Research and progress in the preparation and application of photothermal phase change energy storage composites
-
摘要: 光热相变储能复合材料具有光热转化效率高、潜热储能大等优势,可通过太阳能的吸收、转化和存储,缓解能源供需失衡的矛盾,是目前研究的热点之一。为进一步促进光热相变储能复合材料的研究和发展,本文以光热转化材料为切入点,系统介绍了碳基、金属基纳米粒子和半导体光热转化材料的机理及其制备方法,并总结了不同复合策略所制备光热相变储能材料的光热转化及储能效果。最后,简单论述了光热相变储能复合材料在节能建筑、智能调温织物等方面的应用。以期为研究人员提供借鉴和参考。Abstract: Photothermal phase change energy storage composites have the advantages of high photothermal conversion efficiency and large latent heat storage, which can alleviate the imbalance between energy supply and demand through the absorption, conversion and storage of solar energy, and is one of the current research hotspots.To further promote the research and development of photothermal phase change energy storage composites, the mechanism and preparation methods of carbon-based, metal-based nanoparticles and semiconductor materials were systematically introduced in this paper.In addition, the photothermal conversion and energy storage effects of composites prepared by different strategies were summarized. Finally, the applications of photothermal phase change energy storage composites in energy-saving buildings, intelligent thermostat fabrics and other aspects were briefly discussed. The review article may provide reference for researchers.
-
[1] WANG Jiantang, HONG Jinlong. Effect of folding on 3D photothermal cones with efficient solar-driven water evaporation[J]. Applied Thermal Engineering, 2020, 178: 115636. doi: 10.1016/j.applthermaleng.2020.115636 [2] 郑志雨. 生物质基碳纳米材料的制备及其在水处理中的应用[D]. 苏州: 苏州大学, 2020.ZHENG Zhiyu. Preparation and application of biomass-based carbon nanomaterials in water treatment[D]. Suzhou: Suzhou University, 2020. (in Chinese) [3] LI Tian, LIU He, ZHAO Xinpeng, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport[J]. Advanced Functional Materials, 2018, 28(16): 1707134. doi: 10.1002/adfm.201707134 [4] ZHANG Zheng, WU Peng, HE Jingxian, et al. Facile and scalable fabrication of surface-modified sponge for efficient solar steam generation[J]. Chemistry Sustainability Energy Materials, 2019, 12(2): 426-533. [5] LIU Ning, HAO Liang, ZHANG Boyi, et al. Rational design of high-performance bilayer solar evaporator by using waste polyester-derived porous carbon-coated wood[J]. Energy & Environmental Materials, 2022, 5(2): 617-626. [6] XU Ning, HU Xiaozhen, XU Weichao, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials, 2017, 29(28): 1606762. doi: 10.1002/adma.201606762 [7] ZENG Long, DENG Daxiang, ZHU Linye, et al. Biomass photothermal structures with carbonized durian for efficient solar-driven water evaporation[J]. Energy, 2023, 273: 127170. doi: 10.1016/j.energy.2023.127170 [8] YANG Ruiying, GUO Xiran, WU Haotian, et al. Anisotropic hemp-stem-derived biochar supported phase change materials with efficient solar-thermal energy conversion and storage[J]. Biochar, 2022, 4: 38. doi: 10.1007/s42773-022-00162-1 [9] ZHU Mengmeng, YU Jialiang, MA Cunlin, et al. Carbonized daikon for high efficient solar steam generation[J]. Solar Energy Materials and Solar Cells, 2019, 191: 83-90. doi: 10.1016/j.solmat.2018.11.015 [10] ZHANG Ping, SHENG Chengming, XIE Meihua, et al. Carbonized fast-growing bamboo as a photothermal device for efficient solar vapor generation[J]. Industrial & Engineering Chemistry Research, 2023, 62(13): 5574-5581. [11] YANG He, SUN Yinghui, PENG Weiwen, et al. Tailoring the salt transport flux of solar evaporators for a highly effective salt-resistant desalination with high productivity[J]. ACS Nano, 2022, 16(2): 2511-2520. doi: 10.1021/acsnano.1c09124 [12] HONG Guo, HAN Yang, SCHUTZIUS T M. , et al. On the mechanism of hydrophilicity of graphene[J]. Nano Letters, 2016, 16: 4447-4453. doi: 10.1021/acs.nanolett.6b01594 [13] DENG Xin, NIE Qichun, WU Yu, et al. Nitrogen-doped unusually superwetting, thermally insulating, and elastic graphene aerogel for efficient solar steam generation[J]. ACS Appliedd Materials & Interfaces, 2020, 12(23): 26200-26212. [14] LI Zhengtong, WANG Chengbing, SU Jinbu, et al. Fsat-growing field of interfacial solar steam generation: evolution materials, engineered architectures, and synergistic applications[J]. Solar RRL, 2019, 3(3): 1800. [15] WANG Wei, WEN Huaixing, SHI Jing, et al. An ultrathin, nanogradient, and substrate-independent WOx-based film as a high performance flexible solar absorber[J]. Solar RRL, 2019, 3(10): 1900180. doi: 10.1002/solr.201900180 [16] YIN Qing, ZHANG Jingfa, TAO Yubo, et al. The emerging development of solar evaporators in materials and structures[J]. Chemosphere, 2022, 289: 133210. doi: 10.1016/j.chemosphere.2021.133210 [17] WEI Haoran, ABTAHI S M. H, VIKESLAND P J. Plasmonic colorimetric and SERS sensors for environmental analysis[J]. Environmental Science: Nano, 2015, 2: 120-135. doi: 10.1039/C4EN00211C [18] SUN Peng, WANG Wanlin, ZHANG Wang, et al. 3D interconnected gyroid Au−CuS materials for efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 34837-34847. [19] REN Liteng, YI Zhongshan, WANG Defa, et al. Designing carbonized loofah sponge architectures with plasmonic Cu nanoparticles encapsulated in graphitic layers for highly efficient solar vapor generation[J]. Nano Letters, 2021, 21(4): 1709-1715. doi: 10.1021/acs.nanolett.0c04511 [20] CHEN Xizhe, BAI Xiaopeng, YANG Jianhua, et al. Titanium oxynitride spheres with broad plasmon resonance for solar seawater desalination[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 28769-28780. [21] SHI Yanying, ZHANG Chaofan, WANG Yuhui, et al. Plasmonic silver nanoparticles embedded in flexible three-dimensional carbonized melamine foam with enhanced solar-driven water evaporation[J]. Desalination, 2021, 507: 115038. doi: 10.1016/j.desal.2021.115038 [22] SONG Jie, LI Jun, BAI Xiangren, et al. Cu nanoparticle-decorated two-dimensional carbon nanosheets with superior photothermal conversion efficiency of 65% for highly efficient disinfection under near-infrared light[J]. Journal of Materials Science & Technology, 2021, 87: 83-94. [23] WANG Junshi, GUO Zhenzhen, XIAO Bo, et al. Reduced graphene oxide/Cu7.2S4 composite hydrogels for highly efficient solar steam generation[J]. Materials Today Sustainability, 2022, 18: 100121. doi: 10.1016/j.mtsust.2022.100121 [24] GAO Yuan, WU Jiafei, WANG Jiaqi, et al. A novel multifunctiona p-type semiconductor@MOFs nanoporous platform for simultaneous sensing and photodegradation of tetracycline[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 11036-11044. [25] SU Lifen, HU Yiqiong, MA Ziqiang, et al. Synthesis of hollow copper sulfide nanocubes with low emissivity or highly efficient solar steam generation[J]. Solar Energy Materials and Solar Cells, 2020, 210: 11. [26] 杨地, 史潇凡, 张冀杰, 等. 光热材料在海水淡化领域的近期研究进展与展望[J]. 化学学报, 2023, 81(8): 1052-1063. doi: 10.6023/A23040148YANG Di, SHI Xiaofan, ZHANG Jijie, et al. Recent research progress and prospect of photothermal materials in seawater desalination[J]. Acta Chimica Sinica, 2023, 81(8): 1052-1063(in Chinese). doi: 10.6023/A23040148 [27] 李雪, 周明宇, 韩朋, 等. 高效太阳能驱动海水淡化的最新研究进展[J/OL][J]. 材料导报, 2024, 38(13): 22110120.LI Xue, ZHOU Mingyu, HAN Peng, et al. Recent Research anvances in efficient solar-driven desalination[J/OL][J]. Materials Reports, 2024, 38(13): 22110120(in Chinese). [28] WANG Juan, LI Yangyang, DENG Lin, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials, 2017, 29(3): 1603730. doi: 10.1002/adma.201603730 [29] ONISHI K, TOKUDOME Y, KARIYA K, et al. Synthesis of hydrophilic poly (vinylpyrrolidone) / CuS free-standing thin films exhibiting photothermal conversion[J]. ACS Applied materials and Interfaces, 2024, 16(13): 16903-16911. doi: 10.1021/acsami.4c02345 [30] ZHU Yanping, CHEN Gao, XU Xiaomin, et al. Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons[J]. ACS Catalysis, 2017, 7(5): 3540-3547. doi: 10.1021/acscatal.7b00120 [31] ZHU Lin, SUN Lei, ZHANG Hong, et al. Dual-phase molybdenum nitride nanorambutans for solar steam generation under one sun illumination[J]. Nano Energy, 2019, 57: 842-850. doi: 10.1016/j.nanoen.2018.12.058 [32] BAI Haoyuan, HU Jingtian, LAM Shuihei, et al. Turning dielctric MoO3 nanospheres from white to black through doping for efficient solar seawater desalination[J]. ACS Materials Letters, 2022, 4(9): 1584-1592. doi: 10.1021/acsmaterialslett.2c00402 [33] 苑坤杰. 高性能包覆型和微胶囊型复合相变材料的制备及其热特性研究[D]. 广州: 华南理工大学, 2018.YUAN Kunjie. Preparation and thermal properties of high-performance coated and microencapsulated composite phase change materials[D]. Guangzhou: South China University of Technology, 2018. (in Chinese) [34] YANG Ruiying, GUO Xiran, WU Haotian, et al. Anisotropic hemp-stem-derived biochar supported phase change materials with efficient solar-thermal energy conversion and storage[J]. Biochar, 2022, 4(1): 38. doi: 10.1007/s42773-022-00162-1 [35] CHAO Weixiang, YANG Haiyue, CAO Guoliang, et al. Carbonized wood flour matrix with functional phase change material composite for magnetocaloric-assisted photothermal conversion and storage[J]. Energy, 2020, 202: 117636. doi: 10.1016/j.energy.2020.117636 [36] SOUMEN\ M, SHAFIQ I, MOHD A M A, et al. Effect of pore structure on the thermal stability of shape-stabilized phase change materials[J]. Journal of Materials Research and Technology, 2023, 25: 465-479. doi: 10.1016/j.jmrt.2023.05.217 [37] YANG Zhiwei, DENG Yong, LI Jinhong. Preparation of porous carbonized woods impregnated with lauric acid as shape-stable composite phase change materials[J]. Appiled Thermal Engineering, 2019, 150: 967-976. doi: 10.1016/j.applthermaleng.2019.01.063 [38] LUO Kai, WU Dengke, WANG Yan, et al. Preparation and characterization of lauric acid-stearic acid/fumed silica/expanded graphite thermally conductive enhanced composites[J]. Journal of Energy Storage, 2023, 73: 109151. doi: 10.1016/j.est.2023.109151 [39] LIANG Qianwei, PAN Dean, ZHANG Xiaoguang. Construction and application of biochar-based composite phase change materials[J]. Chemical Engineering Journal, 2023, 453: 139441. doi: 10.1016/j.cej.2022.139441 [40] MA Yingjiao, HU Zhentao, LU Nan, et al. Highly efficient solar photothermal conversion of graphene-coated conjugated microporous polymers hollow spheres[J]. Journal of Colloid and Interface Science, 2022, 623: 856-869. doi: 10.1016/j.jcis.2022.05.115 [41] LIU Ziyu, WANG Xiaoli, ZHU Xingyue, et al. Phase change energy storage material with photocuring, photothermal conversion, and self-cleaning performance via a two-layer structure[J]. ACS Appiled Materials & Interfaces, 2022, 14(51): 57299-57310. [42] CHAI Zongce, FANG Minghao, MIN Xin. Composite phase-change materials for photo-thermal conversion and energy storage: A review[J]. Nano Energy, 2023, 124: 109437. [43] ZHANG Chuge, HU Xiaowu, XIAO Shikun, et al. Enhanced thermal performance of phase-change material supported by nano-Ag coated eggplant-based biological porous carbon[J]. Journal of Energy Storage, 2021, 43: 103174. doi: 10.1016/j.est.2021.103174 [44] XIAO Shikun, HU Xiaowu, JIANG Lan, et al. Nano-Ag modified bio-based loofah foam/polyethylene glycol composite phase change materials with higher photo-thermal conversion efficiency and thermal conductivity[J]. Journal of Energy Storage, 2022, 54: 105238. doi: 10.1016/j.est.2022.105238 [45] XU Yinghao, HUANG Yaoqi, LI Linfeng, et al. Modulation and optimisation of the properties of n-decanoic acid-tetradecanol phase change materials by nanocomposite carbon materials prepared by atomic layer deposition methods[J]. Materials Today Communications, 2024, 39: 108650. doi: 10.1016/j.mtcomm.2024.108650 [46] ZHAO Qihang, YANG Wenbin, LI Yongsheng, et al. Multifunctional phase change microcapsules based on graphene oxide Pickering emulsion for photothermal energy conversion and superhydrophobicity[J]. International Journal of Energy Research, 2020, 44(6): 4464-4474. doi: 10.1002/er.5224 [47] DU Mengyu, YU Xufeng, ZHANG Zhaoxia, et al. CuS nanoparticle-based microcapsules for solar-induced phase change energy storage[J]. ACS Applied Nano Materials, 2022, 5(9): 13009-13017. doi: 10.1021/acsanm.2c02804 [48] TIAN Donglin, SHI Tao, WANG Xiang, et al. Magnetic field-assisted acceleration of energy storage based on microencapsulation of phase change material with CaCO3/Fe3O4 composite shell[J]. Journal of Energy Storage, 2022, 47: 103574. doi: 10.1016/j.est.2021.103574 [49] FAN Xiaoyue, QIU Xiaolin, LU Lixin, et al. Full-spectrum light-driven phase change microcapsules modified by CuS-GO nanoconverter for enhancing solar energy conversion and storage capability[J]. Solar Energy Materials and Solar Cells, 2021, 223: 110937. doi: 10.1016/j.solmat.2020.110937 [50] DIMBERU G. A, BEOM Y Y, JI Y C, et al. Introduction of sustainable food waste-derived biochar for phase change material assembly to enhance energy storage capacity and enable circular economy[J]. Journal of Energy Storage, 2023, 72: 108338. doi: 10.1016/j.est.2023.108338 [51] GAO Huan, BING Naici, XIE Huaqing, et al. Energy harvesting and storage blocks based on 3D oriented expanded graphite and stearic acid with high thermal conductivity for solar thermal application[J]. Energy, 2022, 254: 124198. doi: 10.1016/j.energy.2022.124198 [52] LI Daokui, TANG Yili, ZUO Xiaochao, et al. Functionally constructed mineral microspheres for efficient photothermal conversion and thermal energy storage[J]. Carbon, 2022, 196: 365-377. doi: 10.1016/j.carbon.2022.05.010 [53] LI Tianyang, PAN Hong, XU Lihui, et al. Shape-stabilized phase change material with high phase change enthalpy made of PEG compounded with lignin-based carbon[J]. International Journal of Biological Macromolecules, 2022, 213: 134-144. doi: 10.1016/j.ijbiomac.2022.05.163 [54] ZHANG Jin, JI Yule, ZHANG Yan, et al. Preparation and temperature regulation properties of TiO2/CNTs-based form-stable phase change materials[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 685: 133278. doi: 10.1016/j.colsurfa.2024.133278 [55] YE Hongchun, HUANG Yaoqi, LI Linfeng, et al. Light-driven phase change microcapsules modified by TiN/CNTs nanocomposites for enhancement of solar energy storage and solar photocatalytic efficiency[J]. Journal of Energy Storage, 2024, 75: 109684. doi: 10.1016/j.est.2023.109684 [56] SHENG Siyu, ZHU Zhicheng, WANG Zhanhui, et al. Bioinspired solar anti-icing/de-icing surfaces based on phase-change materials[J]. Science China Materials, 2022, 65(5): 1369-1376. doi: 10.1007/s40843-021-1888-7 [57] YANG Haiyue, WANG Siyuan, WANG Xin, et al. Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage[J]. Appllied Energy, 2020, 261: 114481. doi: 10.1016/j.apenergy.2019.114481 [58] 韩存昊. 新型多功能聚合物基复合相变材料的构筑及储热性能研究[D]. 桂林: 桂林桂林电子科技大学, 2023.HAN Cunhao. Preparation and thermal storage properties of novel multifunctional polymer-based phase change materials[D]. Guilin: Guilin University of Electronic Technology, 2023. (in Chinese) [59] BING Naici, YANG Jie, GAO Huan, et al. Unsaturated polyester resin supported form-stable phase change materials with enhanced thermal conductivity for solar energy storage and conversion[J]. Renewable Energy, 2021, 173: 926-933. doi: 10.1016/j.renene.2021.04.033 [60] ZHENG Xiangjun, GAO Xuenong, HUANG Zhaowen, et al. Form-stable paraffin/graphene aerogel/copper foam composite phase change material for solar energy conversion and storage[J]. Solar Energy Materials and Solar Cells, 2021, 226: 111083. doi: 10.1016/j.solmat.2021.111083
点击查看大图
计量
- 文章访问数: 32
- HTML全文浏览量: 26
- 被引次数: 0