfacial failure
    Average value 2.32 - - - 4.31 - 0.020 -
    ECC(X)-EPS(50) 1 8.50 0.16 16.41 16.55 16.48 1.49 0.070 Shear failure of EPS and interfacial failure
    2 8.46 0.2 18.23 18.56 18.40 0.43 0.070 Shear failure of EPS and interfacial failure
    3 9.02 0.36 18.93 19.15 19.04 1.07 0.076 Shear failure of EPS and interfacial failure
    Average value 8.66 - - - 17.97 - 0.072 -
    ECC(X)-EPS(100) 1 6.07 0 13.12 15.27 14.20 1.36 0.050 Interfacial failure
    2 5.74 0.33 11.00 12.31 11.66 1.18 0.048 Interfacial failure
    3 6.39 0.32 11.24 14.10 12.67 0.17 0.054 Interfacial failure
    Average value 6.07 - - - 12.84 - 0.050 -
    ECC(X)-EPS(70)-BFRP(90) 1 11.13 0.45 27.75 29.33 28.54 4.52 0.092 Shear failure of EPS and splitting, breaking and pulling out of BFRP bars
    2 11.89 0.31 19.49 20.38 19.94 4.08 0.100 Shear failure of EPS
    3 11.72 0.14 23.22 23.95 23.59 0.43 0.098 Shear failure of EPS and BFRP bars splitting
    Average value 11.58 - - - 24.02 - 0.096 -
    ECC(X)-EPS(70)-BFRP(60) 1 20.53 1.07 12.81 13.64 13.23 0.01 0.172 Bending failure of two ECC boards on the outside
    2 20.60 1 11.16 10.40 10.78 2.46 0.172 Bending failure of two ECC boards on the outside
    3 23.67 2.07 15.73 15.69 15.71 2.47 0.198 Bending failure of two ECC boards on the outside
    Average value 21.60 - - - 13.24 - 0.181 -
    ECC(X)-EPS(70)-BFRP(45) 1 47.74 5.33 18.90 20.80 19.85 2.35 0.398 Interfacial failure
    2 40.60 1.81 19.26 21.30 20.28 2.78 0.338 Interfacial failure
    3 38.90 3.51 12.67 12.05 12.36 5.14 0.324 Interfacial failure
    Average value 42.41 - - - 17.50 - 0.354 -
    下载: 导出CSV

    表  8  ECC-EPS保温板韧性指数

    Table  8.   Toughness index of ECC-EPS insulation board

    Specimen numberEpost/(kN·mm)Ppeak/kNδpeak/mmαS
    ECC(X)-EPS(70)36.77.253.492.90
    ECC(Y)-EPD(70)2.42.871.511.09
    ECC(X)-EPS(50)78.89.024.463.92
    ECC(X)-EPS(100)25.86.076.681.27
    ECC(X)-EPS(70)-BFRP(90)124.211.895.903.54
    ECC(X)-EPS(70)-BFRP(60)142.023.671.886.38
    ECC(X)-EPS(70)-BFRP(45)425.047.742.556.98
    Notes:Epost is the energy value after the peak load (kN·mm); Ppeak is the limit load value (kN); δpeak is the interface slip value at the limit load (mm); αS is the toughness index.
    下载: 导出CSV

    表  9  ECC-EPS保温板计算荷载与实际荷载值对比

    Table  9.   Comparison of calculated load and actual load of ECC-EPS insulation board

    Specimen numberFailure load/kNTheoretical contribution
    value/%
    Experimental
    value
    Theoretical
    value
    Experimental value/
    Theoretical value
    Thermal insulating
    material
    Connectors
    ECC(X)-EPS(70)-BFRP(90)11.8911.111.0770.2129.79
    ECC(X)-EPS(70)-BFRP(60)23.6722.771.0416.5183.49
    ECC(X)-EPS(70)-BFRP(45)47.7432.561.4715.6684.34
    下载: 导出CSV
  • [1] EINEA A, SALMON D C, TADROS M K, et al. A new structurally and thermally efficient precast sandwich panel system[J]. PCI Journal,1994,39(4):90-101. doi: 10.15554/pcij.07011994.90.101
    [2] O'HEGARTY R, KINNANE O. Review of precast concrete sandwich panels and their innovations[J]. Construction and Building Materials,2019,233:117145.
    [3] LI V C. On Engineered Cementitious Composites (ECC)-A Review of the Material and its Applications[J]. Journal of Advanced Concrete Technology,2003,1(3):215-230. doi: 10.3151/jact.1.215
    [4] 董恒瑞, 刘军, 秦砚瑶, 等. 建筑外围护系统节能保温形式及发展趋势浅析[J]. 建设科技, 2020(8):37-40.

    DONG Hengrui, LIU Jun, Qin Yanyao, et al. Analysis on energy saving and thermal insulation forms and development trend of building external envelope system[J]. Construction technology,2020(8):37-40(in Chinese).
    [5] MA H, QIAN S, ZHANG Z, et al. Tailoring Engineered Cementitious Composites with Local Ingredients[J]. Construction and Building Materials,2015,101:584-595. doi: 10.1016/j.conbuildmat.2015.10.146
    [6] ZHANG Z, QIAN S, LIU H, et al. Ductile concrete material with self-healing capacity for jointless concrete pavement use[J]. Transportation Research Record,2017,2640(1):78-83. doi: 10.3141/2640-09
    [7] XU S L. Research on Ultra-high Toughness Green ECC and its Application[J]. Dalian University of Technology, Dalian, 2007.
    [8] CHOI K B, CHOI W C, FEO L, et al. In-plane shear behavior of insulated precast concrete sandwich panels reinforced with corrugated GFRP shear connectors[J]. Composites Part B,2015,79:419-429. doi: 10.1016/j.compositesb.2015.04.056
    [9] TAE S O, JANG S J, LEE K, et al. Insulation type effect on the direct shear behavior of concrete sandwich panel (CSP) with non-shear connectors[J]. Advanced Materials Research,2013,663:154-158. doi: 10.4028/www.scientific.net/AMR.663.154
    [10] SOPAL G J. Use of CFRP grid as shear transfer mechanism for precast concrete sandwich wall panels[D]. America: North Carolina State University, 2013.
    [11] 宋小软, 牛伟, 姜余丰, 等. 复合保温模板夹芯混凝土的界面粘结性能试验研究[J]. 混凝土与水泥制品, 2013(8):62-67. doi: 10.3969/j.issn.1000-4637.2013.08.016

    SONG Xiaoruan, NIU Wei, JIANG Yufeng, et al. Experimental study on interfacial bonding performance of composite insulation formwork sandwich concrete[J]. Concrete and cement products,2013(8):62-67(in Chinese). doi: 10.3969/j.issn.1000-4637.2013.08.016
    [12] HODICKY K, SOPAL G, RIZKALLA S, et al. Experimental and numerical investigation of the FRP shear mechanism for concrete sandwich panels[J]. Journal of Composites for Construction,2015,19(5):04014083. doi: 10.1061/(ASCE)CC.1943-5614.0000554
    [13] 高睿. 保温复合剪力墙各叠合层的界面粘结性能研究[J]. 北京:北京工业大学, 2019:51-53.

    GAO Rui. Study on interfacial bonding performance of laminated layers of thermal insulation composite shear wall[J]. Beijing:Northern University of technology,2019:51-53(in Chinese).
    [14] KAZEM H, BUNN W G, SELIEM H M, et al. Durability and long term behavior of FRP/foam shear transfer mechanism for concrete sandwich panels[J]. Construction and Building Materials,2015,98(15):722-734.
    [15] NAITO C, HOEMANN J, BEACRAFT M, et al, Performance and characterization of shear ties for use in insulated precast concrete sandwich wall panels[J]. Journal of Structural Engineering, 2012, 138(1): 52-61.
    [16] Jang S J, You Y C, Yun H D. Effect of GFRP shear ties on shear behavior of interfaces between precast concrete panel and extruded polystyrene special insulation[J]. Advanced Materials Research,2013,658:46-49. doi: 10.4028/www.scientific.net/AMR.658.46
    [17] 尹红宇, 孙帅, 胡夏闽. 织物增强混凝土与再生保温混凝土界面黏结性能试验研究[J]. 工业建筑, 2017, 47(2):128-132+179.

    YIN Hongyu, SUN Shuai, HU Xiamin. Experimental study on interfacial bonding performance between fabric reinforced concrete and recycled aggregate thermal insulation concrete[J]. Industrial Building,2017,47(2):128-132+179(in Chinese).
    [18] TEIXEIRA, NATHAN, TOMLINSON, et al. New shear connector design for insulated concrete sandwich panels using basalt fiber-reinforced polymer bars[J]. Journal of composites for construction,2016,20(4):04016003. doi: 10.1061/(ASCE)CC.1943-5614.0000662
    [19] 皇民, 赵玉如, 蔺世豪, 等. 冻融循环下BFRP筋与混凝土黏结滑移本构模型[J]. 混凝土, 2021(8):1-5+10. doi: 10.3969/j.issn.1002-3550.2021.08.001

    HUANG Ming, ZHAO Yuru, LIN Shihao, et al. Bond slip constitutive model between BFRP reinforcement and concrete under freeze-thaw cycle[J]. Concrete,2021(8):1-5+10(in Chinese). doi: 10.3969/j.issn.1002-3550.2021.08.001
    [20] KIM H R, Kang D H, Yun H D. Influence of insulation type on in-plane shear behavior of insulated concrete sandwich panels (ICSP) with GFRP grid shear connectors[J]. Applied Mechanics and Materials,2014,3014(525):416-419.
    [21] Mirmiran A, Yuan W, Chen X. Design for slenderness in concrete columns internally reinforced with fiber-reinforced polymer bars[J]. Aci Structural Journal,2001,98(1):116-125.
  • 加载中
计量
  • 文章访问数:  104
  • HTML全文浏览量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 录用日期:  2022-01-30
  • 修回日期:  2022-01-15
  • 网络出版日期:  2022-02-26

目录

    /

    返回文章
    返回