海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(Ⅵ)的吸附性能和机制

郭成, 郝军杰, 李明阳, 龙红明, 高翔鹏

郭成, 郝军杰, 李明阳, 等. 海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(Ⅵ)的吸附性能和机制[J]. 复合材料学报, 2021, 38(7): 2140-2151. DOI: 10.13801/j.cnki.fhclxb.20201015.003
引用本文: 郭成, 郝军杰, 李明阳, 等. 海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(Ⅵ)的吸附性能和机制[J]. 复合材料学报, 2021, 38(7): 2140-2151. DOI: 10.13801/j.cnki.fhclxb.20201015.003
GUO Cheng, HAO Junjie, LI Mingyang, et al. Adsorption of Cr(Ⅵ) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2140-2151. DOI: 10.13801/j.cnki.fhclxb.20201015.003
Citation: GUO Cheng, HAO Junjie, LI Mingyang, et al. Adsorption of Cr(Ⅵ) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2140-2151. DOI: 10.13801/j.cnki.fhclxb.20201015.003

海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(Ⅵ)的吸附性能和机制

基金项目: 国家自然科学基金 (51904004);中国博士后科学基金第66批面上资助项目(2019M662129);安徽省高校科学研究重点项目(KJ2019A0058)
详细信息
    通讯作者:

    高翔鹏,博士,副教授,硕士生导师,研究方向为多孔生物质金属离子吸附剂的合成制备及其机制 E-mail:gxp1992@ahut.edu.cn

  • 中图分类号: TB332

Adsorption of Cr(Ⅵ) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study

  • 摘要: 海藻酸钠(SA)是一种生物质材料,具有来源广泛、价格低廉的特性,被众多科研人员用于实验室研究,制备成吸附剂去除水溶液中的金属离子。但目前制备的大多数SA基吸附材料是实心水凝胶状,具有比表面积较低、吸附速率慢、吸附容量小的缺点。本研究以SA为基体,向其中添加碳酸钙和聚乙烯亚胺(PEI),以戊二醛为交联剂,经冷冻干燥后制备出多孔的SA/PEI凝胶球,探究其对水溶液中Cr(Ⅵ)的吸附特性。通过改变实验条件,研究pH值、Cr(Ⅵ)初始浓度、吸附温度、吸附时间等对SA/PEI凝胶球吸附性能的影响;引入吸附动力学和热力学模型对吸附过程进行分析;采用FTIR、Zeta电位、SEM、XPS对SA/PEI凝胶球合成及吸附Cr(Ⅵ)机制进行综合分析。结果表明,SA/PEI凝胶球对Cr(Ⅵ)的去除率与初始浓度呈负相关;该吸附过程符合拟二级动力学和Langmuir等温吸附模型,且该吸附反应是自发的吸热过程,在温度为318.15 K、pH值为2时,Langmuir等温吸附拟合所得最大吸附量为262.83 mg/g。SA/PEI凝胶球对Cr(Ⅵ)的吸附机制主要为静电作用导致的物理吸附。
    Abstract: The sodium alginate (SA) is a biomass material which is abundant and can be easily acquired. It is currently used by many scientific researchers in laboratory research to prepare adsorbents to remove metal ions from aqueous solutions. However, SA based adsorbents generally exist as hydrogels, which are low in specific surface areas, slow in adsorption rates and have low adsorption capacities. In this study, calcium carbonate and polyethyleneimine (PEI) were added to SA matrix, and glutaraldehyde was used as a crosslinking agent to prepare porous SA/PEI beads via freeze-drying. The adsorption characteristics of synthesized adsorbent for Cr(Ⅵ) in aqueous solution were studied. The adsorption behaviors of Cr(Ⅵ) ions were evaluated by varying the experimental conditions including pH values, initial metal ion concentrations, adsorption temperature and adsorption time. Adsorption kinetics and thermodynamic models were applied to analyze the adsorption process. Characterization methods, including FTIR, Zeta potential, SEM, and XPS were comprehensively used to analyze the synthesis mechanism of SA/PEI beads and the mechanism of Cr(Ⅵ) adsorption. The results show that the removal rate of Cr(Ⅵ) by SA/PEI beads is negatively related to the initial concentration; the adsorption process conforms to the pseudo-second-order kinetics and Langmuir isotherm adsorption model, and the adsorption reaction is a spontaneous endothermic process. When the temperature is 318.15 K and the pH value is 2, the Langmuir isotherm adsorption fitting shows that the maximum adsorption capacity is 262.83 mg/g. The adsorption mechanism of SA/PEI beads on Cr(Ⅵ) is mainly physical adsorption dominated by electrostatic interactions.
  • 铬是一种有毒、致癌且具有生物蓄积性的重金属,广泛应用于电镀、制革、印染、颜料及铬酸盐生产等行业[1]。铬在水中主要以Cr(III)和Cr(VI)形式存在,其中,Cr(VI)的毒性、溶解度及在水中的分散性远高于Cr(III),水中Cr(VI)采用生物法[2]、膜分离法[3]、吸附法[4]、混凝沉淀[5]、光催化[6]等处理。其中,吸附法具有操作简单、成本低、效率高、环境友好等优点常被采用,高效价廉的吸附剂的开发是关键。

    硫化亚铁(FeS)比表面积大且具备Fe(II)和S(-II)两种强还原剂,在酸性环境中对Cr(VI)的去除效果显著 [7]。但纳米FeS颗粒本身不稳定,易团聚,限制了其广泛应用。将纳米FeS固定在支撑材料上提高分散性是解决该问题的关键之处。张华夏等[8]利用羧甲基纤维素钠(CMC)稳定纳米FeS,有效的提升了FeS对砷的吸附性能。Wu等[9]制备了海藻酸钠改性纳米FeS颗粒用于去除Se(IV),Se(IV)的去除率由27%提高到100%。Lyu等[10]等制备的生物炭负载FeS纳米颗粒易于吸附Cr(VI)。

    生物模板法是指利用具有多层次、多维空间结构的天然生物质为模板制备具有多级孔结构的纳米材料,具有广泛的发展前景。制备方法常采用浸渍-高温炭化[11],加适量碱溶液作为沉淀剂有利于金属离子附着于生物材料表面,达到复制模板的作用。毕磊等[12]将绿藻和三价铁水溶液充分混合后加入氢氧化钠溶液沉淀,炭化,最终得到内含多个Fe3O4磁性纳米内核铃铛结构的多孔微球。

    油菜花粉来源广、价格低廉,可作为生物模板使用[13]。高雪等[14]以油菜花粉为生物模板制备了一种分级多孔结构的纳米氧化锌,很好地复制了花粉的结构。段胜聪等[15]基于油菜花粉模板制备 ZnAlCe三元复合氧化物,提高了对H2O2-α-蒎烯环氧化反应的催化性能。但以花粉作为生物模板制备仿生FeS复合材料还未见报道。

    本文以油菜花粉为模板,通过共沉淀-高温焙烧制得仿生FeS复合材料(bioFeS)用于Cr(VI)的去除。利用SEM、XRD及XPS等技术手段对复合材料的结构、形貌及表面基团等进行了表征,考察了bioFeS对Cr(VI)的吸附性能,探讨了吸附机制。研究结果为bioFeS复合材料应用于水中Cr(VI)的去除奠定理论基础。

    K2Cr2O7、C13H14N4O、CH3CH2OH、C3H6O、H3PO4、H2SO4、FeSO4·7H2O、Na2S·9H2O、NaOH、HCl均为分析纯,购自国药集团化学试剂有限公司;实验过程中的用水均为去离子水;油菜花粉购自河南省许昌市。

    常温下将100 g花粉加入1 L无水乙醇中,超声清洗2 h,清除花粉表面的蜂蜡、脂质等杂质,用去离子水清洗3次后,放在101型电热鼓风干燥箱(北京科伟永兴仪器有限公司)中60℃干燥备用。

    将经过预处理的50 g花粉颗粒加入500 mL 0.23 mol·L−1的FeSO4溶液中,在DF-101S型集热式恒温加热磁力搅拌器(河南予华仪器有限公司)磁力搅拌1 h,滴入250 mL 0.23 mol·L−1的Na2S溶液,磁力搅拌2 h后,真空抽滤,用去离子水冲洗两遍后放置在101型电热鼓风干燥箱中60℃干燥,置于SX2-4-10A型箱式电阻炉(上虞市道墟科析仪器厂)450℃保持2 h,冷却至室温后研磨过80 mm筛得到bioFeS复合材料。

    采用JSM-6700F型扫描电子显微镜(日本Jeol公司)观察样品微观形态及面元素组成;采用D8 Advance型X射线衍射仪(德国Bruker公司) 在Cu Kα射线,管电压为40 kV,管电流为30 mA,连续扫描方式,采样步宽0.02°的条件下分析样品的晶体结构;采用ASAP2020型全自动物理化学吸附仪(美国Micromeritics公司)分析样品的比表面积、孔容及孔径分布;采用ESCALAB 250Xi型X-射线光电子能谱及俄歇电子谱联用仪(美国赛默菲世尔公司)测定样品吸附Cr前后表面元素价态(Cr、C、S 和Fe)。

    将0.01 g bioFeS复合材料投入100 mL 10 mg·L−1的Cr(VI)溶液中,在298 K振荡吸附一定时间后,采用722N型紫外可见分光光度计(上海仪电电子有限公司),依据国家标准《水质六价铬的测定—二苯碳酰二肼分光光度法》(GB/T 7467—1987)[16]测定溶液中剩余的Cr(VI),根据下式计算吸附量q。通过控制变量,探究Cr(VI)初始浓度、温度、吸附时间等因素对吸附效果的影响。所有实验重复3次,实验误差在5%以内。

    q=(C0C)Vm
    (1)

    式中:q为吸附量(mg·g−1);C0为溶液中Cr(VI)的初始质量浓度(mg·L−1);C为吸附后溶液中剩余Cr(VI)的质量浓度(mg·L−1);V为溶液体积(L);m为吸附剂的质量(g)。

    将吸附Cr(VI)饱和的bioFeS复合材料用0.1 mol·L−1的NaOH水溶液进行脱附、水洗、干燥后再次用于吸附Cr(VI),重复3 次。

    FeS及bioFeS复合材料的微观结构如图1所示。由图1(a)可以看出,FeS为微小颗粒,呈团聚状。由图1(b)可以看出,bioFeS复合材料较好的保留了花粉的形貌,具有明显的孔结构,FeS均匀的分散在花粉生物模板表面,避免了FeS的团聚。由EDS分析可知,bioFeS复合材料表面的主要元素为C、Fe、S,含量分别为51.59wt%、33.49wt%、10.49wt%,其中C元素来自于模板残留。

    图  1  FeS和仿生FeS(bioFeS)复合材料的SEM图像
    Figure  1.  SEM images of FeS and biomimetic FeS (bioFeS) composites

    bioFeS复合材料的晶相结构如图2所示。可以看出,bioFeS复合材料在23.31°处出现一个典型石墨碳的峰,对应标准卡片石墨碳(JCPDS:74-2328)中的(002)晶面;在30.00°、33.59°、53.20°处出现衍射峰,分别对应标准卡片FeS(JCPDS:80-1027)中的(100)、(202)、(110)晶面,但衍射峰较低,说明bioFeS复合材料中FeS结晶度下降。此外,bioFeS复合材料在35.40°处观察到Fe3O4的衍射峰,对应标准卡片Fe3O4(JCPDS:88-0866)中的(311)晶面。

    图  9  bioFeS复合材料吸附Cr(VI)前后的XPS图谱:(a) C1s;(b) Fe2p;(c) S2p;(d) Cr2p
    Figure  9.  XPS spectra of bioFeS composites before and after adsorption of Cr(VI): (a) C1s; (b) Fe2p; (c) S2p; (d) Cr2p

    FeS和Fe3O4的存在使bioFeS复合材料具有一定的磁性,为证实这一结果,进行磁分离实验,bioFeS复合材料具有磁性,可在外加磁场作用下快速分离,解决了吸附剂不易回收的难题,便于重复利用。

    图  2  bioFeS复合材料的XRD图谱
    Figure  2.  XRD patterns of bioFeS composites

    比表面积及孔结构分析结果如表1所示,bioFeS复合材料的比表面积为173.51 m2·g−1。远大于FeS的比表面积15.59 m2·g−1,说明bioFeS复合材料保留了花粉的多孔结构,具有较大的比表面积,花粉生物模板有效分散了FeS,抑制了其团聚。bioFeS复合材料的孔径分布如图3所示,可以看出,生物模板的加入使FeS的孔结构发生了较大的改变。孔容积增大、孔径变小,出现双介孔结构,丰富的介孔结构增强了对污染物的吸附能力。

    表  1  bioFeS复合材料BET比表面积和孔隙性质
    Table  1.  BET surface areas and pore properties of bioFeS composites
    SampleSBET/
    (m2·g−1)
    Pore volume/
    (cm3·g−1)
    Pore size/
    nm
    FeS 15.590.03811.87
    bioFeS
    composites
    173.510.122 5.78
    Note: SBET—BET surface area.
    下载: 导出CSV 
    | 显示表格

    pH值不仅影响吸附剂,而且影响Cr(VI)在水溶液中的存在形式 [17]图4为随着溶液初始pH值增大,平衡时溶液pH值及吸附剂Zeta电位的变化,可以看出吸附平衡时的pH值比溶液初始pH值略有提高,说明加入bioFeS复合材料会发生化学反应,消耗了水中H+。bioFeS的等电点为5.4, pH<5.4时,吸附剂带正电,pH>5.4时,吸附剂带负电。

    图  3  FeS和bioFeS复合材料的孔径分布
    Figure  3.  Pore size distribution of FeS and bioFeS composites
    图  4  初始pH对bioFeS复合材料吸附Cr(VI)溶液Zeta电位及平衡pH的影响
    Figure  4.  Effect of initial pH on Zeta potential and equilibrium pH of adsorption Cr(VI) on bioFeS composites

    图5为溶液初始pH值对bioFeS复合材料吸附Cr(VI)效果及铁离子浸出浓度的影响。可以看出,随着溶液初始pH值的增加,bioFeS复合材料吸附Cr(VI)的性能随之下降。这是由于pH值<5.0时,Cr(VI)主要以HCrO4的形式存在[18]。在相同浓度下, HCrO4的吸附自由能较低,比CrO42−更容易吸附。此外,pH值<5.4,bioFeS带正电,更易吸附带负电的HCrO4。吸附过程中有Fe(III)和Fe(II)的溶出,且随着溶液初始pH的增大,溶液中铁离子尤其Fe(III)浓度下降,和Cr(VI)吸附量的变化趋势一致。说明铁离子的溶出和Cr(VI)的去除相关,随着溶液初始pH增大,Fe(II)的溶出及其还原Cr(VI)的反应随之减少。此外,当溶液呈碱性时,含铬阴离子与OH发生竞争吸附,进一步导致吸附量降低。因此bioFeS复合材料吸附Cr(VI)在pH=1时最好,吸附量可达88.95 mg·g−1

    图  5  初始pH对bioFeS复合材料吸附Cr(VI)效果及铁离子浸出浓度的影响
    Figure  5.  Effect of initial pH on adsorption capacity of Cr(VI) on bioFeS composites and change of iron ion leaching concentration

    实际的含铬废水中还含其他离子,Ca2+、Mg2+、Cl、NO3及SO42−是废水中典型的共存离子。图6为常见共存离子对bioFeS复合材料吸附Cr(VI)效果的影响。可知,Ca2+、Mg2+及Cl的加入对bioFeS复合材料吸附Cr(VI)效果没有显著影响。NO3和SO42−对bioFeS复合材料吸附Cr(VI)产生抑制作用。可能是由于NO3会使Fe(II)向Fe(III)发生转化[19],降低了bioFeS复合材料的还原性。而SO42−的水合离子半径与Cr(VI)阴离子极相似,竞争有效吸附位点 [20-21],从而影响了bioFeS复合材料对Cr(VI)的吸附。

    图  6  共存离子对bioFeS复合材料吸附Cr(VI)效果的影响
    Figure  6.  Effect of coexisting ions adsorption capacity of Cr(VI) on bioFeS composites

    图7比较了相同条件下bioFeS复合材料、焙烧FeS、FeS和焙烧花粉模板对Cr(VI)的吸附性能。可以看出,焙烧FeS、FeS及焙烧花粉模板的Cr(VI)吸附量分别为67.85 mg·g−1、66.15 mg·g−1、55.87 mg·g−1,bioFeS复合材料的Cr(VI)吸附量达88.95 mg·g−1,吸附效果明显提高。这是由于油菜花粉生物模板的加入改变了FeS的聚集状态,提高了复合材料的比表面积和介孔数量,此外模板中C残留也有利于Cr(VI)的吸附。bioFeS复合材料兼有物理吸附和化学吸附作用,具有较好的吸附性能。

    图  7  不同吸附剂对Cr(VI)的吸附动力学
    Figure  7.  Adsorption kinetic of various adsorbents for Cr(VI)

    采用准一级动力学模型与准二级动力学模型,如下式:

    ln(qeqt)=lnqek12.303t
    (2)
    tqt=1k2q2e+1qet
    (3)

    式中:qe是吸附平衡时的吸附容量(mg·g−1);qtt 时刻的吸附容量(mg·g−1);k1是准一级动力学常数(min−1);k2是准二级动力学常数(g·mg−1·min−1);t是吸附反应时间(min)。

    对实验数据进行分析,结果见表2。可知,bioFeS复合材料吸附Cr(VI)过程用准一级动力学和准二级动力学模型拟合,相关系数R2均大于0.94,两种模型都可以用来描述该实验过程[22]。相比而言,准二级动力学的相关系数更高,且准二级动力学模型得到的qe为88.574 mg·g−1,更接近实验所得的数据88.95 mg·g−1。因此,bioFeS复合材料对Cr(VI)的吸附过程更符合准二级动力学模型,吸附过程的主要步骤为化学吸附。焙烧FeS、FeS吸附Cr(VI)的主要步骤也为化学吸附,但反应速率常数较低。焙烧花粉模板吸附Cr(VI)的主要步骤则为物理吸附。进一步说明bioFeS复合材料兼具FeS和生物模板的优点。

    表  2  不同吸附剂吸附Cr(VI)的动力学参数
    Table  2.  Kinetic parameters of Cr(VI) adsorption by various adsorbents
    AdsorbentPseudo-first order modelPseudo-second order model
    k1/min−1R2qe/(mg·g−1)k2/(g·mg−1·min−1)R2qe/(mg·g−1)
    bioFeS composites0.04810.99137.7280.0120.99888.574
    Roasting FeS0.03960.91431.3250.0070.97869.686
    FeS0.04300.90029.9640.0040.98765.726
    Roasting pollen0.03290.92333.0160.0010.63344.952
    Notes: qe—Amount of adsorption at equilibrium; k1—Quasi-first-order kinetic model constant; k2—Quasi-second-order kinetic model constant; R—Correlation coefficient.
    下载: 导出CSV 
    | 显示表格

    选用Langmuir方程和Freundlich方程对实验数据进行分析,如下式:

    表  3  bioFeS复合材料吸附Cr(VI)的Langmuir和Freundlich吸附等温线参数
    Table  3.  Langmuir and Freundlich adsorption isotherm parameters of Cr(VI) adsorption by bioFeS composites
    AdsorbentLangmuir modelFreundlich model
    bR2Q0/(mg·g−1)KFR2n
    bioFeS composites0.0130.99794.9678.6920.9901.454
    Notes: Q0—Maximum adsorption capacity; b—Adsorption equilibrium constant of Langmuir model; KF—Adsorption equilibrium constant of Freundlich model; n—Adsorption strength constant in the Freundlich model.
    下载: 导出CSV 
    | 显示表格
    1qe=1Q0+(1bQ0)(1Ce)
    (4)
    lnqe=1nlnCe+lnKF
    (5)

    式中:Ce是吸附平衡时的溶液平衡浓度(mg·L−1);Q0为构成单分子层吸附时单位吸附饱和量(mg·g−1); b是Langmuir吸附等温模型常数;KF是Freundlich吸附等温模型常数;n为吸附强度常数,可用来表示吸附亲和力,当n在1~10范围内时,说明反应易发生,反之则不易发生[23]

    表3为bioFeS复合材料吸附Cr(VI)的Langmuir和Freundlich吸附等温线参数。可知,Langmuir 和 Freundlich 模型对该吸附过程拟合的相关系数均大于0.9,相比之下,Langmuir的拟合性更好,表明复合材料对Cr(VI)的吸附过程为单分子层吸附,材料表面的活性位点均匀;单分子层吸附常表现为化学吸附,这与准二级动力学方程的拟合结果相同。Freundlich模型拟合的常数n在1~10的范围内,说明bioFeS复合材料易于吸附Cr(VI)。

    判断吸附过程能否自发进行的基本条件是计算吉布斯自由能变ΔG ,如下式:

    ΔG=RTlnKd
    (6)
    lnKd=ΔSRΔHRT
    (7)
    Kd=C0CeCeVm
    (8)

    式中:ΔG 为吸附自由能变(kJ·mol−1);ΔH为吸附焓变(kJ·mol−1);ΔS 为吸附熵变(J·mol−1·K−1);Kd为固液分配系数;T为绝对温度(K);R为理想气体常数(8.314 J·mol−1·K−1);C0为溶液初始浓度(mg·L−1);V为溶液体积(mL);m为吸附剂的投加量(g)。

    表4为bioFeS复合材料吸附Cr(VI)的热力学参数。可知,ΔG<0,说明bioFeS复合材料对Cr(VI)的吸附是自发进行的,随着温度升高,ΔG的绝对值呈增大趋势,说明随着温度升高反应过程的推动力增大。ΔH>0,表明吸附反应为吸热过程,升温有利于吸附。

    表  4  bioFeS复合材料吸附Cr(VI)的热力学参数
    Table  4.  Thermodynamic parameters of Cr(VI) adsorption by bioFeS composites
    C0/(mg·L−1)ΔG/(kJ·mol−1)ΔH/(kJ·mol−1)ΔS/(kJ·mol−1·K−1)
    293 K298 K303 K
    10−21.082−22.687−23.27043.2110.220
    20−20.021−21.016−22.53253.4900.251
    30−19.103−20.644−21.73458.0520.264
    50−18.194−20.237−21.07666.4670.290
    100−17.186−19.986−20.78688.6160.362
    150−16.903−19.308−20.34284.1090.346
    Notes: C0—Initial concentration of the solution; ΔH—Enthalpy; ΔS—Entropy; ΔG—Gibbs free energy.
    下载: 导出CSV 
    | 显示表格

    bioFeS复合材料再生实验结果如图8所示。可以看出,经过3次连续吸附-脱附循环后,bioFeS复合材料对Cr(VI) 的吸附量仍能维持初始吸附量的70.8%,表明bioFeS复合材料有良好的再生性能。此外,bioFeS复合材料在外加磁场的作用下容易从水中分离。说明bioFeS是一种稳定、高效、便于回收且可重复利用的材料,在Cr(VI)吸附及水处理领域有着广阔的应用前景。

    图  8  bioFeS复合材料的再生性
    Figure  8.  Regeneration property of bioFeS composites

    由吸附动力学及吸附热力学分析可知,bioFeS复合材料吸附Cr(VI)是物理吸附、化学吸附共存,以化学吸附为主的过程。分析吸附前后bioFeS复合材料的表面元素,结果见图9,可以看出,bioFeS复合材料中含有C的化合物、FeS和Fe3O4,与XRD的结果一致。C的化合物及Fe3O4产生于焙烧过程。由图9(d)可知,bioFeS复合材料可以有效吸附Cr(VI),吸附后Cr的主要存在形式为Cr(VI)和Cr2O3,根据Cr(VI)和Cr2O3的峰面积分析可知吸附和还原的贡献率分别为31.2%、68.8%。

    图9(a)可知bioFeS复合材料中C的存在形式为O=C—O、C—O、C—H,C—O、C—H,分别对应XPS图谱中288.7 eV、285.2 eV、284.7 eV的峰。吸附Cr(VI)后峰变小,说明C在还原Cr(VI)的反应中起到一定作用,含C、O官能团通过静电吸引及化学吸附去除Cr(VI),同时C介导FeS和Cr(VI)之间的电子传递,进一步提高Cr(VI)的还原效率。

    图9(b)可知bioFeS复合材料中Fe的存在形式为Fe(II)、Fe(III)、FeS,分别对应724.8 eV、718.4 eV、710.9 eV处的峰,吸附Cr(VI)后,FeS和Fe(II)峰减小, 715.5 eV处出现Fe(III)峰,说明Fe(II)还原Cr(VI)后生成Fe(III)。

    图9(c)可知bioFeS复合材料中S的存在形式为S(VI)、FeS,分别对应XPS图中168.6 eV、163.1 eV的峰。S(VI)来自于硫酸根残留。吸附Cr(VI)后,S(-II)减少,S单质出现,说明S(-II)参与了Cr(VI) 还原。

    综上所述,bioFeS复合材料吸附Cr(VI)的机制除了吸附外还存在化学还原过程。可能存在如下化学反应:

    FeS+H+Fe2++HS
    (9)
    3Fe2++HCrO4+7H+3Fe3++Cr3++4H2O
    (10)
    3HS+8HCrO4+29H+3SO24+8Cr3++20H2O
    (11)
    3S2+2HCrO4+14H+3S+2Cr3++8H2O
    (12)

    (1) 利用油菜花粉为生物模板,通过共沉淀-焙烧法制备仿生FeS复合材料(bioFeS),对Cr(VI)吸附效果显著。材料制备方法操作简单、绿色安全,为Cr(VI)的吸附剂的制备提供新思路。

    (2) bioFeS复合材料既保留了油菜花粉的多孔结构,又解决了FeS易团聚的问题。此外,还具有磁性便于回收利用,是一种性能优异的新型Cr(VI)吸附剂。

    (3) 在反应时间为120 min、pH值为1、吸附剂投加量为0.2 g·L−1、反应温度为25℃的条件下,bioFeS复合材料对Cr(VI)的吸附量可达88.95 mg·g−1;酸性条件更有利于Cr(VI)的吸附,NO3和SO42−的存在会抑制Cr(VI)的吸附。

    (4) bioFeS复合材料吸附Cr(VI)过程符合准二级动力学和Langmuir等温吸附模型,主要通过吸附及化学还原作用去除Cr(VI),bioFeS复合材料中的C及其官能团、Fe(II)和S(-II)在化学还原中起主要作用。

  • 图  1   海藻酸钠/聚乙烯亚胺(SA/PEI)凝胶球的主要制备步骤

    Figure  1.   Major fabrication steps of sodium alginate/polyethyleneimine (SA/PEI) hydrogel beads

    图  2   pH值对SA/PEI凝胶球吸附Cr(Ⅵ)的影响

    Figure  2.   Effect of pH value on Cr(Ⅵ) uptake by SA/PEI hydrogel beads

    图  3   200 mg/L Cr(Ⅵ)在溶液中Cr(Ⅵ)离子形态的平衡分布

    Figure  3.   Equilibrium distribution of Cr(Ⅵ) species in aqueous with a total Cr(Ⅵ) concentration of 200 mg/L

    图  4   SA/PEI凝胶球在不同pH值下的Zeta电位

    Figure  4.   Zeta potential of SA/PEI hydrogel beads under various pH values

    图  5   温度和Cr(Ⅵ)浓度对SA/PEI凝胶球的Cr(Ⅵ)去除率的影响

    Figure  5.   Effects of temperature and Cr(Ⅵ) concentration on Cr(Ⅵ) removal rate by SA/PEI hydrogel beads

    图  6   不同浓度Cr(Ⅵ)溶液中Cr2O72−和HCrO4的含量

    Figure  6.   Percentage contents of Cr2O72− and HCrO4 in different concentrations of Cr(Ⅵ) aqueous

    图  7   吸附时间对SA/PEI凝胶球吸附Cr(Ⅵ)吸附量的影响

    Figure  7.   Effect of adsorption time on adsorption capacity of Cr(Ⅵ) by SA/PEI hydrogel beads

    图  8   SA/PEI凝胶球对Cr(Ⅵ)的吸附动力学

    Figure  8.   Adsorption kinetics of Cr(Ⅵ) by SA/PEI beads

    图  9   SA/PEI凝胶球对Cr(Ⅵ)的Langmuir和Freundlich等温吸附模型拟合

    Figure  9.   Fitting of Langmuir and Freundlich isotherm adsorption models for adsorption of Cr(Ⅵ) by SA/PEI hydrogel beads

    图  10   SA和SA/PEI凝胶球吸附Cr(Ⅵ)前后的FTIR图谱

    Figure  10.   FTIR spectra of SA and SA/PEI hydrogel beads before and after Cr(Ⅵ) adsorption

    图  11   SA/PEI凝胶球吸附Cr(Ⅵ)前((a)~(c))和后((d)~(f))的SEM图像及EDS图谱

    Figure  11.   SEM images and EDS spectra of SA/PEI hydrogel beads before ((a)−(c)) and after ((d)−(f)) Cr(Ⅵ) adsorption

    图  12   SA/PEI凝胶球吸附Cr(Ⅵ)前后的XPS图谱

    Figure  12.   XPS spectra of SA/PEI hydrogel beads before and after adsorption of Cr(Ⅵ)

    表  1   各类试剂及其性能

    Table  1   Various reagents and properties

    ReagentProperty
    Sodium alginate Viscosity: 200−500 mPa.s
    Polyethyleneimine Molecular weight Mw=600
    Glutaraldehyde Purity 25%−28%
    CaCO3 Analytical reagent
    1,5-Diphenylcarbohydrazide Analytical reagent
    K2Cr2O7 Analytical reagent
    CaCl2 Analytical reagent
    下载: 导出CSV

    表  2   SA/PEI凝胶球吸附Cr(Ⅵ)的热力学参数

    Table  2   Thermodynamic parameters of Cr(Ⅵ) adsorbed by SA/PEI hydrogel beads

    T/KlnKcΔG/(kJ·mol−1)ΔH/(kJ·mol−1)ΔS/(J(mol·K)−1)
    298.15 1.83 −4.54 17.52 74.58
    308.15 1.98 −5.07
    318.15 2.45 −6.48
    Notes: T—Absolute temperature; Kc—Equilibrium constant; ΔG—Gibbs free energy; ΔH—Enthalpy change; ΔS—Entropy change.
    下载: 导出CSV

    表  3   SA/PEI凝胶球吸附Cr(Ⅵ)的动力学模型拟合参数

    Table  3   Kinetic parameters of pseudo-first/second-order models for Cr(Ⅵ) adsorption by SA/PEI hydrogel beads

    C0/(mg·L−1)Pseudo-first-order kinetic modelPseudo-second-order kinetic model
    K1/(mg(g·h−1)−1)qe/(mg·g−1)R2K2/(mg(g·h−1)−1)qe/(mg·g−1)R2
    100 0.5829 91.3769 0.9900 0.0101 99.0000 0.9473
    200 0.5031 167.3778 0.9602 0.0036 191.4030 0.9433
    Notes: C0—Initial concentration of Cr(Ⅵ); K1, K2—Rate constants for pseudo-first-order and pseudo-second-order equations, respectively; qe—Amounts of metal adsorbed at equilibrium; R2—Goodness-of-fitting.
    下载: 导出CSV

    表  4   SA/PEI凝胶球去除Cr(Ⅵ)的Langmuir和Freundlich等温线模型参数

    Table  4   Parameters of Langmuir and Freundlich isotherms on Cr(Ⅵ) removal by SA/PEI hydrogel beads

    T/KLangmuir isothermFreundlich isotherm
    KL/(L·mg−1)qm/(mg·g−1)R2KF/(L·mg−1)nR2
    298.15 0.1113 233.31 0.9587 71.24 4.2827 0.9337
    308.15 0.1286 242.07 0.9679 74.67 4.1841 0.9438
    318.15 0.1837 262.83 0.9826 99.09 4.8828 0.9077
    Notes: KL—Langmuir isotherm constant; KF, n—Two Freundlich isotherm constants; qm—Maximum metal uptake capacity.
    下载: 导出CSV

    表  5   SA/PEI凝胶球与已报道的SA基吸附剂去除Cr(Ⅵ)性能比较

    Table  5   Comparison of adsorption capacity of Cr(Ⅵ) removal by SA/PEI hydrogel beads and others reported SA based adsorbents

    AdsorbentAdsorption capacity/(mg·g−1)Reference
    SA-polyaniline nanofibers 75.82 [16]
    TEPA functionalized alginate beads 77.00 [29]
    Nanoscale zerovalent iron/biochar/Ca-alginate beads 86.40 [30]
    Nano zero-valent iron/carbon/alginate composite gel 35.25 [31]
    Magnetic nano-hydroxyapatite encapsulated alginate beads 29.14 [32]
    Fe nanoparticles embedded graphene oxide alginate beads 33.90 [33]
    SA/PEI 262.83 This work
    下载: 导出CSV
  • [1]

    MARIA C G. Toxic and mutagenic effects of chromium(Ⅵ): A review[J]. Polyhedron,1996,15(21):3667-3689. DOI: 10.1016/0277-5387(96)00141-6

    [2]

    CARLOS E B D, VIOLETA L L, BILYEU B. A review of chemical, electrochemical and biological methods for aqueous Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials,2012,223-224:1-12.

    [3]

    CESPONROMERO R M, YEBRABIURRUN M C, BERMEJOBARRERA M P. Preconcentration and speciation of chromium by the determination of total chromium and chromium(Ⅲ) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system[J]. Analytica Chimica Acta,1996,327(1):37-45. DOI: 10.1016/0003-2670(96)00062-1

    [4]

    JOBBY R, JHA P, YADAV A K, et al. Biosorption and biotransformation of hexavalent chromium [Cr(Ⅵ)]: A comprehensive review[J]. Chemosphere,2018,207:255-266. DOI: 10.1016/j.chemosphere.2018.05.050

    [5]

    SARIN V, SINGH T S, PANT K K. Thermodynamic and breakthrough column studies for the selective sorption of chromium from industrial effluent on activated eucalyptus bark[J]. Bioresource Technology,2006,97(16):1986-1993. DOI: 10.1016/j.biortech.2005.10.001

    [6]

    FAN S, ZHOU J, ZHANG Y, et al. Preparation of sugarcane bagasse succinate/alginate porous gel beads via a self-assembly strategy: Improving the structural stability and adsorption efficiency for heavy metal ions[J]. Bioresource Technology,2020,306:123128. DOI: 10.1016/j.biortech.2020.123128

    [7]

    FU F, WANG Q. Removal of heavy metal ions from wastewaters: A review[J]. Journal of Environmental Management,2011,92(3):407-418. DOI: 10.1016/j.jenvman.2010.11.011

    [8]

    GAO X, LIU J, LI M, et al. Mechanistic study of selective adsorption and reduction of Au(Ⅲ) to gold nanoparticles by ion-imprinted porous alginate microspheres[J]. Chemical Engineering Journal,2020,385:123897. DOI: 10.1016/j.cej.2019.123897

    [9]

    ZENG H, WANG L, ZHANG D, et al. Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent[J]. Chemical Engineering Journal,2019,358:253-263. DOI: 10.1016/j.cej.2018.10.001

    [10]

    HU Z H, OMER A M, OUYANG X K, et al. Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(Ⅱ) from aqueous solution[J]. International Journal of Biological Macromolecules,2018,108:149-157. DOI: 10.1016/j.ijbiomac.2017.11.171

    [11]

    LI Z, WANG Z, WANG C, et al. Preparation of magnetic resin microspheres M-P(MMA-DVB-GMA) and the adsorption property to heavy metal ions[J]. Applied Surface Science,2019,496:143708. DOI: 10.1016/j.apsusc.2019.143708

    [12]

    YAN R, QIU Z, BIAN X, et al. Effective adsorption of antimony from aqueous solution by cerium hydroxide loaded on Y-tape molecular sieve adsorbent: Performance and mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,604:125317. DOI: 10.1016/j.colsurfa.2020.125317

    [13]

    MOHAMMED A, RIVERS A, STUCKEY D C, et al. Alginate extraction from Sargassum seaweed in the Caribbean region: Optimization using response surface methodology[J]. Carbohydrate Polymers,2020,245:116419. DOI: 10.1016/j.carbpol.2020.116419

    [14]

    GAO X, LI M, ZHAO Y, et al. Mechanistic study of selective adsorption of Hg2+ ion by porous alginate beads[J]. Chemical Engineering Journal,2019,378:122096. DOI: 10.1016/j.cej.2019.122096

    [15]

    GAO X, ZHANG Y, ZHAO Y. Zinc oxide templating of porous alginate beads for the recovery of gold ions[J]. Carbohydrate Polymers,2018,200:297-304. DOI: 10.1016/j.carbpol.2018.07.097

    [16]

    KARTHIK R, MEENAKSHI S. Removal of Cr(Ⅵ) ions by adsorption onto sodium alginate-polyaniline nanofibers[J]. International Journal of Biological Macromolecules,2015,72:711-717. DOI: 10.1016/j.ijbiomac.2014.09.023

    [17]

    LIU B, HUANG Y. Polyethyleneimine modified eggshell membrane as a novel biosorbent for adsorption and detoxification of Cr(Ⅵ) from water[J]. Journal of Materials Chemistry,2011,21(43):17413-17418. DOI: 10.1039/c1jm12329g

    [18]

    MIRETZKY P, CIRELLI A F. Cr(Ⅵ) and Cr(Ⅲ) removal from aqueous solution by raw and modified lignocellulosic materials: A review[J]. Journal of Hazardous Materials,2010,180(1):1-19.

    [19]

    YAN Y, AN Q, XIAO Z, et al. Flexible core-shell/bead-like alginate@PEI with exceptional adsorption capacity, recycling performance toward batch and column sorption of Cr(Ⅵ)[J]. Chemical Engineering Journal,2017,313:475-486. DOI: 10.1016/j.cej.2016.12.099

    [20] 国家环境保护局. 水质 六价铬的测定 二苯碳酰二肼分光光度法: GB 7467—1987[S]. 北京: 中国标准出版社, 1987.

    State Department of Environmental Conservation. Water quality: Determination of chromium(Ⅵ): 1,5-Diphenylcarbohydrazide spectrophotometric method: GB 7467—1987[S]. Beijing: China Standards Press, 1987(in Chinese).

    [21]

    ZHANG W, WANG H, HU X, et al. Multicavity triethylenetetramine-chitosan/alginate composite beads for enhanced Cr(Ⅵ) removal[J]. Journal of Cleaner Production,2019,231:733-745. DOI: 10.1016/j.jclepro.2019.05.219

    [22]

    ZHANG W, ZHANG S, WANG J, et al. Hybrid functionalized chitosan-Al2O3@SiO2 composite for enhanced Cr(Ⅵ) adsorption[J]. Chemosphere,2018,203:188-198. DOI: 10.1016/j.chemosphere.2018.03.188

    [23]

    RAO R A K, KASHIFUDDIN M. Kinetics and isotherm studies of Cd(Ⅱ) adsorption from aqueous solution utilizing seeds of bottlebrush plant (Callistemon chisholmii)[J]. Applied Water Science,2014,4:371-383. DOI: 10.1007/s13201-014-0153-2

    [24]

    LIAN L, GUO L, GUO C. Adsorption of Congo red from aqueous solutions onto Ca-bentonite[J]. Journal of Hazardous Materials,2009,161(1):126-131. DOI: 10.1016/j.jhazmat.2008.03.063

    [25]

    XU L Q, WAN D, GONG H F, et al. One-pot preparation of ferrocene-functionalized polymer brushes on gold substrates by combined surface-initiated atom transfer radical polymerization and “click chemistry”[J]. Langmuir,2010,26(19):15376-15382. DOI: 10.1021/la102775y

    [26]

    GAO X, ZHANG Y, ZHAO Y. Biosorption and reduction of Au(Ⅲ) to gold nanoparticles by thiourea modified alginate[J]. Carbohydrate Polymers,2017,159:108-115. DOI: 10.1016/j.carbpol.2016.11.095

    [27] 王磊, 白成玲, 朱振亚. 氧化石墨烯/海藻酸钠复合膜对Pb(Ⅱ)的吸附性能和机制[J]. 复合材料学报, 2020, 37(3):681-689.

    WANG L, BAI C L, ZHU Z Y. Adsorption properties and mechanism of Pb(Ⅱ) adsorbed by graphene oxide/sodium alginate composite membrane[J]. Acta Materiae Compositae Sinica,2020,37(3):681-689(in Chinese).

    [28]

    SUN Z, LIU Y, HUANG Y, et al. Fast adsorption of Cd2+ and Pb2+ by EGTA dianhydride (EGTAD) modified ramie fiber[J]. Journal of Colloid and Interface Science,2014,434:152-158. DOI: 10.1016/j.jcis.2014.07.036

    [29]

    OMER A M, KHALIFA R E, HU Z, et al. Fabrication of tetraethylenepentamine functionalized alginate beads for adsorptive removal of Cr(Ⅵ) from aqueous solutions[J]. International Journal of Biological Macromolecules,2019,125:1221-1231. DOI: 10.1016/j.ijbiomac.2018.09.097

    [30]

    WAN Z, CHO D W, TSANG D C W, et al. Concurrent adsorption and micro-electrolysis of Cr(Ⅵ) by nanoscale zerovalent iron/biochar/Ca-alginate compositen[J]. Environmental Pollution,2019,247:410-420. DOI: 10.1016/j.envpol.2019.01.047

    [31]

    WEN R, TU B, GUO X, et al. An ion release controlled Cr(Ⅵ) treatment agent: Nano zero-valent iron/carbon/alginate composite gel[J]. International Journal of Biological Macromolecules,2020,146:692-704. DOI: 10.1016/j.ijbiomac.2019.12.168

    [32]

    PERIYASAMY S, GOPALAKANNAN V, VISWANATHAN N. Hydrothermal assisted magnetic nano-hydroxyapatite encapsulated alginate beads for efficient Cr(Ⅵ) uptake from water[J]. Journal of Environmental Chemical Engineering,2018,6(1):1443-1454. DOI: 10.1016/j.jece.2018.01.007

    [33]

    LV X, ZHANG Y, FU W, CAO J, et al. Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium(Ⅵ) removal[J]. Journal of Colloid and Interface Science,2017,506:633-643. DOI: 10.1016/j.jcis.2017.07.024

    [34]

    GAO X, GUO C, HAO J, et al. Selective adsorption of Pd(Ⅱ) by ion-imprinted porous alginate beads: Experimental and density functional theory study[J]. International Journal of Biological Macromolecules,2020,157:401-413. DOI: 10.1016/j.ijbiomac.2020.04.153

    [35] 张继国, 王艳, 张琼, 等. 聚乙烯亚胺-羧甲基纤维素的合成及对金属离子的吸附性能[J]. 高分子材料科学与工程, 2005, 30(3):15-20.

    ZHANG J G, WANG Y, ZHANG Q, et al. Preparation of polyethyleneimine-carboxymethyl celluose and its adsorption properties for metal ions[J]. Polymer Materials Science & Engineering,2005,30(3):15-20(in Chinese).

    [36]

    SOLOMONS T G. Organic chemistry[M]. New York: Wiley Press Inc., 1980.

    [37] 杨庆, 梁伯润, 窦丰栋, 等. 以乙二醛为交联剂的壳聚糖纤维交联机理探索[J]. 纤维素科学与技术, 2005, 30(3):13-20.

    YANG Q, LIANG B R, DOU F D, et al. Exploration on cross-linking mechanism of chitosan fiber with glyoxal as cross-linking reagent[J]. Journal of Cellulose Science and Technology,2005,30(3):13-20(in Chinese).

    [38]

    MA Y, WANG A, LI J, et al. Preparation of hydroxyapatite with high surface area and dispersity templated on calcium carbonate in dipeptide hydrogels[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,596:124740. DOI: 10.1016/j.colsurfa.2020.124740

    [39]

    TIAN X, WANG W, WANG Y, et al. Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr(Ⅵ)[J]. Microporous and Mesoporous Materials,2015,207:46-52. DOI: 10.1016/j.micromeso.2014.12.031

    [40]

    OCIŃSKI D, JACUKOWICZ S I, KOCIOŁEK B E. Alginate beads containing water treatment residuals for arsenic removal from water: Formation and adsorption studies[J]. Environmental Science and Pollution Research,2016,23(24):24527-24539. DOI: 10.1007/s11356-016-6768-0

    [41]

    AI Z, CHENG Y, ZHANG L, et al. Efficient removal of Cr(Ⅵ) from aqueous solution with Fe@Fe2O3 core-shell nanowires[J]. Environmental Science & Technology,2008,42(18):6955-6960.

    [42]

    MANNING B A, KISER J R, KWON H, et al. Spectroscopic investigation of Cr(Ⅲ)- and Cr(Ⅵ)-treated nanoscale zerovalent iron[J]. Environmental Science & Technology,2007,41(2):586-592.

    [43]

    SUN X F, MA Y, LIU X W, et al. Sorption and detoxification of chromium(Ⅵ) by aerobic granules functionalized with polyethylenimine[J]. Water Research,2010,44(8):2517-2524. DOI: 10.1016/j.watres.2010.01.027

    [44]

    VIEIRA R S, MENEGHETTI E, BARONI P, et al. Chromium removal on chitosan-based sorbents: An EXAFS/XANES investigation of mechanism[J]. Materials Chemistry and Physics,2014,146(3):412-417. DOI: 10.1016/j.matchemphys.2014.03.046

图(13)  /  表(5)
计量
  • 文章访问数:  3421
  • HTML全文浏览量:  839
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-05
  • 录用日期:  2020-10-09
  • 网络出版日期:  2020-10-14
  • 刊出日期:  2021-07-14

目录

/

返回文章
返回