Preparation and property characterisation of high cycle TiO2/PANI electrochromic thin films
-
摘要: 基于电致变色薄膜在军事伪装、建筑节能、汽车工业等领域具有广泛应用前景,研究采用化学氧化法制备TiO2/聚苯胺(PANI)复合材料。利用XRD、FTIR、SEM、XPS、TG、UV-vis、电化学工作站对制备的TiO2/PANI电极与PANI电极进行测试分析,重点研究TiO2/PANI复合薄膜和PANI薄膜的结构形貌、电化学性能及电致变色性能的变化机制。结果表明:TiO2/PANI复合薄膜具有供体受体结构,相较于PANI 薄膜纤维状结构有更多的活性位点;TiO2/PANI复合薄膜的结构加快PANI质子化和脱质子化的转变进程,改善电荷转移途径,缩短离子扩散路径,延缓变色过程中PANI的氧化降解; TiO2/PANI复合薄膜较PANI薄膜的电致变色性能得到提升,波长650 nm处的着色效率(CE)为 48.52 cm2·C−1,褪色、着色响应时间(τb/τc)分别为2.5 s、3.0 s,经800次着色褪色循环后薄膜电化学活性保持在初始的71.1%左右。Abstract: Given the extensive prospective applications of electrochromic thin films in fields such as military camouflage, building energy efficiency, and the automotive industry, this study was conducted to prepare TiO2/Polyaniline (PANI) composites via a chemical oxidation method. The prepared TiO2/PANI electrodes and PANI electrodes were tested and analysed using XRD, FTIR, SEM, XPS, TG, UV-vis and electrochemical workstations. The focus was on the study of the structural morphology, electrochemical properties, and the mechanism of the changes in the electrochromic properties of TiO2/PANI composite films and PANI films. The results demonstrate that the TiO2/PANI composite film exhibits a donor-acceptor structure with a greater number of active sites compared to that of the PANI film, which has a fibrous structure; the structure of TiO2/PANI composite films accelerates the transformation process of PANI protonation and deprotonation, improves the charge transfer pathway, shortens the ion diffusion pathway, and slows down the oxidative degradation of PANI in the process of electrochromic change; the structure of TiO2/PANI composite films is better than PANI films in the process of electrochromic change. The electrochromic performance of the composite film was enhanced in comparison to that of the PANI film, with a colouring efficiency (CE) at wavelength 650 nm of 48.52 cm2·C−1. Additionally, the fading and colouring response times were 2.5 and 3 seconds, respectively. The electrochemical activity of the film was maintained at approximately 71.1% of the initial value after 800 cycles of colouring and fading.
-
Key words:
- polyaniline /
- titanium dioxide /
- electrochromic /
- response time /
- cycle stability
-
图 6 (a) PANI和TiO2/PANI复合薄膜的循环伏安图;(b) TiO2/PANI复合薄膜在不同电位扫描速率:20、40、60、80 mV/s时的CV曲线(插图为氧化峰电流密度与电位扫描速率的关系)。
Figure 6. (a) Cyclic voltammograms of PANI and TiO2/PANInanocomposite film. (b) CVs curves of TiO2/PANI film electrode at different potential scan rate: 20, 40, 60, 80 mV/s (inset: The relationships between the oxidation peak current density vs. potential scan rate).
-
[1] WU W W, GUO S L, BIAN J, et al. Mesoporous ordered titania films: An advanced platform for photocatalysis[J]. Journal of Energy Chemistry, 2024, 93: 453-470. doi: 10.1016/j.jechem.2024.02.027 [2] LAI H Y, CAI Q Y, LI M Y, et al. Machine Learning-Guided Performance Evaluation of an All-Liquid Electrochromic Device[J]. ACS Applied Materials & Interfaces, 2024, 16: 22. [3] SUSMITA R, SAYAN H, CHANCHAL C. Dimensional perspectives on metal center associated electrochromism in metal-organic coordinated hybrid polymers: Unveiling electrochromic dynamics[J]. Coordination Chemistry Reviews, 2024, 159: 216088. [4] WANG J L, SHENG S Z, HE Z, et al. Self-Powered Flexible Electrochromic Smart Window[J]. Nano Letters, 2021, 21: 23. [5] WANG Z, WANG X Y, CONG S, et al. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development[J]. Materials Science and Engineering: R: Reports, R 2020, 140: 100524. [6] AKCHHETA K, GIANCAELO C, CHEN S Z, et al. Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas[J]. Advanced Materials, 2022, 34: 2107172. doi: 10.1002/adma.202107172 [7] ERIC H, BRETT N C, CURITIS J F, et al. Nanoscale All-Solid-State Plasmochromic Waveguide Nonresonant Modulator[J]. Nano Letters 2021, 21 (5): 1955-1961. [8] JULIA S, JHANCY M S. Recent advances in the applications of substituted polyanilines and their blends and composites[J]. Polymer Bulletin, 2020, 77: 6641-6669. doi: 10.1007/s00289-019-03081-7 [9] WU X M, ZHANG W Z, WANG Q G, et al. Hydrogen bonding of graphene/polyaniline composites film for solid electrochromic devices[J]. Synthetic Metals, 2016, 212: 1-11. doi: 10.1016/j.synthmet.2015.12.001 [10] LI Z, GONG L. Research Progress on Applications of Polyaniline for Electrochemical Energy Storage and Conversion[J]. Materials, 2020, 13(3): 548. doi: 10.3390/ma13030548 [11] FU T C, ZHAO C G, ZHU Y N, et al. Towards the design of ideal electrochromic materials with low driving voltage based on phthalate derivatives[J]. Organic Electronics, 2021, 106189. [12] TUAN V N, HA H D, TRUONG Q T, et al. Stable and multicolored electrochromic device based on polyaniline-tungsten oxide hybrid thin film[J]. Journal of Alloys and Compounds, 2021, 882: 160718. doi: 10.1016/j.jallcom.2021.160718 [13] LI X, CHU J, Cheng Y P, et al. A novel PANI@Carbon dot hybrid with enhanced electrochemical and electrochromic properties[J]. Materials Letters, 2020, 275: 128081. doi: 10.1016/j.matlet.2020.128081 [14] ZHANG S H, CHEN S, HU F, et al. Spray-processable, large-area, patterned and all-solid-state electrochromic device based on silica/polyaniline nanocomposites[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109951. doi: 10.1016/j.solmat.2019.109951 [15] CAI G F, TU J P, ZHOU D, et al. Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array[J]. The Journal of Physical Chemistry C, 2013, 117: 15967-15975. doi: 10.1021/jp4056939 [16] XIA X H, TU J P, ZHANG J, et al. A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance[J]. Nanotechnology 2008 19(46) : 465701. [17] PLINIO I, LUCA M. Mesoporous ordered titania films: An advanced platform for photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2024, 58: 100646. doi: 10.1016/j.jphotochemrev.2023.100646 [18] TRINAYANA D, RANJITH G N. Recent advancements in surface plasmon resonance and Schottky junction assisted photocatalytic water splitting of noble metal decorated Titania: A reviewInternational Journal of Hydrogen Energy[J]. 2024, 59: 322-342. [19] MOHIT K, DHEERAJ K, MOHD F, et al. Enhanced photoelectrochemical water splitting and photocatalytic degradation performance of visible light active ZnIn2S4/PANI nanocomposite[J]. International Journal of Hydrogen Energy, 2023, 48: 2518-2531. doi: 10.1016/j.ijhydene.2022.10.034 [20] ALI M G, MARYAM S, HAMED B, et al. Electrospun synthesis of polyaniline and titanium dioxide nanofibers as potential electrode materials in electrochemical hydrogen storage[J]. Renewable Energy, 2024, 226: 120439. doi: 10.1016/j.renene.2024.120439 [21] LI X, YU L M, ZHAO W K, et al. Prism-shaped hollow carbon decorated with polyaniline for microwave absorption[J]. Chemical Engineering Journal, 2020, 122393. [22] HAI W Q, CHEN C H, YU Q H, et al. Sandwich structure electromagnetic interference shielding composites based on Fe3O4 nanoparticles/PANI/laser-induced graphene with near-zero electromagnetic waves transmission[J]. Applied Surface Science, 2023, 157975. [23] CAI G F, TU J P, ZHOU D, et al. Dual electrochromic film based on WO3/polyaniline core/shell nanowire array[J]. Solar Energy Materials and Solar Cells, 2014, 122: 51-58. doi: 10.1016/j.solmat.2013.11.015 [24] ZHANG S H, CHEN S, HU F, et al. Spray-processable, large-area, patterned and all-solid-state electrochromic device based on silica/polyaniline nanocomposites[J]. Solar Energy Materials and Solar Cells, 2019, 109951. [25] NARAYANAN R, DEWAN A, CHAKRABORTY D. Complimentary effects of annealing temperature on optimal tuning of functionalized carbon-V2O5 hybrid nanobelts for targeted dual applications in electrochromic and supercapacitor devices[J]. RSC Advances, 2018, 8: 8596-8606. doi: 10.1039/C7RA13357J [26] FU X F, LI K, ZHANG C L, et al. Homogeneous and Nanogranular Prussian Blue to Enable Long-Term-Stable Electrochromic Devices[J]. ACS Applied Materials & Interfaces, 2024, 16: 14. [27] CHEN Y, BI Z, LI X, et al. High-coloration efficiency electrochromic device based on novel porous TiO2@prussian blue core-shell nanostructures[J]. Electrochimica Acta 2017, 224: 534–540. [28] CAI G F, DARMAWAN P, CHENG X, et al. Inkjet printed large area multifunctional smart windows[J]. Advanced Energy Materials, 2017, 7: 1602598. doi: 10.1002/aenm.201602598 [29] CONSTANTIN C P, DAMACEANU M D. A refreshing perspective on electrochromic materials: Phenoxazine as an opportune moiety towards stable and efficient electrochromic polyimides[J]. Chemical Engineering Journal, 2023, 456: 142883. [30] GONG H, LI A, FU G X, et al. Ultrathin flexible electrochromic devices enabled by highly transparent ion-conducting films[J]. Journal of Materials Chemistry A, 2023, 11: 8939-8949. doi: 10.1039/D2TA09807E [31] ZHANG S H, FU R F, WANG S, et al. Novel nanocellulose/conducting polymer composite nanorod films with improved electrochromic performance[J]. Materials Letters, 2017, 202: 127-130. doi: 10.1016/j.matlet.2017.05.044
计量
- 文章访问数: 29
- HTML全文浏览量: 35
- 被引次数: 0