Modeling active adjustment of negative Poisson’s ratio mechanical metamaterials
-
摘要:
负泊松比材料作为一种新型的力学超材料,鉴于其优异的力学性能,在航天、航空、工业、医药科学等领域具有广泛的应用前景。科研人员针对有序的、变形行为单一的负泊松比结构已经做了大量的研究,但是面对更复杂的工作环境,这类结构仍然具有一定的局限性,因此开发新型性能宽范围可控超材料的研究尤为重要。本文基于旋转刚体原理的负泊松比结构,设计了一种二维的泊松比可调控的多孔结构,通过基本梁理论计算和有限元仿真,可以确定材料泊松比正负调节与结构单元排列之间的关系,从而实现二维多孔结构泊松比的调控。通过填充结构的结构设计,可实现该结构泊松比从正到负的自由转换,及其力学大范围可调,从而拓宽了该类材料的工程应用。例如本文设计的一种十字花套筒支撑结构如 图1 所示;具有十字花套筒支撑结构的超材料压缩曲线如图2 所示。在压缩过程中该结构的泊松比实现了从正到负的大范围转换,展现了该多孔材料良好的力学调节性能。十字花套筒支撑结构 Abstract: As a new type of metamaterials, negative Poisson’s ratio materials have great potential application prospects in aerospace, aviation, industry, medical science and other fields due to its excellent mechanical properties. In order to obtain metamaterials with actively adjustable performance and structure, a unit model of metamaterial structure was first designed based on the negative Poisson’s ratio structure. Then, through the calculation of basic beam theory, the critical parameters between the positive and negative transition of the Poisson’s ratio of the macrostructure and the rigid body structure were obtained. In addition, through finite element simulation, the relationship between positive and negative adjustment of Poisson’s ratio of materials and the proportion and arrangement of filling elements was determined. Finally, the vibration characteristics and mechanical properties of this two-dimensional structural material were analyzed in detail. The results show that this material shows excellent performance in regulating the structure and reducing vibration. Adjusting the filling form and arrangement of the internal unit, we can obtain different mechanical properties and energy absorption effects; At the same time, by introducing shape memory materials and microstructures, the materials show excellent macrostructure and intelligent adjustment of stiffness.-
Key words:
- mechanical metamaterials /
- Poisson's ratio /
- energy absorption /
- adjustable design
-
表 1 不同微结构泊松比拐点数值
Table 1. Poisson’s ratio inflection point values of different microstructures
Type Poisson’s ratio Equivalent strain Equivalent stress/Pa Cross bracing
structure0 0.053 2822 Co-directional
wheel shaft0 0.036 9616 Reverse wheel shaft 0 0.009 1992 -
[1] 程宗辉, 段本方, 陈云鹏, 等. 基于磁性衬底的宽频薄层超材料吸波体研究[J]. 磁性材料及器件, 2022, 53(4):41-47.CHENG Z H, DUAN B F, CHEN Y P, et al. Study on broadband thin layer metamaterial absorber based on magnetic substrate[J]. Magnetic Materials and Devices,2022,53(4):41-47(in Chinese). [2] 王凯, 周加喜, 蔡昌琦, 等. 低频弹性波超材料的若干进展[J]. 力学学报, 2022, 54(10):2678-2694. doi: 10.6052/0459-1879-22-108WANG K, ZHOU J X, CAI C Q, et al. Some Advances in Low Frequency Elastic Wave Metamaterials[J]. Journal of Mechanics,2022,54(10):2678-2694(in Chinese). doi: 10.6052/0459-1879-22-108 [3] 曹培政, 张宇, 刁顺, 等. 水下声学超材料研究[J]. 中国材料进展, 2021, 40(1):7-21. doi: 10.7502/j.issn.1674-3962.202007017CAO P Z, ZHANG Y, DIAO S, et al. Research on underwater acoustic metamaterials[J]. China Materials Progress,2021,40(1):7-21(in Chinese). doi: 10.7502/j.issn.1674-3962.202007017 [4] KATARZYNA B, MATTEO B, GREG M, et al. Blocked Shape Memory Effect in Negative Poisson’s Ratio Polymer Metamaterials[J]. Acs Applied Materials & Interfaces,2016,8(31):20319. [5] KOLKEN, HMA, ZADPOOR A A. Auxetic mechanical metamaterials[J]. RSC Advances,2017,7:5111-5129. doi: 10.1039/C6RA27333E [6] CHOI J B, LAKES R S. Nonlinear properties of metallic cellular materials with a negative Poisson’s ratio[J]. Journal of Materials Science,1992,27(19):5375-5381. doi: 10.1007/BF02403846 [7] PRAWOTO Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio[J]. Computational Materials Science,2012,58:140-153. doi: 10.1016/j.commatsci.2012.02.012 [8] LOVE A E. A Treatise on the Mathematical Theory of Elasticity[M]. New York: Dover Publications, 2013: 25-30. [9] 杨智春, 邓庆田. 负泊松比材料与结构的力学性能研究及应用[J]. 力学进展, 2011, 41(3):335-350. doi: 10.6052/1000-0992-2011-3-lxjzJ2011-013YANG Z C, DENG Q T. Research and application of mechanical properties of materials and structures with negative Poisson's ratio[J]. Advances in Mechanics,2011,41(3):335-350(in Chinese). doi: 10.6052/1000-0992-2011-3-lxjzJ2011-013 [10] GIBSON L J, ASHBY M F. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society of London,1982,382(1782):25-42. [11] GIBSON L J, ASHBY M F. Cellular Solids: Structure and properties[M]. Oxford: Pergamon Press, 1988: 85-87. [12] LAKES R. Foam Structures with a Negative Poisson’s Ratio[J]. Science,1987,235:1038-1040. doi: 10.1126/science.235.4792.1038 [13] LAKES R. Negative Poisson’s Ratio Materials[J]. Science,1987,238:551-556. doi: 10.1126/science.238.4826.551.a [14] MASTERS I G, EVANS K E. Models for the elastic deformation of honeycombs[J]. Composite Structures,1996,35(4):403-422. doi: 10.1016/S0263-8223(96)00054-2 [15] 孙龙, 任鑫, 张毅, 等. 一种刚度可调控的负泊松比管状结构[J]. 复合材料学报, 2022, 39(4):1813-1823.SUN L, REN X, ZHANG Y, et al. An auxetic tubular structure with tuneable stiffness[J]. Acta Materiae Compositae Sinica,2022,39(4):1813-1823(in Chinese). [16] 邓二杰, 刘彦琦, 宋春芳. 负刚度蜂窝单胞结构制备及压缩性能[J]. 复合材料学报, 2022, 39(5):2161-2171.DENG E J, LIU Y Q, SONG C F. Preparation and compression properties of negative stiffness honeycomb cell structure[J]. Acta Materiae Compositae Sinica,2022,39(5):2161-2171(in Chinese). [17] LIPTON J I, MACCURDY R, MANCHESTER Z, et al. Handedness in shearing auxetics creates rigid and compliant structures[J]. Science (New York, N. Y. ),2018,360(6389):632-635. doi: 10.1126/science.aar4586 [18] 于雅琳, 李健芳, 黄智彬, 等. 复合材料负泊松比格栅结构设计及力学性能评价[J]. 复合材料学报, 2021, 38(4):1107-1114. doi: 10.13801/j.cnki.fhclxb.20200623.002YU Y L, LI J F, HUANG Z B, et al. Structural design and mechanical characterization of an auxetic advanced grid structure composite[J]. Acta Materiae Compositae Sinica,2021,38(4):1107-1114(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200623.002 [19] OVERVELDE J T B, SHAN S, BERTOLDI K. Compaction Through Buckling in 2 D Periodic, Soft and Porous Structures: Effect of Pore Shape[J]. Advanced Materials,2012,24(17):2337-2342. doi: 10.1002/adma.201104395 [20] HAN Y F, LU W F. Evolutionary design of nonuniform cellular structures with optimized Poisson's ratio distribution[J]. Materials & Design,2018,141:384-394. [21] RUBEN G, ROBERTO C, DAPHNE A, et al. On the properties of real finite sized planar and tubular stent-like auxetic structures[J]. Physica Status Solidi (b),2014,251(2):321-327. doi: 10.1002/pssb.201384257 [22] DONG W J, SUN Q. Airfoil Design and Numerical Analysis for Morphing Wing Structure[J]. Advanced Materials Research,2011,228-229:169-173. doi: 10.4028/www.scientific.net/AMR.228-229.169 [23] LENG J S, LAN X, LIU Y J, et al. Shape-memory polymers and their composites: Stimulus methods and applications[J]. Progress in Materials Science,2011,56(7):1077-1135. doi: 10.1016/j.pmatsci.2011.03.001 [24] LIRA C, SCARPA F, TAI Y H, et al. Transverse shear modulus of SILICOMB cellular structures[J]. Composites Science and Technology,2011,71(9):1236-1241. doi: 10.1016/j.compscitech.2011.04.008 [25] 杜善义, 张博明. 飞行器结构智能化研究及其发展趋势[J]. 宇航学报, 2007, 28(4):773-778. doi: 10.3321/j.issn:1000-1328.2007.04.001DU S Y, ZHANG B M. Research and development trend of aircraft structure intelligence[J]. Journal of Astronautics and Astronautics,2007,28(4):773-778(in Chinese). doi: 10.3321/j.issn:1000-1328.2007.04.001 [26] 陈以金. 变体飞行器柔性蒙皮及支撑结构性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.CHEN Y J. Study on flexible skin and supporting substructure of morphing aircraft[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese) [27] LENG J S, DU S Y. Shape-memory polymers and multifunctional composites[M]. [S. l. ]: CRC Press, 2010. [28] LUO L, ZHANG F H, LENG J S. Multi-performance shape-memory epoxy resins and their composites with narrow transition temperature range[J]. Composites Science and Technology,2021,213(7):108899. [29] LI W B, LIU Y J, LENG J S. Programmable and shape-memorizing information carriers[J]. ACS Applied Materials & Interfaces,2017,9(51):44792-44798. -

计量
- 文章访问数: 40
- HTML全文浏览量: 22
- 被引次数: 0