ZnO-MoS2 nano-composites with excellent light-activated NO2 gas sensitivity and MB photocatalytic degradation efficiency
-
摘要: 实现对有毒、有害气体的有效监测和对有机污染物的快速降解,对于减少大气污染和水污染所带来的危害至关重要。本研究采用超声复合方法将溶胶凝胶法制备的ZnO和水热法制备的MoS2复合到一起,成功制备了ZnO-MoS2纳米复合材料。采用XRD、SEM、TEM、XPS等手段对材料结构、形貌和表面化学组分进行表征。结果表明,多层片状MoS2均匀负载到了ZnO纳米颗粒当中,复合材料具有较好的结晶性和丰富的表面缺陷。利用紫外-可见(UV-vis)漫反射光谱、光致发光光谱(PL)和表面光电压(SPV)对材料的光电性能进行了测试。结果表明,ZnO与MoS2的复合在提升光利用率的同时,能够促进光生载流子的更有效分离。以NO2作为目标气体的室温紫外光辅助气敏测试表明,本方法制备的ZnO-MoS2气体传感器具有良好的灵敏度、恢复性、稳定性和选择性,可在室温下实现对低浓度NO2的有效响应,MoS2复合量为5wt%的ZnO-MoS2传感器对0.47 mg/m3 NO2的响应值为19.6%。同时,气敏性能研究还发现空气中O2分子在材料表面的吸附会对传感器的气敏性能产生较大的影响,ZnO-MoS2传感器在无氧条件下对NO2具有更高的气敏响应。此外,在模拟太阳光下进行的光催化降解亚甲基蓝(MB)的实验表明,依靠吸附和光催化降解的共同作用,ZnO-MoS2复合材料能够在40 min内实现水溶液当中较高浓度MB (15 mg/L)的快速清除,MoS2复合量为10wt%的ZnO-MoS2样品的反应速率常数达到了0.032 min−1。对机制的分析表明,MoS2较好的吸附性和复合所导致的光生载流子分离率的提升是ZnO-MoS2复合材料气敏和光催化性能提升的关键。Abstract: Effective monitoring of toxic and harmful gases and rapid degradation of organic pollutants are essential to reduce the hazards of air and water pollution. In this study, the MoS2 nanosheets prepared by hydrothermal method were coupled into the ZnO nanoparticles prepared by sol-gel method to form ZnO-MoS2 nano-composites via a facile ultrasonic chemical route. The structure, morphology and surface chemical component of synthesized materials were characterized by XRD, SEM, TEM and XPS. The characterizations show that multilayer MoS2 nanosheets are well dispersed among ZnO nanoparticles, and ZnO-MoS2 composites have good crystallinity and abundant surface defects. The photoelectric properties were explored by UV-vis diffuse reflectance spectrum, photoluminescence spectra (PL) and surface photovoltage spectra (SPV). The results reveal that the formation of ZnO-MoS2 heterostructure improves the utilization of light and promotes the effective separation of photo-carriers. The UV light-activated gas sensitivity test using NO2 as the target gas preformed at room temperature saw that the prepared ZnO-MoS2 gas sensor exhibited excellent gas sensing properties with good sensitivity, recoverability, stability and selectivity, which could effectively respond to low concentration NO2. The response of the optimized ZnO-MoS2 sensor with 5wt%MoS2 to 0.47 mg/m3 NO2 reached 19.6%. Meanwhile, the gas sensing performance was found to be greatly influenced by the adsorption of O2 molecule on the surface of the materials, and ZnO-MoS2 gas sensor possessed much higher gas sensitivity to NO2 under oxygen free conditions. In addition, the photocatalytic degradation of methylene blue (MB) under simulated sunlight reveal that the ZnO-MoS2 composites can rapidly remove the high concentration of MB (15 mg/L) in aqueous solution within 40 min by combined action of adsorption and photocatalysis, thereinto, the ZnO-MoS2 sample with 10wt%MoS2 shows a reaction rate constant as high as 0.032 min−1. Mechanism analysis shows that the improvement of gas sensing and photocatalytic performance of ZnO-MoS2 composites mainly attribute to the better absorbability of MoS2 and the promotion of photocarrier separation rate caused by combination.
-
Keywords:
- ZnO-MoS2 /
- photocatalysis /
- NO2 gas sensing /
- heterojunction /
- nanocomposite /
- degradation /
- methylene blue
-
随着现代工业和经济的迅速发展,印染、合成、皮革、电镀、化妆品等行业产生大量染料废水,因其色度高、毒性强而备受关注[1-2]。吸附是去除废水中化学和生物稳定污染物的重要技术之一,而天然高分子基微球吸附剂既具备天然高分子可生物降解、生物相容性好及无毒无害无污染的性能同时又拥有微球的特性(如孔隙率高、比表面积大等),在工业废水吸附方面应用广泛[3-5]。
微晶纤维素(Microcrystalline cellulose,MCC)作为最丰富的天然可再生资源之一,主要来源于木材、棉花、麻、谷类植物和其他高等植物。MCC是由很多ᴅ-吡喃葡萄糖彼此以β-1, 4糖苷键连接而成的线型大分子多糖,可用于构建多孔结构的微球[6]。然而每个葡萄糖单元含有3个可供反应的羟基,其分子链间易形成大量氢键,且结晶度高,导致其吸附容量有限[7]。此外,纯纤维素微球的机械强度较低,阻碍了其广泛应用。常用的改进方法包括表面化学改性和复合增强等[6]。
海藻酸钠(Sodium alginate,SA)是一种储量丰富、可再生、对环境友好的天然阴离子多糖,分子链富含羧基等阴离子基团[8]。报导显示,SA-纤维素复合微球用于污染物的去除具有显著效果。例如Hu Zhao-Hong等[9]采用交联法制备了芳基化纤维素纳米晶-SA水凝胶微球,该复合微球对Pb(II)的吸附率达到76%。李延庆等[10]采用溶胶凝胶转相法制备系列SA/纤维素复合微球,当SA质量分数为20wt%时,对磷酸根的吸附性能最强,吸附效率高达85.58%。
海泡石(Sepiolite,SEP)是一种储量丰富的天然纤维状含镁水合硅酸盐粘土,理想分子式为[Si12Mg8O30(H2O)4·8H2O],具有横截面积为0.36 nm×10.6 nm的管状贯穿通道及高达900 m2·g−1的理论比表面积,仅次于活性炭,是目前比表面积最大的天然无机矿物质[11]。SEP巨大的比表面积和高吸附性能,可与MCC及SA产生协同增效和互补作用,用于提高微球吸附容量。
本研究选取MCC和SA为网络框架,SEP为功能组分,构建双网络复合微球纤维素-海藻酸钠-海泡石(MCC-SA-SEP)。采用SEM、TG对MCC-SA-SEP进行表征,研究各实验变量对多孔复合微球吸附行为的影响,为利用储量丰富的天然高分子资源及矿物质材料制备多功能有机-无机复合吸附剂用于染料废水处理提供新思路。
1. 实验材料及方法
1.1 原材料
微晶纤维素(MCC),粒径65 μm,麦克林试剂;海藻酸钠(SA),低黏度(北京百灵威科技有限公司);海泡石(SEP),(上海泰坦科技股份有限公司);尿素、NaOH、CaCl2、HCl,均为分析纯(国药集团化学试剂有限公司);亚甲基蓝(Methylene blue,MB),分析纯,麦克林试剂。
1.2 SEP的预处理
将一定量的SEP加入到30wt%的HCl溶液中,磁力搅拌6 h后,用蒸馏水将其洗涤至中性,干燥备用。SEP预处理目的:SEP纤维具有独特的结构,吸附性很强,对色度有较好的去除效果,且有较好的离子交换能力,但天然SEP杂质含量较大,易堵塞孔道,导致性能不佳,需要进行改性处理提高它的应用价值。对天然SEP纤维进行酸处理,改善SEP纤维的表面特性,可使吸附性达到最佳[12]。酸活化处理过程中,一些可溶于酸的杂质被去除,SEP纤维中大量的Mg2+会被H+取代,产生更多的活性吸附位点,且—Si—O—Mg—O—Si—基团在酸性条件下断裂,生成2个—Si—OH基团,具有更强的吸附活性[13]。
1.3 MCC-SA-SEP多孔复合微球的制备
配制质量分数为7wt%/12wt%的NaOH/尿素溶液,预冷至−12℃,加入2 g的MCC,快速搅拌均匀,再冷冻12 h后室温自然融化,得到透明的MCC溶液。SA溶液的配置同上。将50 mL的MCC溶液和50 mL的SA溶液在室温下混合得到MCC-SA复合溶液;加入一定量预处理的SEP,室温下搅拌均匀后;通过注射器将悬浮液滴入含有5wt% CaCl2的HCl溶液中,固化一夜后,将获得的复合水凝胶微球过滤并浸入去离子水中脱酸至中性;随后冷冻干燥得到微晶纤维素-海藻酸钠-海泡石(MCC-SA-SEP)多孔复合微球,并记作MCC-SA-SEP-21(MCC-SA与SEP质量比为2∶1)。为了对比,采用相同的方法合成了不同SEP含量的多孔复合微球MCC-SA-SEP-0、MCC-SA-SEP-41和MCC-SA-SEP-11 (如表1所示)。
表 1 不同SEP含量制备的微晶纤维素-海藻酸钠-海泡石(MCC-SA-SEP)复合微球Table 1. Microcrystalline cellulose-sodium alginate-sepiolite (MCC-SA-SEP) composite beads prepared with various SEP contentsMCC-SA content/g SEP content/g Composite bead 2 0 MCC-SA-SEP-0 2 0.5 MCC-SA-SEP-41 2 1 MCC-SA-SEP-21 2 2 MCC-SA-SEP-11 1.4 表征
采用S-4800型扫描电子显微镜(日本日立公司)观察样品微观形态;采用SDTQ600 TG/DSC热分析仪(美国TA设备公司)在N2保护下以10℃/min的升温速率从25℃升温至600℃,观察样品的失重率。
1.5 MCC-SA-SEP多孔复合微球吸附性能测试
将0.1 g MCC-SA-SEP投入到100 mL 500 mg·L−1的MB溶液中,在303 K震荡吸附一定时间后,采用UV-4802S型紫外-可见分光光度计(上海尤尼柯公司)测定上清液在最大吸收波长664 nm处的吸光度(标准曲线方程为y=0.0631x−0.163,R2=0.9992),根据以下公式计算吸附量Qt。通过控制变量,探究MB初始浓度、温度、吸附时间等因素对吸附效果的影响:
Qt=(C0−Ct)Vm (1) 式中:Qt为吸附时间t对应的MB的吸附量(mg·g−1);C0和Ct分别为MB溶液的初始浓度和吸附时间t对应的浓度(mg·L−1);V为MB溶液的体积(L);m为MCC-SA-SEP复合微球的质量(g)。
1.6 MCC-SA-SEP多孔复合微球的再生性实验
将吸附MB后的MCC-SA-SEP多孔复合微球用0.1 mol·L−1的HCl水溶液进行脱附,而后置于500 mg·L−1的MB溶液中再次进行吸附,重复5次,得到每次的吸附量。
2. 结果与讨论
2.1 MCC-SA-SEP复合微球的微观结构与热稳定性能
2.1.1 微观结构
不同SEP含量的系列复合微球MCC-SA-SEP-0、MCC-SA-SEP-41、MCC-SA-SEP-21和MCC-SA-SEP-11的微观形貌如图1所示。可知,MCC-SA-SEP复合微球均呈现出网络多孔结构,有利于染料分子的吸附和传递。随着SEP含量的提高,多孔结构中微纳米颗粒逐渐增加,这是典型的SEP结构特征。此外,MCC-SA-SEP-0为片层堆积的网络结构,随着SEP含量提高,微球内部的孔数量不断增加,孔径逐渐由几百微米缩小至几十微米,这主要是由于微纳米级的SEP颗粒破坏了MCC和SA组成的双网络结构的孔壁,使其由连续的“长条型”的孔隙结构逐渐过渡为三维网络互穿结构。然而,当SEP含量增加至MCC-SA与SEP的质量比为1∶1时(图1(d)、图1(e)),相同实验条件下成球效果较差,这是由于过量的SEP会引起孔隙结构的过度破坏,造成复合微球出现塌陷和破裂[14]。因此,从微观结构分析,MCC-SA-SEP-21多孔复合微球是最优的。
2.1.2 热力学性能
为进一步分析SEP对复合微球的热学性能的影响,MCC、SA、SEP及MCC-SA-SEP多孔复合微球的热失重曲线如图2所示。可知,MCC-SA-SEP的残留率比MCC和SA高,且随着热稳定性较高的SEP含量的增加,复合微球的热稳定性逐渐提高。MCC-SA-SEP多孔复合微球的热解主要分为3个阶段:第一阶段即当温度在25~200℃范围内,微球热解速率较平缓,这是由于MCC-SA-SEP多孔复合微球部分的自由水及表面结合水的蒸发所引起;第二阶段是在200~350℃范围内,热解速率显著增加,复合微球分子内的—OH脱水及微球中部分糖苷键断裂,发生脱羧反应,并且断键的化合物会发生化学键的重排,组成一系列新的中间产物[15-16];第三阶段是在350℃后,可能是高温下MCC-SA-SEP多孔复合微球中间产物继续分解及部分碳化造成,其热解速率逐渐趋于平缓状态。MCC-SA-SEP-11和MCC-SA-SEP-21的失重率分别为32.58wt%和32.82wt%,热稳定性没有明显的提高,结合复合微球的微观形貌,因此选择MCC-SA-SEP-21多孔复合微球进行后续吸附试验。
2.2 MCC-SA-SEP多孔复合微球对MB的吸附性能
2.2.1 微球投入量和溶液pH对吸附性能的影响
图3为MCC-SA-SEP微球用量和溶液pH对吸附性能的影响。可知,随着吸附剂用量的增加,MCC-SA-SEP微球的吸附容量逐渐降低。这是由于微球中吸附位点的利用率随着投入量的增加而下降,导致单位质量的微球对MB分子的吸附量减少[17]。与之相反,吸附量随着pH的增加而提高。在酸性条件下,MCC-SA-SEP多孔复合微球表面过量的H+与MB分子竞争,使微球吸附量较低[18]。当处于碱性环境中,MCC-SA-SEP多孔复合微球被去质子化,与阳离子型MB分子之间产生静电吸引,使其吸附量逐渐增加[19]。
2.2.2 吸附动力学
吸附动力学是分析吸附机制、掌握吸附过程的重要手段,为实际应用提供有价值的实验参数。图4为吸附时间对MCC-SA-SEP-21多孔复合微球吸附性能的影响。显然,随着吸附时间的延长,多孔复合微球对MB的吸附量先迅速增加后增速变缓,直到吸附达到平衡(300 min左右)。这是由于在吸附开始时,微球表面存在大量空白吸附位点,MB分子在微球表面被迅速附着。随着时间的增加,表面吸附位点逐渐被占据,MB分子必须克服巨大的阻力深入到复合微球内部与吸附位点结合,使吸附速率下降,吸附量增速变缓,直至吸附平衡[20]。因此后续试验的吸附时间选定为300 min。
为了更好地理解吸附行为,采用准一级和准二级动力学模型[21-22]。对MCC-SA-SEP微球的吸附行为进行分析,拟合曲线如图5所示。准一级和准二级动力学模型的线性形式分别由以下公式表示:
ln(Q1e−Qt)=lnQ1e−k1t (2) tQt=tQ2e+1k2Q2e2 (3) 式中:Q1e和Q2e分别是由准一级和准二级动力学模型方程估算的饱和吸附容量(mg·g−1);k1和k2分别是准一级(min−1)和准二级(g·mg−1·min−1)动力学模型的速率常数。
表2为MCC-SA-SEP-21多孔微球吸附MB的动力学模型拟合结果。可知,准二级动力学过程的相关系数较高,R2为0.9967,并且由其拟合得到的平衡吸附量Qe(cal)与实际吸附量Qe(exp)更接近,拟合度更高,表明MCC-SA-SEP多孔复合微球吸附过程更符合准二级动力学方程,因此可以利用准二级动力学方程来预测不同时间条件下的饱和吸附量及最大吸附量。
表 2 MCC-SA-SEP-21多孔复合微球吸附MB的动力学模型拟合参数Table 2. Parameters of kinetic adsorption models for MB onto MCC-SA-SEP-21 beadsAdsorbate Qe(exp)/(mg·g−1) Pseudo-first-order model Pseudo-second-order model Q1e(cal)/(mg·g−1) k1/(min−1) R2 Q2e(cal)/(mg·g−1) k2/(g·mg−1·min−1) R2 MB 306.7 199.3 1.06×10−2 0.9855 322.6 9.1×10−5 0.9967 Notes: k1, k2—Pseudo-first-order kinetic and Pseudo-second-order kinetic constants, respectively; Qe(cal)—Calculation amount of MB removed per unit mass of adsorbent; Qe(exp)—Experimental amount of MB removed per unit mass of adsorbent. 2.2.3 吸附等温线
通过静态吸附实验,测定不同初始浓度对MCC-SA-SEP-21多孔复合微球吸附容量的影响,其结果如图6所示。可知,随着MB初始浓度的增加,MCC-SA-SEP-21对MB的吸附量也逐渐提高,这是由于随着MB浓度的增加,复合微球表面与溶液间的浓度梯度增大,MB扩散的驱动力也随之增强,MB与复合微球之间的有效碰撞机率提高,使吸附量增大。当复合微球的活性位点吸附达到饱和时,吸附量趋于平衡[23-24]。
采用Langmuir和Freundlich等温吸附模型[25]对实验数据进行拟合分析,结果如图7和表3所示。Langmuir和Freundlich等温吸附模型的线性形式分别由以下公式表示:
表 3 MCC-SA-SEP-21复合微球对MB的吸附等温拟合结果Table 3. Isothermal parameters for the adsorption of MB onto MCC-SA-SEP-21 beadsAdsorbate Langmuir Freundlich Qmax/(mg·g−1) kL/(L·mg−1) R2 kF/(L·mg−1) n R2 MB 333.3 0.147 0.9985 112 5 0.8949 Notes: Qmax—Langmuir adsorption maximum; kL—Langmuir coefficient of distribution of the adsorption; kF—Freundlich coefficient of distribution of the adsorption; n—Freundlich constants related to adsorption strength. CeQe=CeQm+1kLQm (4) lnQe=lnkF+lnCen (5) 式中:Qe和Qm分别为MCC-SA-SEP复合微球对MB的平衡吸附量与最大单层吸附量(mg·g−1);Ce为吸附达到平衡时MB浓度(mg·L−1);kL为Langmuir等温常数(L·mg−1);kF和n分别为Freundlich等温常数(L·mg−1)和非均相系数。
由图7和表3可知,Freundlich等温吸附模型的线性相关系数只有0.8949,远低于Langmuir模型的0.9985,表明Langmuir吸附等温线模型能更好地描述MCC-SA-SEP多孔复合微球对MB的吸附过程,且最大单层吸附容量高达333.3 mg·g−1。
与报道的纤维素复合微球吸附剂相比,其结果如表4所示,MCC-SA-SEP的吸附性能突出,该吸附容量的提高可归因于MCC和SA构成的双网络结构和SEP高饱和吸附性能的协同作用。
表 4 同类纤维素复合微球吸附剂对MB的吸附容量对比Table 4. Adsorption capacity ratio of similar cellulose composite beads adsorbents to MBAdsorbent Adsorption capacity/(mg·g−1) Reference SA/cellulose hydrogel beads 163.36 [26] Cellulose/diatomite composite aerogel beads 71.9424 [27] MCDBs 117.65 [14] CMC-AlG/GO hydrogels beads 78.5 [28] CNC-ALG 255.5 [29] CNC/MnO2/ALG beads 136.7 [30] MCC-SA-SEP 333.3 This work Notes: GO—Graphene oxide; MCDBs—Modified cellulose/diatomite beads; CMC—Carboxymethyl cellulose; CNC—Cellulose nanocrystal; ALG—Alginate. 2.2.4 吸附热力学
热力学的概念是假设在一个孤立系统中,能量不能被添加或损失,熵变ΔSo是唯一的驱动力[31]。利用Van’t Hoff方程[32](如下列各式所示)探讨了MCC-SA-SEP复合微球在温度分别为303 K、308 K、313 K、318 K、332 K的条件下对MB的吸附过程,热力学研究结果如图8和表5所示:
ΔGo=−RTlnKc (6) lnKc=ΔSoR−ΔHoRT (7) Kc=QeCe (8) 式中:ΔGo为吸附过程的吉布斯自由能变化(kJ·mol−1);ΔHo和ΔSo分别为吸附过程的焓变(kJ·mol−1)与熵变(J·mol−1·K−1);Kc为吸附平衡常数。R和T分别为气体摩尔常数(8.314/J·mol−1·K−1)和温度(K)。
如表5所示,MCC-SA-SEP复合微球的吸附焓变ΔHo为−22 kJ·mol−1,表明吸附过程为放热反应。一般情况下,物理吸附的ΔHo的绝对值在2.1~20.9 kJ·mol−1之间,化学吸附在80~200 kJ·mol−1之间,由此可判断MCC-SA-SEP复合微球对MB的吸附既有物理吸附又有化学吸附[33-34]。在不同温度下MCC-SA-SEP复合微球吸附MB的ΔGo都小于0,表明MCC-SA-SEP复合微球对MB的吸附过程是自发的。此外,ΔSo小于0说明MCC-SA-SEP复合微球对MB的吸附过程是一个熵减小的过程,即随着吸附反应的进行复合微球表面的混乱度逐渐降低。
表 5 MCC-SA-SEP-21复合微球对MB的吸附热力学参数Table 5. Thermodynamic parameters for the adsorption of MB onto MCC-SA-SEP-21 beadsT/K ΔGo/(kJ·mol−1) ΔHo/(kJ·mol−1) ΔSo/(J·mol−1·K−1) 303 −2.1 −22 −66.1 308 −1.6 − − 313 −1.2 − − 318 −1 − − 323 −0.7 − − Notes: ΔGo—Gibbs free energy variation of the adsorption process; ΔHo—Enthalpy change of the adsorption process; ΔSo—Entropy change of the adsorption process. 2.2.5 MCC-SA-SEP多孔复合微球的再生性
可再生性能是决定吸附剂能够可持续应用的重要前提。图9为MCC-SA-SEP-21复合微球的再生性。可知,经过5次连续吸附-脱附循环后,MCC-SA-SEP复合微球对MB的吸附量仍能维持初始吸附量的85.4%,说明MCC-SA-SEP复合微球具有良好的可重复使用性能,是一种稳定、高效且可重复利用的材料,在染料吸附及水处理领域有着潜在的应用前景。
3. 结 论
(1) 采用悬浮液滴法可制备出纤维素-海藻酸钠-海泡石(MCC-SA-SEP)多孔复合微球,其微观形貌呈现出三维网络多孔结构,且随着海泡石(Sepiolite,SEP)含量的增加,MCC-SA-SEP多孔复合微球的热稳定性逐渐提高。
(2) 吸附实验显示,MCC-SA-SEP多孔复合微球对亚甲基蓝(MB)展现出良好的吸附性能,且吸附过程符合准二级动力学模型和Langmuir等温模型,是一种自发的放热过程,在303 K下吸附容量高达333.3 mg·g−1。
(3) 对MCC-SA-SEP多孔复合微球进行多次吸附-解吸后,其吸附性能几乎不受影响,说明MCC-SA-SEP多孔复合微球具有良好的再生与循环使用性能。
-
图 9 (a) 室温紫外光照射下,ZnO和ZnO-MoS2传感器对0.47~2.35 mg/m3浓度NO2的动态响应曲线(干燥空气作为背景气体);(b) 4组传感器的响应-浓度曲线;(c) 4组传感器恢复率与浓度之间的关系
Figure 9. (a) Time-dependent response curves of ZnO, and ZnO-MoS2 sensors to 0.47-2.35 mg/m3 NO2 at room temperature with the irradiation of UV light (Dry air as background gas); (b) Response-concentration curves of four sensors; (c) Recovery rate-concentration plots of four sensors
Rg—Measuring the resistance; R0—Initial resistance; Rec—Percentage of recovery rate; Response—Response intensity; C—Concentration
图 10 (a) 室温紫外光照射下,ZnO和ZnO-MoS2传感器对2.35 mg/m3浓度NO2的5次重复动态响应曲线(干燥空气作为背景气体);(b) ZnO-5MoS2气体传感器对不同气体的选择性测试
Figure 10. (a) Repeated time-dependent response curves of ZnO and ZnO-MoS2 sensors to 2.35 mg/m3 NO2 in five cycles at room temperature with the irradiation of UV light (Dry air as background gas); (b) Selectivity test of ZnO-5MoS2 gas sensor for different gases
图 12 (a) 氮气作为背景气体四种传感器对0.47~2.35mg/m3 NO2的动态响应曲线;(b) ZnO-5MoS2气体传感器分别在空气与氮气作为背景气体时对0.47~2.35mg/m3的动态响应曲线
Figure 12. (a) Time-dependent response curves of the four sensors to 0.47~2.35 mg/m3 NO2 with nitrogen as background gas; (b) Time-dependent response curves of ZnO-5MoS2 gas sensor to 0.47~2.35 mg/m3 NO2 with air and nitrogen as background gas respectively
图 13 (a) ZnO及ZnO-MoS2样品在暗环境中吸附和在模拟太阳光照射下光催化降解亚甲基蓝(MB)的曲线;(b) 光照20 min时4种样品对于MB的清除效率;(c) 光照前20 min 4种样品降解MB的反应速率常数;(d) 模拟太阳光照射下添加不同牺牲剂后ZnO-10MoS2样品降解MB的反应速率常数
Figure 13. (a) Dark adsorption and photocatalytic degradation of methylene blue (MB) with the ZnO and ZnO-MoS2 samples under simulated sunlight irradiation; (b) MB removal efficiency for four samples after 20 min irradiation; (c) Reaction rate constants of four samples for the first 20 min of irradiation; (d) Reaction rate constants of ZnO-10MoS2 for photodegradation of MB with different sacrificial agents under the simulated sunlight irradiation
IPA—Isopropyl alcohol; EDTA-2Na—Edetate disodium; BQ—Benzoquinone; K—Reaction rate constant (min−1); C0—Initial concentration; Ct—Concentration at time t
表 1 ZnO-MoS2 样品成分配比
Table 1 Composition proportion of ZnO-MoS2 samples
Sample Mass of ZnO/g Mass of MoS2/g ZnO-5MoS2 0.95 0.05 ZnO-10MoS2 0.90 0.10 ZnO-20MoS2 0.80 0.20 表 2 不同复合材料的NO2气敏性能
Table 2 NO2 gas sensing performance of different composite materials
Sensor materials Gas concentration/(mg·m−3) Operation temperature/℃ Response Ref. ZnO-MoS2 NWs 94 200 31.2% [17] Ag-Fe2O3-MoS2 1.88 120 70.8% [34] MoS2-SnS2 9.4 25 60% [35] Au-MoS2 4.7 25 30% [36] CuO-ZnO 188 150 96% [37] ZnO-RGO 9.4 25 7% [38] ZnO-5MoS2 2.35 25 85.1% This work Notes: NWs—Nanowires; RGO—Reduced graphene oxide. 表 3 不同ZnO基材料光催化降解MB对比
Table 3 Comparison of photocatalytic efficiency of ZnO based composites for the degradation of MB
-
[1] EVANS A E, MATEO-SAGASTA J, QADI R M, et al. Agricultural water pollution: Key knowledge gaps and research needs[J]. Current Opinion in Environmental Sustainability,2019,36:20-27. DOI: 10.1016/j.cosust.2018.10.003
[2] MANNUCCI P M, HARARI S, MARTINE-LLI I, et al. Effects on health of air pollution: A narrative review[J]. Internal and Emergency Medicine,2015,10(6):657-662.
[3] MEHDI AGHAEI S, AASI A, PANCHA-PAKESAN B, et al. Experimental and theoretical advances in MXene-based gas sensors[J]. ACS Omega,2021,6(4):2450-2461. DOI: 10.1021/acsomega.0c05766
[4] SHINDHAL T, RAKHOLIYA P, VARJANI S, et al. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater[J]. Bioengi-neered,2021,12(1):70-87. DOI: 10.1080/21655979.2020.1863034
[5] SONG Z, ZHANG J, JIANG J. Morphological evolution, luminescence properties and a high-sensitivity ethanol gas sensor based on 3 D flower-like MoS2–ZnO micro/nanosphere arrays[J]. Ceramics International,2020,46(5):6634-6640.
[6] YAO C, WU L, LI H, et al. WS2 coating and Au nanoparticle decoration of ZnO nanorods for improving light-activated NO2 sensing[J]. Applied Surface Science, 2022, 584: 152508.
[7] WANG Z, ZHANG T, ZHAO C, et al. Anchoring ultrafine Pd nanoparticles and SnO2 nanoparticles on reduced graphene oxide for high-performance room temperature NO2 sensing[J]. Journal of Colloid and Interface Science, 2018, 514(2): 599–608.
[8] 陈奕桦, 胡俊俊, 丁同悦, 等. CeO2/ZnO 复合光催化剂制备及其可见光催化性能[J]. 复合材料学报, 2021, 38(9):3008-3015. CHEN Yihua, HU Junjun, DING Tongyue, et al. Preparation and visible light catalytic performance of CeO2/ZnO composite photocatalyst[J]. Acta Materiae Compositae Sinica,2021,38(9):3008-3015(in Chinese).
[9] SCHÜTT F, POSTICA V, ADELUNG R, et al. Single and networked ZnO-CNT hybrid tetrapods for selective room-temperature high-performance ammonia sensors[J]. ACS Applied Materials and Interfaces, 2017, 9(27): 23107-23118.
[10] GOKTAS S, GOKTAS A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review[J]. Journal of Alloys and Compounds,2021,863:158734.
[11] GENG X, ZHANG C, DEBLIQUY M. Cadmium sulfide activated zinc oxide coatings deposited by liquid plasma spray for room temperature nitrogen dioxide detection under visible light illumination[J]. Ceramics International,2016,42(4):4845-4852. DOI: 10.1016/j.ceramint.2015.11.170
[12] 王儒杰, 余锡孟, 王芳芳, 等. 竹炭基铈掺杂氧化锌制备及催化降解亚甲基蓝[J]. 复合材料学报, 2021, 38(6): 1896-1910. WANG Rujie, YU Ximeng, WANG Fangfang, et al. Preparation of carbon supported cerium doped zinc oxide composite material and its photocatalytic propertiesstudy in degradation of methylene blue dye[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1896-1910(in Chinese).
[13] LI Y, CHEN H, WANG L, et al. KNbO3/ZnO heterojunction harvesting ultrasonic mechanical energy and solar energy to efficiently degrade methyl orange[J]. Ultrasonics Sonochemistry,2021,78:105754.
[14] QAMAR M A, SHAHID S, JAVED M, et al. Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity[J]. Journal of Photochemistry and Photobiology A: Chemistry,2020,401:112776.
[15] KRISHNAN U, KAUR M, SINGH K, et al. A synoptic review of MoS2: Synthesis to applications[J]. Superlattices and Microstructures,2019,128:274-297. DOI: 10.1016/j.spmi.2019.02.005
[16] GAO X, YAO Y, MENG X. Recent development on BN-based photocatalysis: A review[J]. Materials Science in Semiconductor Processing,2020,120:1052-56.
[17] ZHAO S, WANG G, LIAO J, et al. Vertically aligned MoS2/ZnO nanowires nanostructures with highly enhanced NO2 sensing activities[J]. Applied Surface Science,2018,456(2):808-816.
[18] WANG S, CHEN W, LI J, et al. Low working temperature of ZnO-MoS2 nanocomposites for delaying aging with good acetylene gas-sensing properties[J]. Nanomaterials, 2020, 10(10): 1902.
[19] BENAVENTE E, DURÁN F, SOTOMAYORTORRES C, et al. Heterostructured layered hybrid ZnO/MoS2 nanosheets with enhanced visible light photocatalytic activity[J]. Journal of Physics and Chemistry of Solids,2018,113:119-124. DOI: 10.1016/j.jpcs.2017.10.027
[20] FU Y, REN Z, WU J, et al. Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances[J]. Applied Catalysis B: Environmental,2021,285(1):119785.
[21] SELVARAJ R, KALIMUTHU K R, KALIMUTHU V. A type-II MoS2/ZnO heterostructure with enhanced photocatalytic activity[J]. Materials Letters,2019,243:183-186.
[22] HUNGE Y M, YADAV A A, MATHE V L. Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation[J]. Ultrasonics Sonochemistry,2018,45:116-122.
[23] MA Q, HAN X M, LV K, et al. Ultrasound-enhanced preparation and photocatalytic properties of graphene-ZnO nanorod composite[J]. Separation and Purification Technology,2020,259(1):118-131.
[24] DONG H, LI J, CHEN M, et al. High-throughput production of ZnO-MoS2-graphene hetero-structures for highly efficient photocatalytic hydrogen evolution[J]. Materials, 2019, 12(14): 2233.
[25] KUMAR V, SHUKLA R K, SHAKYA J. Effect of ultraviolet irradiation on photo-physical and surface electronic properties of MoS2[J]. Journal of Nanoscience and Nanotechnology,2020,20(10):6500-6504. DOI: 10.1166/jnn.2020.18581
[26] WANG J, DENG J, LI Y, et al. ZnO nanocrystal-coated MoS2 nanosheets with enhanced ultraviolet light gas sensitive activity studied by surface photovoltage technique[J]. Ceramics International,2020,46(8):11427-11431.
[27] ZHANG G, LANG J, ZHANG Q, et al. Defects driven photoluminescence property of Sm-doped ZnO porous nanosheets via a hydrothermal approach[J]. Journal of Materials Science: Materials in Electronics,2018,29(19):16534-16542. DOI: 10.1007/s10854-018-9747-z
[28] YE Z, TAI H, XIE T, et al. Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide[J]. Sensors and Actuators, B: Chemical,2016,223:149-156. DOI: 10.1016/j.snb.2015.09.102
[29] LIU Y, ZHANG Q, XU M, et al. Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation[J]. Applied Surface Science,2019,476:632-640. DOI: 10.1016/j.apsusc.2019.01.137
[30] GAO X, WEN Y, QU D, et al. Interference effect of alcohol on Nessler’s reagent in photocatalytic nitrogen fixation[J]. ACS Sustainable Chemistry and Engineering,2018,6(4):5342-5348. DOI: 10.1021/acssuschemeng.8b00110
[31] GE L, HAN C, XIAO X, et al. Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity[J]. International Journal of Hydrogen Energy,2013,38(17):6960-6969.
[32] LUO K, ZHANG Q, YUAN H, et al. Facile synthesis of Ag/Zn1-xCuxO nanoparticle compound photocatalyst for highefficiency photocatalytic degradation: Insights into the synergies and antagonisms between Cu and Ag[J]. Ceramics International, 2021, 47(1): 48-56.
[33] KO K Y, SONG J G, KIM Y, et al. Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization[J]. ACS Nano,2016,10(10):9287-9296.
[34] YIN M, WANG Y, YU L, et al. Ag nanoparticles-modified Fe2O3@MoS2 core-shell micro/nanocomposites for high-performance NO2 gas detection at low temperature[J]. Journal of Alloys and Compounds,2020,829:154471. DOI: 10.1016/j.jallcom.2020.154471
[35] LIU J B, HU J Y, LIU C, et al. Mechanically exfoliated MoS2 nanosheets decorated with SnS2 nanoparticles for high-stability gas sensors at room temperature[J]. Rare Metals, Nonferrous Metals Society of China,2021,40(6):1536-1544.
[36] ZHOU Y, ZOU C, LIN X, et al. UV light activated NO2 gas sensing based on Au nanoparticles decorated few-layer MoS2 thin film at room temperature[J]. Applied Physics Letters,2018,113(8):2-7.
[37] NAVALE Y H, NAVALE S T, CHOUGULE M A, et al. NO2 gas sensing properties of heterostructural CuO nanoparticles/ZnO nanorods[J]. Journal of Materials Science: Materials in Electronics,2021,32(13):18178-18191. DOI: 10.1007/s10854-021-06360-0
[38] ZHANG L, ZHANG J, HUANG Y, et al. Hexagonal ZnO nanoplates/graphene composites with excellent sensing performance to NO2 at room temperature[J]. Applied Surface Science, 2021, 537: 147785.
[39] KAUR M, UMAR A, MEHTA S K, et al. Rapid solar-light driven superior photocatalytic degradation of methylene blue using Mo-S2-ZnO heterostructure nanorods photocatalyst[J]. Materials,2018,11(11):2254. DOI: 10.3390/ma11112254
[40] LI Q, ZHANG N, YANG Y, et al. High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures[J]. Langmuir,2014,30(29):8965-8972.
[41] LV T, PAN L, LIU X, et al. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite syntheied via microwave-assisted reaction[J]. Journal of Alloys and Compounds,2011,509(41):10086-10091. DOI: 10.1016/j.jallcom.2011.08.045
[42] WANG Y, WANG F, HE J. Controlled fabricaion and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth[J]. Nanoscale,2013,5(22):11291-11297. DOI: 10.1039/c3nr03969b
-
期刊类型引用(9)
1. 蔡杰慧,杨英全,陈文静,张佳梅,许建本,邱诗铭. 蔗渣纤维素-海藻酸钙-膨润土多孔微球的制备及其对罗丹明B吸附性能的研究. 化工新型材料. 2024(01): 292-298 . 百度学术
2. 唐雨霞,程士润,陈卫麒,金海军,王浩. DCG复合气凝胶的制备及对刚果红的吸附性能. 印染. 2024(04): 53-57 . 百度学术
3. 蔡杰慧,杨英全,李致宝,郑燕菲,莫月香. 改性蔗渣纤维素-海藻酸钙-膨润土微球制备及吸附. 化学工程. 2024(05): 39-45 . 百度学术
4. 王艳飞,靳泽远,李卓林,王鹤然,邢鹏宇,罗琳龙,胡英成. Cu_2O-PVA/纳米纤维素复合材料的制备与吸附—光催化性能. 复合材料学报. 2023(01): 180-191 . 本站查看
5. 郭鑫,苏宏玺,赵鸿,欧阳成伟,强小虎,黄大建. 海泡石/原位生成氢氧化镁对琼脂基气凝胶的性能影响研究. 材料导报. 2023(05): 249-254 . 百度学术
6. 翟健玉,白文浩,李昂,崔策,郭荣辉. ZIF-67/废棉纤维素复合气凝胶的制备及其对染料的去除性能. 复合材料学报. 2022(03): 1259-1267 . 本站查看
7. 郭紫阳,魏春艳,邵彦峥,孙将皓,谷金峻. 棉秆皮微晶纤维素/β-环糊精气凝胶纤维的制备及吸附性能. 上海纺织科技. 2022(06): 1-4+10 . 百度学术
8. 付秋平,张荣彬,詹凤柳,陈清,郭燕菊,查磊. 氧化多壁碳纳米管/海藻酸钠复合材料对Pb(Ⅱ)的吸附性能研究. 化工新型材料. 2022(08): 235-239 . 百度学术
9. 任静静,郑刘春,张丹凤,蔡嘉哲,王昕颖,程露,何俊锋,郑彩雯. 不同类型酸修饰-磁化海泡石对水体Cd(Ⅱ)的吸附研究. 环境科学学报. 2021(12): 4812-4824 . 百度学术
其他类型引用(4)
-