留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生皮肤褶皱结构的电容式传感器的制备及性能

张蕊 于林吉 潘以沫 郑莹莹 王建 张寅江 邹专勇

张蕊, 于林吉, 潘以沫, 等. 仿生皮肤褶皱结构的电容式传感器的制备及性能[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 张蕊, 于林吉, 潘以沫, 等. 仿生皮肤褶皱结构的电容式传感器的制备及性能[J]. 复合材料学报, 2024, 42(0): 1-9.
ZHANG Rui, YU Linji, PAN Yimo, et al. Preparation and performance of capacitive sensors with biomimetic skin wrinkle structure[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Rui, YU Linji, PAN Yimo, et al. Preparation and performance of capacitive sensors with biomimetic skin wrinkle structure[J]. Acta Materiae Compositae Sinica.

仿生皮肤褶皱结构的电容式传感器的制备及性能

基金项目: 浙江省教育厅一般科研项目(Y202351466);绍兴文理学院-浙江大学绍兴研究院联合科研资助基金项目(2023LHLG008)
详细信息
    通讯作者:

    王建,博士,讲师,硕士生导师,研究方向为纤维新材料及柔性智能可穿戴纺织品 E-mail: jwang@usx.edu.cn

  • 中图分类号: TB332

Preparation and performance of capacitive sensors with biomimetic skin wrinkle structure

Funds: General Scientific Research Project of Zhejiang Education Department (No.Y202351466); The Joint Research Program of Shaoxing University and Shaoxing Institute, Zhejiang University (2023LHLG008)
  • 摘要: 随着智能可穿戴技术的快速发展,柔性电容式传感器因其制备工艺简单及优良的电学性能,在健康监测、人机交互、电子皮肤等领域展现出广阔的应用前景。本文围绕提升电容式传感器的检测范围和耐久性为目标,提出了一种基于聚二甲基硅氧烷(PDMS)和可膨胀微球复合介电层的仿生皮肤褶皱结构的电容式传感器。用SEM分析了介电层的结构形貌,并研究了该传感器的电学性能和人体适用性。结果表明:电容式传感器具有较宽的检测范围(0-242 kPa)、高灵敏度(0.0079 kPa−1)、快速响应时间(230 ms)以及优异的稳定耐久性(9500次循环);同时,还具有较好的非接触感测性能,其非接触灵敏度为0.59%/cm。在实际应用中,该传感器可用于监测手指、手腕、膝盖等关节的弯曲运动,以及眨眼、张口等细微的生理信号。该电容式传感器在运动监测和健康监测领域具有潜在的应用价值。

     

  • 图  1  电容式传感器制备过程图

    Figure  1.  Diagram of the preparation process of capacitive sensor

    图  2  聚二甲基硅氧烷(PDMS)-可膨胀微球介电层和纯PDMS介电层的微观形貌:(a) 可膨胀微球膨胀前的SEM照片;(b)可膨胀微球膨胀后的SEM照片;(c) PDMS-可膨胀微球介电层光学显微镜照片;(d) PDMS-可膨胀微球介电层的SEM照片;(e) PDMS-可膨胀微球介电层实物照片;(f) PDMS-可膨胀微球介电层横截面的SEM照片;(g) 纯PDMS介电层的SEM;(h) 纯PDMS介电层横截面的SEM照片。

    Figure  2.  Microscopic morphology of polydimethylsiloxane (PDMS)-expandable microsphere dielectric layer and pure PDMS dielectric layer: (a) SEM image of expandable microspheres before expansion; (b) SEM image of expandable microspheres after expansion; (c) PDMS-expandable microsphere dielectric layer optical microscope picture; (d) SEM image of PDMS-expandable microsphere dielectric layer; (e) Photographic of PDMS-expandable microsphere dielectric layer; (f) SEM image of PDMS-expandable microsphere dielectric layer cross-section; (g) SEM of pure PDMS dielectric layer; (h) SEM image of pure PDMS dielectric layer cross-section.

    图  3  电容式传感器的传感机制示意图

    Figure  3.  Schematic diagram of sensing mechanism of capacitive sensor

    图  4  电容式传感器压力传感性能:(a) 压力灵敏度;(b) 不同压力下的电容响应;(c) 在2 kPa压力下对传感器进行循环施压的电容响应数据;(d-e) 响应/回复时间;(f) 压力耐久性;(g) 电容式传感器性能对比图

    Figure  4.  Capacitive sensor pressure sensing performance: (a) Pressure sensitivity; (b) Capacitive response at different pressures; (c) Capacitive response data for cyclic pressure application to the sensor at 2 kPa pressure; (d-e) Response/recovery time; (f) Pressure durability; (g) Performance comparison of capacitive sensors

    图  5  电容式传感器非接触性能:(a) 非接触传感示意图;(b) 非接触灵敏度;(c) 不同距离下的电容响应;(d) 不同手指根数的电容响应(5 cm高度);(e) 非接触耐久性

    Figure  5.  Capacitive sensor non-contact performance: (a) Non contact sensing schematic diagram; (b) Non-contact sensitivity; (c) Capacitive response at different distances; (d) Capacitive response for different number of fingers (5 cm height); (e) Non-contact durability

    图  6  电容式传感器关节弯曲运动应用:(a) 手指弯曲;(b) 手腕弯曲;(c) 膝盖弯曲;(d) 走路

    Figure  6.  Capacitive sensors for joint bending motion applications: (a) Finger bending; (b) Wrist bending; (c) Knee bending; (d) Walking

    图  7  电容式传感器生理信号监测:(a) 眨眼;(b) 张口;(c) 吞咽

    Figure  7.  Capacitive sensor physiological signal monitoring: (a) Blinking; (b) Opening the mouth; (c) Swallowing

    图  8  电容式传感器在外加压力下的响应演示:(a1-b2) 传感器对快速触摸和重量压力的电容响应;(c1-d2) 检测各种重复动作,包括点击鼠标和抓烧杯;(e-g) 检测指尖、不锈钢圆柱体和尺子尖对传感器的重复敲击

    Figure  8.  Demonstration of the capacitive sensor in response to exerted pressures: (a-b) Capacitive response of the sensor to fast touch and weight pressure; (c-d) Detection of various repeated actions, including clicking the mouse and grasping the beaker; (e-g) Detection of the repeated strikes of the sensor by fingertips, stainless steel cylinders and ruler tips

    图  9  电容式传感器用于摩斯密码应用:(a) 阿拉伯数字和英文字母摩斯密码表;(b-c) 不同阿拉伯数字的摩斯密码电容信号;(d-e) 不同英文字母的摩斯密码电容信号;(f) 不同单词的摩斯密码电容信号

    Figure  9.  Capacitive sensors for morse code applications: (a) Morse code table of Arabic numerals and English letters; (b-c) Morse code capacitive signals with different arabic numerals; (d-e) Morse code capacitive signals for different alphabets; (f) Morse code capacitive signals for different words

  • [1] HE Z, WANG K, ZHAO Z, et al. A wearable flexible acceleration sensor for monitoring human motion[J]. Biosensors, 2022, 12(8): 620. doi: 10.3390/bios12080620
    [2] MAITY D, RAJAVEL K, RAJENDRA KUMAR R T. MWCNT enabled smart textiles based flexible and wearable sensor for human motion and humidity monitoring[J]. Cellulose, 2021, 28: 2505-2520. doi: 10.1007/s10570-020-03617-5
    [3] CHEN S, QI J, FAN S, et al. Flexible wearable sensors for cardiovascular health monitoring[J]. Advanced Healthcare Materials, 2021, 10(17): 2100116. doi: 10.1002/adhm.202100116
    [4] CUI X, HUANG F, ZHANG X, et al. Flexible pressure sensors via engineering microstructures for wearable human-machine interaction and health monitoring applications[J]. Iscience, 2022, 25(4).
    [5] NI Y, ZANG X, CHEN J, et al. Flexible MXene-based hydrogel enables wearable human–computer interaction for intelligent underwater communication and sensing rescue[J]. Advanced Functional Materials, 2023, 33(49): 2301127. doi: 10.1002/adfm.202301127
    [6] ZHANG H, ZHANG D, GUAN J, et al. A flexible wearable strain sensor for human-motion detection and a human–machine interface[J]. Journal of Materials Chemistry C, 2022, 10(41): 15554-15564. doi: 10.1039/D2TC03147G
    [7] JEONG H, NOH Y, KO S H, et al. Flexible resistive pressure sensor with silver nanowire networks embedded in polymer using natural formation of air gap[J]. Composites Science and Technology, 2019, 174: 50-57. doi: 10.1016/j.compscitech.2019.01.028
    [8] DU D, MA X, AN W, et al. Flexible piezoresistive pressure sensor based on wrinkled layers with fast response for wearable applications[J]. Measurement, 2022, 201: 111645. doi: 10.1016/j.measurement.2022.111645
    [9] HWANG J, KIM Y, YANG H, et al. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor[J]. Composites Part B: Engineering, 2021, 211: 108607. doi: 10.1016/j.compositesb.2021.108607
    [10] NIU H, WEI X, LI H, et al. Micropyramid array bimodal electronic skin for intelligent material and surface shape perception based on capacitive sensing[J]. Advanced Science, 2024, 11(3): 2305528. doi: 10.1002/advs.202305528
    [11] YANG Y, PAN H, XIE G, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring[J]. Sensors and Actuators A: Physical, 2020, 301: 111789. doi: 10.1016/j.sna.2019.111789
    [12] HOU X, ZHANG S, YU J, et al. Flexible piezoelectric nanofibers/polydimethylsiloxane-based pressure sensor for self-powered human motion monitoring[J]. Energy Technology, 2020, 8(3): 1901242. doi: 10.1002/ente.201901242
    [13] SYAMINI J, CHANDRAN A. Mylar interlayer-mediated performance enhancement of a flexible triboelectric nanogenerator for self-powered pressure sensing application[J]. ACS Applied Electronic Materials, 2023, 5(2): 1002-1012. doi: 10.1021/acsaelm.2c01525
    [14] ZHONG Y, WANG J, HAN L, et al. High-performance flexible self-powered triboelectric pressure sensor based on chemically modified micropatterned PDMS film[J]. Sensors and Actuators A: Physical, 2023, 349: 114013. doi: 10.1016/j.sna.2022.114013
    [15] QIN J, YIN L J, HAO Y N, et al. Flexible and stretchable capacitive sensors with different microstructures[J]. Advanced Materials, 2021, 33(34): 2008267. doi: 10.1002/adma.202008267
    [16] DONG T, GU Y, LIU T, et al. Resistive and capacitive strain sensors based on customized compliant electrode: Comparison and their wearable applications[J]. Sensors and Actuators A: Physical, 2021, 326: 112720. doi: 10.1016/j.sna.2021.112720
    [17] SUN X, LIU T, ZHOU J, et al. Recent applications of different microstructure designs in high performance tactile sensors: A review[J]. IEEE Sensors Journal, 2021, 21(9): 10291-10303. doi: 10.1109/JSEN.2021.3061677
    [18] HE X, LIU Z, SHEN G, et al. Microstructured capacitive sensor with broad detection range and long-term stability for human activity detection[J]. npj Flexible Electronics, 2021, 5(1): 17. doi: 10.1038/s41528-021-00114-y
    [19] ZHAO Y, GUO X, HONG W, et al. Biologically imitated capacitive flexible sensor with ultrahigh sensitivity and ultralow detection limit based on frog leg structure composites via 3D printing[J]. Composites Science and Technology, 2023, 231: 109837. doi: 10.1016/j.compscitech.2022.109837
    [20] WAN Y, QIU Z, HUANG J, et al. Natural plant materials as dielectric layer for highly sensitive flexible electronic skin[J]. Small, 2018, 14(35): 1801657. doi: 10.1002/smll.201801657
    [21] ELSAYES A, SHARMA V, YIANNACOU K, et al. Plant-based biodegradable capacitive tactile pressure sensor using flexible and transparent leaf skeletons as electrodes and flower petal as dielectric layer[J]. Advanced Sustainable Systems, 2020, 4(9): 2000056. doi: 10.1002/adsu.202000056
    [22] CHOI J, KWON D, KIM K, et al. Synergetic effect of porous elastomer and percolation of carbon nanotube filler toward high performance capacitive pressure sensors[J]. ACS applied materials & interfaces, 2019, 12(1): 1698-1706.
    [23] 郭常波, 张鹏, 张龙, 等. 基于空心微柱介电层的柔性电容式压力传感器[J]. 电子元件与材料, 2024, 43(1): 33-39.

    GUO Changbo, ZHANG Peng, ZHANG Long, et al. Flexible capacitive pressure sensor based on hollow microcolumn dielectric layer[J]. Electronic Components & Materials, 2024, 43(1): 33-39(in Chinese).
    [24] SONG Z, LIU Z, ZHAO L, et al. Biodegradable and flexible capacitive pressure sensor for electronic skins[J]. Organic Electronics, 2022, 106: 106539. doi: 10.1016/j.orgel.2022.106539
    [25] 陈续峰, 张宇, 秦亚飞, 等. 基于炭黑-钛酸钡/聚氨酯的柔性电容式压力传感器[J]. 复合材料学报, 2024, 42: 1-10.

    CHEN Xufeng, ZHANG Yu, QIN Yafei, et al. Flexible capacitive pressure sensor based on carbon black/barium titanate/polyurethane[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-10(in Chinese).
    [26] 王菲菲, 彭海益, 姚晓刚. 基于多向冷冻法制备的高灵敏度柔性电容式压力传感器[J]. 复合材料学报, 2023, 40(5): 2680-2687.

    WANG Feifei, PENG Haiyi, YAO Xiaogang. High-sensitive flexible capacitive pressure sensor based on multi-directional freezing method[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2680-2687(in Chinese).
    [27] ZHAO T, ZHU H, ZHANG H. Rapid prototyping flexible capacitive pressure sensors based on porous electrodes[J]. Biosensors, 2023, 13(5): 546. doi: 10.3390/bios13050546
    [28] SENGUPTA D, LU L, GOMES D R, et al. Fabric-like electrospun PVAc–graphene nanofiber webs as wearable and degradable piezocapacitive sensors[J]. ACS Applied Materials & Interfaces, 2023, 15(18): 22351-22366.
    [29] CUI H, LIU Y, TANG R, et al. A sensitive and flexible capacitive pressure sensor based on a porous hollow hemisphere dielectric layer[J]. Micromachines, 2023, 14(3): 662. doi: 10.3390/mi14030662
    [30] LI R, PANAHI-SARMAD M, CHEN T, et al. Highly sensitive and flexible capacitive pressure sensor based on a dual-structured nanofiber membrane as the dielectric for attachable wearable electronics[J]. ACS Applied Electronic Materials, 2022, 4(1): 469-477. doi: 10.1021/acsaelm.1c01098
    [31] YING S, LI J, HUANG J, et al. A flexible piezocapacitive pressure sensor with microsphere-array electrodes[J]. Nanomaterials, 2023, 13(11): 1702. doi: 10.3390/nano13111702
    [32] KURUP L A, COLE C M, ARTHUR J N, et al. Graphene porous foams for capacitive pressure sensing[J]. ACS Applied Nano Materials, 2022, 5(2): 2973-2983. doi: 10.1021/acsanm.2c00247
    [33] QIU J, GUO X, CHU R, et al. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin[J]. ACS applied materials & interfaces, 2019, 11(43): 40716-40725.
    [34] HA K H, ZHANG W, JANG H, et al. Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite[J]. Advanced Materials, 2021, 33(48): 2103320. doi: 10.1002/adma.202103320
    [35] YE X, TIAN M, LI M, et al. All-fabric-based flexible capacitive sensors with pressure detection and non-contact instruction capability[J]. Coatings, 2022, 12(3): 302. doi: 10.3390/coatings12030302
    [36] GUAN F, XIE Y, WU H, et al. Silver nanowire–bacterial cellulose composite fiber-based sensor for highly sensitive detection of pressure and proximity[J]. ACS nano, 2020, 14(11): 15428-15439. doi: 10.1021/acsnano.0c06063
    [37] GARBINI J L, SAUNDERS R A, JORGENSEN J E. In-process drilled hole inspection for aerospace applications[J]. Precision engineering, 1991, 13(2): 125-134. doi: 10.1016/0141-6359(91)90503-B
  • 加载中
计量
  • 文章访问数:  12
  • HTML全文浏览量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-26
  • 修回日期:  2024-08-28
  • 录用日期:  2024-09-25
  • 网络出版日期:  2024-10-12

目录

    /

    返回文章
    返回