留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿真模拟主动调节负泊松比力学超材料

姚永涛 丛琳 王鸿涛 王军

姚永涛, 丛琳, 王鸿涛, 等. 仿真模拟主动调节负泊松比力学超材料[J]. 复合材料学报, 2023, 41(0): 1-10
引用本文: 姚永涛, 丛琳, 王鸿涛, 等. 仿真模拟主动调节负泊松比力学超材料[J]. 复合材料学报, 2023, 41(0): 1-10
Yongtao YAO, Lin CONG, Hongtao WANG, Jun WANG. Modeling active adjustment of negative Poisson’s ratio mechanical metamaterials[J]. Acta Materiae Compositae Sinica.
Citation: Yongtao YAO, Lin CONG, Hongtao WANG, Jun WANG. Modeling active adjustment of negative Poisson’s ratio mechanical metamaterials[J]. Acta Materiae Compositae Sinica.

仿真模拟主动调节负泊松比力学超材料

基金项目: 国家自然科学基金 (12272112);特种环境复合材料技术国家级重点实验室基金
详细信息
    通讯作者:

    姚永涛,博士,副教授,博士生导师,研究方向为负泊松比超材料结构 E-mail:yaoyt@hit.edu.cn

  • 中图分类号: TB34

Modeling active adjustment of negative Poisson’s ratio mechanical metamaterials

Funds: National Natural Science Foundation of China(12272112);The Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environments
  • 摘要: 负泊松比材料作为一种新型的力学超材料,鉴于其优异的力学性能,在航天、航空、工业、医药科学等领域具有广泛的应用前景。科研人员针对有序的、变形行为单一的负泊松比结构已经做了大量的研究,但是面对更复杂的工作环境,这类结构仍然具有一定的局限性,因此开发新型性能宽范围可控超材料的研究尤为重要。本文基于旋转刚体原理的负泊松比结构,设计了一种二维的泊松比可调控的多孔结构,通过基本梁理论计算和有限元仿真,可以确定材料泊松比正负调节与结构单元排列之间的关系,从而实现二维多孔结构泊松比的调控。通过填充结构的结构设计,可实现该结构泊松比从正到负的自由转换,及其力学大范围可调,从而拓宽了该类材料的工程应用。例如本文设计的一种十字花套筒支撑结构如图1所示;具有十字花套筒支撑结构的超材料压缩曲线如图2所示。在压缩过程中该结构的泊松比实现了从正到负的大范围转换,展现了该多孔材料良好的力学调节性能。十字花套筒支撑结构

     

  • 图  1  (a)旋转型负泊松比结构;(b)轻量化设计结构

    Figure  1.  (a) Rotary type negative Poisson’s ratio; (b) Frame structure

    图  2  结构单元尺寸参数

    Figure  2.  Size parameters of the unit structure

    $ {L}_{x} $, $ {L}_{y} $- Length of the sides in the x and y directions; θ -Angle between the string and the sides; b-Chord length of the frame;$ {L}_{\mathrm{g}\mathrm{x}} $-Effective bending length of the ligament along the x direction

    图  3  实心结构的压缩变形过程和曲线:((a)~(c))压缩前变形过程;((d)~(f))压缩曲线

    Figure  3.  Compressive deformation and curve process of solid structure: ((a)-(c)) Pre-compression deformation process; ((d)-(f)) Compression curve

    图  4  几种不同排列的压缩变形和压缩过程的泊松比变化曲线

    Figure  4.  Poisson’s ratio curve of compressive deformation of several different arrangements

    图  5  几种不同填充比例结构的压缩变形和压缩过程的泊松比变化曲线: (a) 36%; (b) 44%; (c) 52%; (d) 68%

    Figure  5.  Poisson’s ratio curve of compressive deformation of several different filling ratios: (a) 36%; (b) 44%; (c) 52%; (d) 68%

    图  6  加热前后的压缩变形:(a)加热前;(b)加热后

    Figure  6.  Compressive deformation before (a) and after (b) heating

    图  7  十字花结构

    Figure  7.  Cross bracing structure

    图  8  十字结构压缩曲线

    Figure  8.  Compression curve of cross structure

    图  9  轮轴结构:(a)同向轮轴;(b)反向轮轴

    Figure  9.  Structure of the wheel shaft: (a) Co-directional wheel shaft; (b) Reverse wheel shaft

    图  10  轮轴结构的压缩变形过程

    Figure  10.  Compressive deformation of the wheel shaft structure

    表  1  不同微结构泊松比拐点数值

    Table  1.   Poisson’s ratio inflection point values of different microstructures

    TypePoisson’s ratioEquivalent strainEquivalent stress/Pa
    Cross bracing
    structure
    00.0532822
    Co-directional
    wheel shaft
    00.0369616
    Reverse wheel shaft00.0091992
    下载: 导出CSV
  • [1] 程宗辉, 段本方, 陈云鹏, 等. 基于磁性衬底的宽频薄层超材料吸波体研究[J]. 磁性材料及器件, 2022, 53(4):41-47.

    CHENG Z H, DUAN B F, CHEN Y P, et al. Study on broadband thin layer metamaterial absorber based on magnetic substrate[J]. Magnetic Materials and Devices,2022,53(4):41-47(in Chinese).
    [2] 王凯, 周加喜, 蔡昌琦, 等. 低频弹性波超材料的若干进展[J]. 力学学报, 2022, 54(10):2678-2694. doi: 10.6052/0459-1879-22-108

    WANG K, ZHOU J X, CAI C Q, et al. Some Advances in Low Frequency Elastic Wave Metamaterials[J]. Journal of Mechanics,2022,54(10):2678-2694(in Chinese). doi: 10.6052/0459-1879-22-108
    [3] 曹培政, 张宇, 刁顺, 等. 水下声学超材料研究[J]. 中国材料进展, 2021, 40(1):7-21. doi: 10.7502/j.issn.1674-3962.202007017

    CAO P Z, ZHANG Y, DIAO S, et al. Research on underwater acoustic metamaterials[J]. China Materials Progress,2021,40(1):7-21(in Chinese). doi: 10.7502/j.issn.1674-3962.202007017
    [4] KATARZYNA B, MATTEO B, GREG M, et al. Blocked Shape Memory Effect in Negative Poisson’s Ratio Polymer Metamaterials[J]. Acs Applied Materials & Interfaces,2016,8(31):20319.
    [5] KOLKEN, HMA, ZADPOOR A A. Auxetic mechanical metamaterials[J]. RSC Advances,2017,7:5111-5129. doi: 10.1039/C6RA27333E
    [6] CHOI J B, LAKES R S. Nonlinear properties of metallic cellular materials with a negative Poisson’s ratio[J]. Journal of Materials Science,1992,27(19):5375-5381. doi: 10.1007/BF02403846
    [7] PRAWOTO Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio[J]. Computational Materials Science,2012,58:140-153. doi: 10.1016/j.commatsci.2012.02.012
    [8] LOVE A E. A Treatise on the Mathematical Theory of Elasticity[M]. New York: Dover Publications, 2013: 25-30.
    [9] 杨智春, 邓庆田. 负泊松比材料与结构的力学性能研究及应用[J]. 力学进展, 2011, 41(3):335-350. doi: 10.6052/1000-0992-2011-3-lxjzJ2011-013

    YANG Z C, DENG Q T. Research and application of mechanical properties of materials and structures with negative Poisson's ratio[J]. Advances in Mechanics,2011,41(3):335-350(in Chinese). doi: 10.6052/1000-0992-2011-3-lxjzJ2011-013
    [10] GIBSON L J, ASHBY M F. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society of London,1982,382(1782):25-42.
    [11] GIBSON L J, ASHBY M F. Cellular Solids: Structure and properties[M]. Oxford: Pergamon Press, 1988: 85-87.
    [12] LAKES R. Foam Structures with a Negative Poisson’s Ratio[J]. Science,1987,235:1038-1040. doi: 10.1126/science.235.4792.1038
    [13] LAKES R. Negative Poisson’s Ratio Materials[J]. Science,1987,238:551-556. doi: 10.1126/science.238.4826.551.a
    [14] MASTERS I G, EVANS K E. Models for the elastic deformation of honeycombs[J]. Composite Structures,1996,35(4):403-422. doi: 10.1016/S0263-8223(96)00054-2
    [15] 孙龙, 任鑫, 张毅, 等. 一种刚度可调控的负泊松比管状结构[J]. 复合材料学报, 2022, 39(4):1813-1823.

    SUN L, REN X, ZHANG Y, et al. An auxetic tubular structure with tuneable stiffness[J]. Acta Materiae Compositae Sinica,2022,39(4):1813-1823(in Chinese).
    [16] 邓二杰, 刘彦琦, 宋春芳. 负刚度蜂窝单胞结构制备及压缩性能[J]. 复合材料学报, 2022, 39(5):2161-2171.

    DENG E J, LIU Y Q, SONG C F. Preparation and compression properties of negative stiffness honeycomb cell structure[J]. Acta Materiae Compositae Sinica,2022,39(5):2161-2171(in Chinese).
    [17] LIPTON J I, MACCURDY R, MANCHESTER Z, et al. Handedness in shearing auxetics creates rigid and compliant structures[J]. Science (New York, N. Y. ),2018,360(6389):632-635. doi: 10.1126/science.aar4586
    [18] 于雅琳, 李健芳, 黄智彬, 等. 复合材料负泊松比格栅结构设计及力学性能评价[J]. 复合材料学报, 2021, 38(4):1107-1114. doi: 10.13801/j.cnki.fhclxb.20200623.002

    YU Y L, LI J F, HUANG Z B, et al. Structural design and mechanical characterization of an auxetic advanced grid structure composite[J]. Acta Materiae Compositae Sinica,2021,38(4):1107-1114(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200623.002
    [19] OVERVELDE J T B, SHAN S, BERTOLDI K. Compaction Through Buckling in 2 D Periodic, Soft and Porous Structures: Effect of Pore Shape[J]. Advanced Materials,2012,24(17):2337-2342. doi: 10.1002/adma.201104395
    [20] HAN Y F, LU W F. Evolutionary design of nonuniform cellular structures with optimized Poisson's ratio distribution[J]. Materials & Design,2018,141:384-394.
    [21] RUBEN G, ROBERTO C, DAPHNE A, et al. On the properties of real finite sized planar and tubular stent-like auxetic structures[J]. Physica Status Solidi (b),2014,251(2):321-327. doi: 10.1002/pssb.201384257
    [22] DONG W J, SUN Q. Airfoil Design and Numerical Analysis for Morphing Wing Structure[J]. Advanced Materials Research,2011,228-229:169-173. doi: 10.4028/www.scientific.net/AMR.228-229.169
    [23] LENG J S, LAN X, LIU Y J, et al. Shape-memory polymers and their composites: Stimulus methods and applications[J]. Progress in Materials Science,2011,56(7):1077-1135. doi: 10.1016/j.pmatsci.2011.03.001
    [24] LIRA C, SCARPA F, TAI Y H, et al. Transverse shear modulus of SILICOMB cellular structures[J]. Composites Science and Technology,2011,71(9):1236-1241. doi: 10.1016/j.compscitech.2011.04.008
    [25] 杜善义, 张博明. 飞行器结构智能化研究及其发展趋势[J]. 宇航学报, 2007, 28(4):773-778. doi: 10.3321/j.issn:1000-1328.2007.04.001

    DU S Y, ZHANG B M. Research and development trend of aircraft structure intelligence[J]. Journal of Astronautics and Astronautics,2007,28(4):773-778(in Chinese). doi: 10.3321/j.issn:1000-1328.2007.04.001
    [26] 陈以金. 变体飞行器柔性蒙皮及支撑结构性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    CHEN Y J. Study on flexible skin and supporting substructure of morphing aircraft[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
    [27] LENG J S, DU S Y. Shape-memory polymers and multifunctional composites[M]. [S. l. ]: CRC Press, 2010.
    [28] LUO L, ZHANG F H, LENG J S. Multi-performance shape-memory epoxy resins and their composites with narrow transition temperature range[J]. Composites Science and Technology,2021,213(7):108899.
    [29] LI W B, LIU Y J, LENG J S. Programmable and shape-memorizing information carriers[J]. ACS Applied Materials & Interfaces,2017,9(51):44792-44798.
  • 加载中
计量
  • 文章访问数:  40
  • HTML全文浏览量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-22
  • 修回日期:  2023-04-20
  • 录用日期:  2023-04-30
  • 网络出版日期:  2023-05-20

目录

    /

    返回文章
    返回