留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高循环TiO2/PANI电致变色薄膜的制备与性能表征

范勇 徐子芳 卢奇奇 孙紫豪 扈霜月 查子欣

范勇, 徐子芳, 卢奇奇, 等. 高循环TiO2/PANI电致变色薄膜的制备与性能表征[J]. 复合材料学报, 2024, 43(0): 1-9.
引用本文: 范勇, 徐子芳, 卢奇奇, 等. 高循环TiO2/PANI电致变色薄膜的制备与性能表征[J]. 复合材料学报, 2024, 43(0): 1-9.
FAN Yong, XU Zifang, Lu Qiqi, et al. Preparation and property characterisation of high cycle TiO2/PANI electrochromic thin films[J]. Acta Materiae Compositae Sinica.
Citation: FAN Yong, XU Zifang, Lu Qiqi, et al. Preparation and property characterisation of high cycle TiO2/PANI electrochromic thin films[J]. Acta Materiae Compositae Sinica.

高循环TiO2/PANI电致变色薄膜的制备与性能表征

基金项目: 2017 年度安徽高校省级自然科学重大研究项目(KJ2017ZD08)
详细信息
    通讯作者:

    徐子芳,博士,教授,硕士生导师,研究方向为生态环境材料、高性能水泥基材料 E-mail: zhfxubao@163.com

  • 中图分类号: TB332;TBO646

Preparation and property characterisation of high cycle TiO2/PANI electrochromic thin films

Funds: Provincial-level natural science research project of universities in Anhui (KJ2017ZD08)
  • 摘要: 基于电致变色薄膜在军事伪装、建筑节能、汽车工业等领域具有广泛应用前景,研究采用化学氧化法制备TiO2/聚苯胺(PANI)复合材料。利用XRD、FTIR、SEM、XPS、TG、UV-vis、电化学工作站对制备的TiO2/PANI电极与PANI电极进行测试分析,重点研究TiO2/PANI复合薄膜和PANI薄膜的结构形貌、电化学性能及电致变色性能的变化机制。结果表明:TiO2/PANI复合薄膜具有供体受体结构,相较于PANI 薄膜纤维状结构有更多的活性位点;TiO2/PANI复合薄膜的结构加快PANI质子化和脱质子化的转变进程,改善电荷转移途径,缩短离子扩散路径,延缓变色过程中PANI的氧化降解; TiO2/PANI复合薄膜较PANI薄膜的电致变色性能得到提升,波长650 nm处的着色效率(CE)为 48.52 cm2·C−1,褪色、着色响应时间(τbc)分别为2.5 s、3.0 s,经800次着色褪色循环后薄膜电化学活性保持在初始的71.1%左右。

     

  • 图  1  聚苯胺(PANI)与TiO2/PANI复合材料的XRD图谱

    Figure  1.  XRD patterns of Polyaniline (PANI) and TiO2/ PANI composite

    图  2  PANI与TiO2/PANI复合材料的红外图谱

    Figure  2.  FTIR spectra of PANI and TiO2/PANI composite

    图  3  PANI与TiO2/PANI复合材料的TG-DTG图谱

    Figure  3.  TG-DTG curves of PANI and TiO2/PANI composite

    图  4  TiO2颗粒(a)、PANI(b) 和TiO2/PANI复合薄膜(c)的SEM图

    Figure  4.  SEM images of the surface of TiO2(a)、PANI(b) and TiO2/PANI(c)nanocomposite films

    图  5  PANI和TiO2/PANI复合薄膜的XPS图谱(a-d)

    Figure  5.  X-ray photoelectron spectroscopy of PANI and TiO2/PANI composite films (a-d)

    图  6  (a) PANI和TiO2/PANI复合薄膜的循环伏安图;(b) TiO2/PANI复合薄膜在不同电位扫描速率:20、40、60、80 mV/s时的CV曲线(插图为氧化峰电流密度与电位扫描速率的关系)。

    Figure  6.  (a) Cyclic voltammograms of PANI and TiO2/PANInanocomposite film. (b) CVs curves of TiO2/PANI film electrode at different potential scan rate: 20, 40, 60, 80 mV/s (inset: The relationships between the oxidation peak current density vs. potential scan rate).

    图  7  (a) PANI和TiO2/PANI复合薄膜的Nyquist图(插图为等效电路图);(b) 在高频区域的Nyquist图

    Figure  7.  (a)Nyquist plots of pristine PANI and TiO2/PANI nanocomposite films(inset:the equivalent circuit.)(b)Enlarged Nyquist plots in the high frequency region.

    图  8  不同电位下PANI(a) 和TiO2/PANI复合薄膜(b) 的紫外可见透射光谱

    Figure  8.  UV–vis transmittance spectra of PANI (a) and TiO2/PANI (b) films under different applied potentials.

    图  9  PANI和TiO2/PANI复合薄膜的计时电流曲线

    Figure  9.  Current response for PANI and TiO2/PANI nanocomposite films.

    图  10  PANI(a) 和TiO2/PANI(b) 复合薄膜的循环稳定性

    Figure  10.  Electrochemical stability of (a) PANI and (b) TiO2/PANI composite films.

  • [1] WU W W, GUO S L, BIAN J, et al. Mesoporous ordered titania films: An advanced platform for photocatalysis[J]. Journal of Energy Chemistry, 2024, 93: 453-470. doi: 10.1016/j.jechem.2024.02.027
    [2] LAI H Y, CAI Q Y, LI M Y, et al. Machine Learning-Guided Performance Evaluation of an All-Liquid Electrochromic Device[J]. ACS Applied Materials & Interfaces, 2024, 16: 22.
    [3] SUSMITA R, SAYAN H, CHANCHAL C. Dimensional perspectives on metal center associated electrochromism in metal-organic coordinated hybrid polymers: Unveiling electrochromic dynamics[J]. Coordination Chemistry Reviews, 2024, 159: 216088.
    [4] WANG J L, SHENG S Z, HE Z, et al. Self-Powered Flexible Electrochromic Smart Window[J]. Nano Letters, 2021, 21: 23.
    [5] WANG Z, WANG X Y, CONG S, et al. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development[J]. Materials Science and Engineering: R: Reports, R 2020, 140: 100524.
    [6] AKCHHETA K, GIANCAELO C, CHEN S Z, et al. Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas[J]. Advanced Materials, 2022, 34: 2107172. doi: 10.1002/adma.202107172
    [7] ERIC H, BRETT N C, CURITIS J F, et al. Nanoscale All-Solid-State Plasmochromic Waveguide Nonresonant Modulator[J]. Nano Letters 2021, 21 (5): 1955-1961.
    [8] JULIA S, JHANCY M S. Recent advances in the applications of substituted polyanilines and their blends and composites[J]. Polymer Bulletin, 2020, 77: 6641-6669. doi: 10.1007/s00289-019-03081-7
    [9] WU X M, ZHANG W Z, WANG Q G, et al. Hydrogen bonding of graphene/polyaniline composites film for solid electrochromic devices[J]. Synthetic Metals, 2016, 212: 1-11. doi: 10.1016/j.synthmet.2015.12.001
    [10] LI Z, GONG L. Research Progress on Applications of Polyaniline for Electrochemical Energy Storage and Conversion[J]. Materials, 2020, 13(3): 548. doi: 10.3390/ma13030548
    [11] FU T C, ZHAO C G, ZHU Y N, et al. Towards the design of ideal electrochromic materials with low driving voltage based on phthalate derivatives[J]. Organic Electronics, 2021, 106189.
    [12] TUAN V N, HA H D, TRUONG Q T, et al. Stable and multicolored electrochromic device based on polyaniline-tungsten oxide hybrid thin film[J]. Journal of Alloys and Compounds, 2021, 882: 160718. doi: 10.1016/j.jallcom.2021.160718
    [13] LI X, CHU J, Cheng Y P, et al. A novel PANI@Carbon dot hybrid with enhanced electrochemical and electrochromic properties[J]. Materials Letters, 2020, 275: 128081. doi: 10.1016/j.matlet.2020.128081
    [14] ZHANG S H, CHEN S, HU F, et al. Spray-processable, large-area, patterned and all-solid-state electrochromic device based on silica/polyaniline nanocomposites[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109951. doi: 10.1016/j.solmat.2019.109951
    [15] CAI G F, TU J P, ZHOU D, et al. Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array[J]. The Journal of Physical Chemistry C, 2013, 117: 15967-15975. doi: 10.1021/jp4056939
    [16] XIA X H, TU J P, ZHANG J, et al. A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance[J]. Nanotechnology 2008 19(46) : 465701.
    [17] PLINIO I, LUCA M. Mesoporous ordered titania films: An advanced platform for photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2024, 58: 100646. doi: 10.1016/j.jphotochemrev.2023.100646
    [18] TRINAYANA D, RANJITH G N. Recent advancements in surface plasmon resonance and Schottky junction assisted photocatalytic water splitting of noble metal decorated Titania: A reviewInternational Journal of Hydrogen Energy[J]. 2024, 59: 322-342.
    [19] MOHIT K, DHEERAJ K, MOHD F, et al. Enhanced photoelectrochemical water splitting and photocatalytic degradation performance of visible light active ZnIn2S4/PANI nanocomposite[J]. International Journal of Hydrogen Energy, 2023, 48: 2518-2531. doi: 10.1016/j.ijhydene.2022.10.034
    [20] ALI M G, MARYAM S, HAMED B, et al. Electrospun synthesis of polyaniline and titanium dioxide nanofibers as potential electrode materials in electrochemical hydrogen storage[J]. Renewable Energy, 2024, 226: 120439. doi: 10.1016/j.renene.2024.120439
    [21] LI X, YU L M, ZHAO W K, et al. Prism-shaped hollow carbon decorated with polyaniline for microwave absorption[J]. Chemical Engineering Journal, 2020, 122393.
    [22] HAI W Q, CHEN C H, YU Q H, et al. Sandwich structure electromagnetic interference shielding composites based on Fe3O4 nanoparticles/PANI/laser-induced graphene with near-zero electromagnetic waves transmission[J]. Applied Surface Science, 2023, 157975.
    [23] CAI G F, TU J P, ZHOU D, et al. Dual electrochromic film based on WO3/polyaniline core/shell nanowire array[J]. Solar Energy Materials and Solar Cells, 2014, 122: 51-58. doi: 10.1016/j.solmat.2013.11.015
    [24] ZHANG S H, CHEN S, HU F, et al. Spray-processable, large-area, patterned and all-solid-state electrochromic device based on silica/polyaniline nanocomposites[J]. Solar Energy Materials and Solar Cells, 2019, 109951.
    [25] NARAYANAN R, DEWAN A, CHAKRABORTY D. Complimentary effects of annealing temperature on optimal tuning of functionalized carbon-V2O5 hybrid nanobelts for targeted dual applications in electrochromic and supercapacitor devices[J]. RSC Advances, 2018, 8: 8596-8606. doi: 10.1039/C7RA13357J
    [26] FU X F, LI K, ZHANG C L, et al. Homogeneous and Nanogranular Prussian Blue to Enable Long-Term-Stable Electrochromic Devices[J]. ACS Applied Materials & Interfaces, 2024, 16: 14.
    [27] CHEN Y, BI Z, LI X, et al. High-coloration efficiency electrochromic device based on novel porous TiO2@prussian blue core-shell nanostructures[J]. Electrochimica Acta 2017, 224: 534–540.
    [28] CAI G F, DARMAWAN P, CHENG X, et al. Inkjet printed large area multifunctional smart windows[J]. Advanced Energy Materials, 2017, 7: 1602598. doi: 10.1002/aenm.201602598
    [29] CONSTANTIN C P, DAMACEANU M D. A refreshing perspective on electrochromic materials: Phenoxazine as an opportune moiety towards stable and efficient electrochromic polyimides[J]. Chemical Engineering Journal, 2023, 456: 142883.
    [30] GONG H, LI A, FU G X, et al. Ultrathin flexible electrochromic devices enabled by highly transparent ion-conducting films[J]. Journal of Materials Chemistry A, 2023, 11: 8939-8949. doi: 10.1039/D2TA09807E
    [31] ZHANG S H, FU R F, WANG S, et al. Novel nanocellulose/conducting polymer composite nanorod films with improved electrochromic performance[J]. Materials Letters, 2017, 202: 127-130. doi: 10.1016/j.matlet.2017.05.044
  • 加载中
计量
  • 文章访问数:  29
  • HTML全文浏览量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-03
  • 修回日期:  2024-10-18
  • 录用日期:  2024-10-19
  • 网络出版日期:  2024-10-31

目录

    /

    返回文章
    返回