留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再生PET塑料骨料砂浆的弯曲韧性及阻尼特性

鲍聪 赵晓钦 樊伟 梁超锋 占海华

鲍聪, 赵晓钦, 樊伟, 等. 再生PET塑料骨料砂浆的弯曲韧性及阻尼特性[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 鲍聪, 赵晓钦, 樊伟, 等. 再生PET塑料骨料砂浆的弯曲韧性及阻尼特性[J]. 复合材料学报, 2022, 40(0): 1-12
Cong BAO, Xiaoqin ZHAO, Wei FAN, Chaofeng LIANG, Haihua ZHAN. Flexural toughness and damping property of recycled PET plastic aggregate mortar[J]. Acta Materiae Compositae Sinica.
Citation: Cong BAO, Xiaoqin ZHAO, Wei FAN, Chaofeng LIANG, Haihua ZHAN. Flexural toughness and damping property of recycled PET plastic aggregate mortar[J]. Acta Materiae Compositae Sinica.

再生PET塑料骨料砂浆的弯曲韧性及阻尼特性

基金项目: 浙江省自然科学基金项目(LGF22 E080035);住房与城乡建设部科技研发项目(2021-K-123) ;绍兴市揭榜挂帅专项基金(2021 B41003)
详细信息
    通讯作者:

    梁超锋,博士研究生,教授,硕士生导师,研究方向为水泥基材料动力特性 E-mail: liangcf@tongji.edu.cn

  • 中图分类号: TU528.57

Flexural toughness and damping property of recycled PET plastic aggregate mortar

Funds: Natural Science Foundation of Zhejiang Province(LGF22 E080035);Science and Technology R & D Project of the Ministry of Housing and Urban Rural Development(2021-K-123);The Special Fundation of Shaoxing Science Technology Bureau (2021 B41003)
  • 摘要: 为研究再生聚对苯二甲酸乙二醇酯(PET)塑料骨料砂浆(RPAM)的弯曲韧性及阻尼特性,利用废弃PET塑料制备再生PET塑料骨料(RPA),以RPA取代率为参变量,开展了RPAM三点弯曲加载试验和悬挂梁弯曲自由振动试验,分析了三点弯曲RPAM荷载-挠度全曲线与弯曲韧性、弯曲振动一阶阻尼比与频率随RPA取代率的演变规律,并通过扫描电镜(SEM)测试RPA界面特征,分析其阻尼机制。结果表明:随RPA取代率增加RPAM延性增加,荷载-挠度曲线上升段和下降段斜率逐渐降低,初裂强度和抗弯强度降低;RPA的掺入使得RPAM破坏更具延性,初裂挠度和峰值挠度均明显增大,韧性指数I5I10I20分别比普通砂浆提高4.17、5.65、5.89倍,且RPAM的剩余强度随RPA取代率增加逐渐增大;随RPA取代率增加,RPAM一阶频率降低9.0%~25.9%,阻尼比增加11.3%~58.1%;RPA与水泥基体之间的界面过渡区(ITZ)微观结构疏松,ITZ界面滑移与摩擦作用及RPA的黏性增加了RPAM的阻尼耗能;RPA最佳用量为15.5vol%~17.2vol%。

     

  • 图  1  再生聚对苯二甲酸乙二醇酯(PET)塑料骨料

    Figure  1.  Recycled polyethylene terephthalate (PET) plastic aggregate

    图  2  骨料级配曲线

    Figure  2.  Aggregate grading curves

    图  3  三点弯曲试验装置

    Figure  3.  Three-point bending test device

    图  4  韧性指数计算简图

    Figure  4.  Calculation diagram of toughness index

    δ—Initial crack deflection

    图  5  RPAM荷载-挠度曲线初裂点确定方法

    Figure  5.  Determination method of initial crack points of RPAM load-deflection curve

    图  6  阻尼测试装置及其示意图

    Figure  6.  Damping testing device and its schematic diagram

    图  7  RPAM加速度时程及其频谱曲线

    Figure  7.  Accerlation history and frequency spectrum of RPAM

    图  8  RPAM弯曲破坏形态

    Figure  8.  Flexural failure mode of RPAM

    图  9  RPAM荷载-挠度曲线

    Figure  9.  Load-deflection curves of RPAM

    图  10  RPAM初裂挠度和峰值挠度

    Figure  10.  Initial crack deflection and peak deflection of RPAM

    图  11  RPAM初裂强度和抗弯强度

    Figure  11.  Initial crack strength and flexural strength of RPAM

    图  12  RPAM一阶频率

    Figure  12.  First order natural frequency of RPAM

    图  13  RPAM一阶阻尼比

    Figure  13.  First damping ratio of RPAM

    图  14  NC和P40试件的微观结构

    Figure  14.  Microstructures of NC and P40 specimens

    图  15  RPAM孔隙率[40]

    Figure  15.  RPAM porosity[40]

    图  16  RPAM各性能指标与RPA取代率关系

    Figure  16.  Relationship between RPAM performance indexes and RPA substitution rate

    σ—Peak stress of RPAM; σm—Maximum peak deflection; f—Flexural strength of RPAM; fm—Maximum flexural strength; δ—Peak deflection of RPAM; δm—Maximum peak deflection; ζ—RPAM damping ratio rate; ζm—Maximum damping ratio

    表  1  水泥化学成分(wt%)

    Table  1.   Chemical composition of cement (wt%)

    NaOMgOAl2O3SiO2P2O5K2OCaOFe2O3
    0.371.805.4114.240.510.8964.742.46
    下载: 导出CSV

    表  2  骨料基本性能

    Table  2.   Basic properties of aggregates

    Aggregate typeWater content/%Water absorption/%Apparent density/(kg·m−3)Modulus of elasticity/GPaTensile strength/MPa
    River sand1.01.2258047.5
    RPA00.213503.360
    Note: RPA represents recycled PET plastic aggregate
    下载: 导出CSV

    表  3  再生PET塑料骨料砂浆(RPAM)配合比

    Table  3.   Mixture proportion of recycled PET plastic aggregate mortar (RPAM)

    MixturePRA replacement ratio/vol%Material consumption/(kg·m−3)
    CementWaterSandRPAWater reducer
    NC0731300121701.59
    P10107313001095.363.71.42
    P2020731300973.6127.41.45
    P3030731300851.9191.01.40
    P4040731300730.2254.71.27
    Notes:NC represents mortar with RPA volume substitution ratio of 0 vol%;P10, P20, P30 and P40 represent mortars with RPA volume substitution ratio of 10 vol%, 20 vol%, 30 vol% and 40 vol%, respectively.
    下载: 导出CSV

    表  4  RPAM弯曲韧性

    Table  4.   Flexural toughness of RPAM

    MixtureI5/%I10/%I20/%R5,10R10,20
    NC1.491.491.4900
    P102.783.043.045.20
    P204.585.595.5920.20
    P305.286.626.6326.80.1
    P406.218.428.7744.23.5
    下载: 导出CSV
  • [1] GU L, OZBAKKALOGLU T. Use of recycled plastics in concrete: A critical review[J]. Waste Management,2016,51:19-42. doi: 10.1016/j.wasman.2016.03.005
    [2] 张效林, 王汝敏, 王志彤, 等. 废旧塑料在复合材料领域中回用技术的研究进展[J]. 材料导报, 2011, 25(15):92-95.

    ZHANG Xiaolin, WANG Rumin, WANG Zhitong, et al. Research advances in the recycling technologies of waste plastics in composites field[J]. Materials Reports,2011,25(15):92-95(in Chinese).
    [3] 胡曙光, 王发洲. 轻集料混凝土[M]. 北京: 化学工业出版社, 2006.

    HU Shuguang, WANG Fazhou. Lightweight aggregate concrete[M]. Chemical industry press, 2006(in Chinese).
    [4] 刘雨姗, 庞建勇, 姚韦靖. 页岩陶粒轻骨料混凝土高温后蠕变特性[J]. 建筑材料学报, 2021, 24(5):1096-1104. doi: 10.3969/j.issn.1007-9629.2021.05.027

    LIU Yushan, PANG Jianyong, YAO Weijing. Crrep behavior of shale ceramsite lightweight aggregate concrete exposed to high temperature[J]. Journal of Building Materials,2021,24(5):1096-1104(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.05.027
    [5] SAIKIA N, Brito J. Use of plastic waste as aggregate in cement mortar and concrete preparation: A review[J]. Construction and Building Materials,2012,34:385-401. doi: 10.1016/j.conbuildmat.2012.02.066
    [6] BAHIJ S, OMARY S, FEUGEAS F, et al. Fresh and hardened properties of concrete containing different forms of plastic waste - A review[J]. Waste Management,2020,113:157-175. doi: 10.1016/j.wasman.2020.05.048
    [7] ALQAHTANI F, ZAFAR I. Plastic-based sustainable synthetic aggregate in Green Lightweight concrete – A review[J]. Construction and Building Materials,2021,292:123321. doi: 10.1016/j.conbuildmat.2021.123321
    [8] 陆俊, 鲍聪, 方刘基, 等. 再生PET塑料骨料对砂浆单轴受压性能的影响[J]. 混凝土与水泥制品, 2022(1):95-99.

    LU Jun, BAO Cong, FANG Liuji, et al. Effect of recycled PET plastic aggregate on uniaxial compression performance of mortar[J]. China Concrete and Cement Products,2022(1):95-99(in Chinese).
    [9] 刘锋, 黄海滨, 夏晓舟, 等. 再生塑料改性混凝土力学性能研究及数值模拟[J]. 建筑材料学报, 2011, 14(2):173-179. doi: 10.3969/j.issn.1007-9629.2011.02.006

    LIU Feng, HUANG Haibin, XIA Xiaozhou, et al. Mechanical test on modified concrete with recycled plastic particles and its numerical simulation[J]. Journal of Building Materials,2011,14(2):173-179(in Chinese). doi: 10.3969/j.issn.1007-9629.2011.02.006
    [10] 陈海明, 朱云涛, 张东磊, 等. PP塑料粒径和掺量对砂浆物理力学性能的影响[J]. 塑料工业, 2019, 47(2):1-34-138+169. doi: 10.3969/j.issn.1005-5770.2019.02.001

    CHEN Haiming, ZHU Yuntao, ZHANG Donglei, et al. Effect of particle size and dosage of PP plastic on physical and mechanical properties of mortar[J]. China Plastics Industry,2019,47(2):1-34-138+169(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.02.001
    [11] 张海波, 尚海涛, 管学茂. 塑料骨料对水泥砂浆性能的影响[J]. 建筑材料学报, 2014, 17(6):1066-1069. doi: 10.3969/j.issn.1007-9629.2014.06.022

    ZHANG Haibo, SHANG Haitao, GUAN Xuemao. Effect of plastic aggregate on properties of cement mortar[J]. Journal of Building Materials,2014,17(6):1066-1069(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.06.022
    [12] YESILATA B, ISıKER Y, TURGUT P. Thermal insulation enhancement in concretes by adding waste PET and rubber pieces[J]. Construction and Building Materials,2009,23(5):1878-1882. doi: 10.1016/j.conbuildmat.2008.09.014
    [13] 张海波, 师广岭, 尚海涛, 等. PVC塑料砂浆导热性研究[J]. 材料导报, 2015, 29(16):142-146.

    ZHANG Haibo, SHI Guangling, SHANG Haitao, et al. Study on thermal conductivity of PVC plastic mortar[J]. Materials Reports,2015,29(16):142-146(in Chinese).
    [14] WANG R, MEYER C. Performance of cement mortar made with recycled high impact polystyrene[J]. Cement and Concrete Composites,2012,34(9):975-981. doi: 10.1016/j.cemconcomp.2012.06.014
    [15] 高丹盈, 赵亮平, 冯虎, 等. 钢纤维混凝土弯曲韧性及其评价方法[J]. 建筑材料学报, 2014, 17(5):783-789. doi: 10.3969/j.issn.1007-9629.2014.05.006

    GAO Danying, ZHAO Liangping, FENG Hu, et al. Flexural toughness and it’s evaluation method of steel fiber reinforced concrete[J]. Journal of Building Materials,2014,17(5):783-789(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.05.006
    [16] 梁超锋, 何佳俊, 肖建庄, 等. 再生骨料混凝土梁的阻尼性能及其机理分析[J]. 同济大学学报(自然科学版), 2018, 46(6):737-737-743+750.

    LIANG Chaofeng, HE Jiajun, XIAO Jianzhuang, et al. Damping property and mechanism of recycled aggregate concrete beams[J]. Journal of Tongji University(Natural Science),2018,46(6):737-737-743+750(in Chinese).
    [17] 孙杰, 陈国珍, 吕康琪, 等. 橡胶地聚物混凝土力学性能及阻尼特性试验研究[J]. 复合材料学报, 2021, 39:1-12. doi: 10.13801/j.cnki.fhclxb.20211201.002

    SUN Jie, CHEN Guozhen, LÜ Kangqi, et al. Experimental study on mechanical properties and damping characteristics of rubber geopolymer concrete[J]. Acta Materiae Compositae Sinica,2021,39:1-12(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211201.002
    [18] ASTM C 1018-97, Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (Using beam with third-point loading). 1 st ed. West Conshohocken: ASTM, 1997.
    [19] MARZOUK O, DHEILLY R, QUENEUDEC M. Valorization of post-consumer waste plastic in cementitious concrete composites[J]. Waste Management,2007,27(2):310-318. doi: 10.1016/j.wasman.2006.03.012
    [20] AZHDARPOUR A, NIKOUDEL M, TAHERI M. The effect of using polyethylene terephthalate particles on physical and strength-related properties of concrete; a laboratory evaluation[J]. Construction and Building Materials,2016,109:55-62. doi: 10.1016/j.conbuildmat.2016.01.056
    [21] 丁一宁, 董香军, 王岳华. 钢纤维混凝土弯曲韧性测试方法与评价标准[J]. 建筑材料学报, 2005, 8(6):5. doi: 10.3969/j.issn.1007-9629.2005.06.013

    DING Yining, DONG Xiangjun, WANG Yuehua. Testing methods and evaluating standards of flexural toughness for steel fiber reinforced concrete[J]. Journal of Building Materials,2005,8(6):5(in Chinese). doi: 10.3969/j.issn.1007-9629.2005.06.013
    [22] 史占崇, 苏庆田, 邵长宇, 等. 粗骨料UHPC的基本力学性能及弯曲韧性评价方法[J]. 土木工程学报, 2020, 53(12):86-97. doi: 10.15951/j.tmgcxb.2020.12.009

    SHI Zhanchong, SU Qingtian, SHAO Changyu, et al. Basic mechanical behavior and flexural toughness evaluation method of coarse aggregate UHPC[J]. China Civil Engineering Journal,2020,53(12):86-97(in Chinese). doi: 10.15951/j.tmgcxb.2020.12.009
    [23] 陈维灯, 韩冬冬, 钟世云. 丁苯乳液和超高分子质量聚乙烯纤维对砂浆抗弯性能的影响[J]. 新型建筑材料, 2017, 44(2):94-98. doi: 10.3969/j.issn.1001-702X.2017.02.022

    CHEN Weideng, HAN Dongdong, ZHONG Shiyun. Influences of SBR latex and UHMW-PE fiber on bending properties of mortar[J]. New Building Materials,2017,44(2):94-98(in Chinese). doi: 10.3969/j.issn.1001-702X.2017.02.022
    [24] YAN L, JENKINS C, PENDLETON R. Polyolefin fiber-reinforced concrete composites: Part I. Damping and frequency characteristics[J]. Cement and Concrete Research,2000,30(3):391-401. doi: 10.1016/S0008-8846(99)00267-7
    [25] 田耀刚. 高强混凝土阻尼功能设计及其性能研究[D]. 武汉: 武汉理工大学, 2008.

    TIAN Yaogang. Research on design and performance of damping and high strength concrete[D]. Wuhan: Wuhan University of Technology, 2008(in Chinese).
    [26] 应怀樵, 刘进明, 沈松. 半功率带宽法与INV阻尼计法求阻尼比的研究[J]. 噪声与振动控制, 2006, 26(2):3. doi: 10.3969/j.issn.1006-1355.2006.02.002

    YING Huaiqiao, LIU Jinming, SHEN Song. Half-Power bandwidth method and INV damping ration solver study[J]. Noise and Vibration Control,2006,26(2):3(in Chinese). doi: 10.3969/j.issn.1006-1355.2006.02.002
    [27] XIAO J, LIU Q, WU Y. Numerical and experimental studies on fracture process of recycled concrete[J]. Fatigue & Fracture of Engineering Materials & Structures,2012,35(8):801-808.
    [28] XIAO J, SCHNEIDER H, DÖNNECKE C, et al. Wedge splitting test on fracture behaviour of ultra high strength concrete[J]. Construction and Building Materials,2004,18(6):359-365. doi: 10.1016/j.conbuildmat.2004.04.016
    [29] REIS J, CAMEIRO E. Evaluation of PET waste aggregates in polymer mortars[J]. Construction and Building Materials,2012,27(1):107-111. doi: 10.1016/j.conbuildmat.2011.08.020
    [30] REIS J, CHIANELLI-JUNIOR R, CARDOSO J, et al. Effect of recycled PET in the fracture mechanics of polymer mortar[J]. Construction and Building Materials,2011,25(6):2799-2804. doi: 10.1016/j.conbuildmat.2010.12.056
    [31] KAUR G, PAVIA S. Physical properties and microstructure of plastic aggregate mortars made with acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), polyoxymethylene (POM) and ABS/PC blend waste[J]. Journal of Building Engineering,2020,31:101341. doi: 10.1016/j.jobe.2020.101341
    [32] 曾振海, 李传习, 柯璐, 等. 玄武岩/聚丙烯腈混杂纤维混凝土力学性能及最优纤维掺量研究[J]. 铁道科学与工程学报, 2020, 17(10):2549-2557. doi: 10.19713/j.cnki.43-1423/u.t20200451

    ZENG Zhenhai, LI Chuanxi, KE Lu, et al. Study on mechanical properties and optimum fiber content for basalt/polyacrylonitrile hybrid fiber reinforced concrete[J]. Journal of Railway Science and Engineering,2020,17(10):2549-2557(in Chinese). doi: 10.19713/j.cnki.43-1423/u.t20200451
    [33] 江世永, 陶帅, 飞渭, 等. 高韧性纤维混凝土受弯性能试验研究[J]. 工业建筑, 2018, 48(6):111-118. doi: 10.13204/j.gyjz201806021

    JIANG Shiyong, TAO Shuai, FEI Wei, et al. Expe-rimental research on flexural behavior of engineered cementitious composite[J]. Industrial Construction,2018,48(6):111-118(in Chinese). doi: 10.13204/j.gyjz201806021
    [34] AATTACHE A, SOLTANI R, MAHI A. Investigations for properties improvement of recycled PE polymer particles-reinforced mortars for repair practice[J]. Construction and Building Materials,2017,146:603-614. doi: 10.1016/j.conbuildmat.2017.04.110
    [35] LEE Z, PAUL S, KONG S, et al. Modification of waste aggregate PET for improving the concrete properties[J]. Advances in Civil Engineering,2019,2019:6942052.
    [36] 谈亚文, 杨哲, 李丹, 等. 硫酸盐腐蚀对混杂纤维混凝土弯曲韧性的影响研究[J]. 硅酸盐通报, 2017, 36(8):2756-2762. doi: 10.16552/j.cnki.issn1001-1625.2017.08.041

    TAN Yawen, YANG Zhe, LI Dan, et al. Effect of sulfate corrosion on flexural toughness of hybrid fiber reinforced concrete[J]. Bulletin of the Chinese Ceramic Society,2017,36(8):2756-2762(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2017.08.041
    [37] SAFI B, SAIDI M, ABOUTALEB D, et al. The use of plastic waste as fine aggregate in the self-compacting mortars: Effect on physical and mechanical properties[J]. Construction and Building Materials,2013,43:436-442. doi: 10.1016/j.conbuildmat.2013.02.049
    [38] 朱星曈, 耿欧, 朱思远. 废轮胎橡胶混凝土界面过渡区特征试验研究[J]. 硅酸盐通报, 2021, 40(02):573-578. doi: 10.16552/j.cnki.issn1001-1625.2021.02.026

    ZHU Xintong, GENG Ou, ZHU Siyuan. Characteristics of interface transition zone of waste tire rubber concrete[J]. Bulletin of the Chinese Ceramic Society,2021,40(02):573-578(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2021.02.026
    [39] MOHR B, BIERNACKI J, KURTIS K. Microstructural and chemical effects of wet/dry cycling on pulp fiber–cement composites[J]. Cement and Concrete Research,2006,36(7):1240-1251. doi: 10.1016/j.cemconres.2006.03.020
    [40] IUCOLANO F, LIGUORI B, CAPUTO D, et al. Recycled plastic aggregate in mortars composition: Effect on physical and mechanical properties[J]. Materials & Design (1980-2015),2013,52:916-922.
    [41] AKÇAÖZOĞLU S, ATIS C, AKÇAÖZOĞLU K. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete[J]. Waste Management,2010,30(2):285-290. doi: 10.1016/j.wasman.2009.09.033
    [42] 刘铁军, 乔国富, 邹笃建. 纳米SiO2对混凝土材料阻尼性能的改良研究[J]. 功能材料, 2011, 42(7):1184-1188.

    LIU Tiejun, QIAO Guofu, ZOU Dujian. Improving the damping ability by the addition of nano-SiO2 to the concrete materials[J]. Journal of Functional Materials,2011,42(7):1184-1188(in Chinese).
    [43] LIANG C, XIAO J, WANG Y, et al. Relationship between internal viscous damping and stiffness of concrete material and structure[J]. Structural Concrete,2021,22(3):1410-1428. doi: 10.1002/suco.202000628
    [44] LIANG C, XIAO J, WANG C, et al. Frequency-dependent damping properties of recycled aggregate concrete[J]. Journal of Materials in Civil Engineering,2021,33(7):4021160. doi: 10.1061/(ASCE)MT.1943-5533.0003742
    [45] YAN L, JENKINS C, Pendleton R. Polyolefin fiber-reinforced concrete composites: Part II. Damping and interface debonding[J]. Cement and Concrete Research,2000,30(3):403-410. doi: 10.1016/S0008-8846(99)00268-9
    [46] CHI L, LU S, YAO Y. Damping additives used in cement-matrix composites: A review[J]. Composites Part B:Engineering,2019,164:26-36. doi: 10.1016/j.compositesb.2018.11.057
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 录用日期:  2022-06-12
  • 修回日期:  2022-05-30
  • 网络出版日期:  2022-06-29

目录

    /

    返回文章
    返回