留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PVC锂离子筛膜的制备及其在卤水中的锂吸附性能

王蕾 王磊

王蕾, 王磊. PVC锂离子筛膜的制备及其在卤水中的锂吸附性能[J]. 复合材料学报, 2022, 40(0): 1-17
引用本文: 王蕾, 王磊. PVC锂离子筛膜的制备及其在卤水中的锂吸附性能[J]. 复合材料学报, 2022, 40(0): 1-17
Lei WANG, Lei WANG. Preparation of PVC lithium ion sieve membrane and its lithium adsorption properties in brine[J]. Acta Materiae Compositae Sinica.
Citation: Lei WANG, Lei WANG. Preparation of PVC lithium ion sieve membrane and its lithium adsorption properties in brine[J]. Acta Materiae Compositae Sinica.

PVC锂离子筛膜的制备及其在卤水中的锂吸附性能

基金项目: 陕西省自然科学基础研究专项基金(2019 JM-596);陕西省技术创新引导计划基金(S2019-YD-CGXNX-0049);陕西省科技成果转移与推广计划(2018 SJRG-X-02)
详细信息
    通讯作者:

    王磊,博士,教授,博士生导师,研究方向为膜分离技术 E-mail: wl0178@126.com

  • 中图分类号: TQ131.11;TQ028.8

Preparation of PVC lithium ion sieve membrane and its lithium adsorption properties in brine

Funds: The Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China(No. 2019 JM-596);Technology Innovation Leading Program of Shaanxi(No. S2019-YD-CGXNX-0049);Guidance Fund for Transformation of Scientific and Technological Achievements(No. 2018 SJRG-X-02)
  • 摘要: 离子筛交换吸附法因其绿色且高效的优势,是目前最具工业应用前景的提锂方法之一。该技术的关键是如何制备出适用于高镁锂比且锂浓度很低的卤水的离子筛吸附剂。尖晶石型锰系锂离子筛(LMO)因其工艺简单、吸附容量大、选择性好、循环利用率高及绿色环保经济等优势,是目前最受关注的离子筛类型之一。通常,现阶段制备的锂离子筛以粉末状为主,在工业生产应用中存在流动性差、渗透性差、操作性差、回收率低等问题,导致进行柱式操作时压力大、粉体流失率高、能耗大、成本高,实验研究暂时停留在静态应用上,很难实现工业化。本文使用传统膜材料PVC作为固定粉体离子筛的骨架,通过添加亲水性材料PMMA,致孔剂PVPk30,以及实验室自制的Li1.6Mn1.6O4型离子筛前驱体,制备了Li1.6Mn1.6O4-PVC锂离子筛前驱体膜。使用0.1 mol/L盐酸中进行酸洗,酸洗脱锂2 h基本已达到平衡,锰的溶损仅为0.56%;PVC锂离子筛膜对锂的吸附量为1336.30 mg/m2,在6 h左右就达到了吸附量值的最高点,酸洗脱锂和吸附速率都比较快,相较于其他已报道的锂离子筛膜的锰损要低很多且吸附量较高。对PVC锂离子筛膜进行吸附解吸再生实验,经10次循环使用后,锂离子筛膜的吸附容量为1294.16 mg/m2,是初始吸附量的97%,变化不大,说明PVC锂离子筛膜具有较好循环利用性能。锂离子筛膜对卤水中的Li+依然具有很好的选择吸附性,对卤水中各种阳离子的选择性为:Li+>Mg2+>Na+>K+,说明制备的锂离子筛膜易进行工业化应用。PVC锂离子筛吸附容量(a)、锰溶损率及锂解吸率(b)、循环稳定性能(c)

     

  • 图  1  聚氯乙烯(PVC)浓度对膜拉力和断裂伸长率的影响

    Figure  1.  Effects of polyvinyl chloride (PVC) concentration on tensile force and elongation at break of membranes

    图  2  PVC浓度对锂离子筛膜吸附量的影响

    Figure  2.  Relation between Li+ adsorptive capacity and concentration of PVC

    图  3  不同PVC浓度条件下制备的锂离子筛膜的SEM图

    Figure  3.  SEM images of PVC lithium ion sieve membranes of different PVC concentration

    图  4  Li1.6Mn1.6O4的添加量对锂离子筛膜吸附容量的影响

    Figure  4.  Relation between Li+ adsorptive capacity and the content of Li1.6Mn1.6O4

    图  5  不同Li1.6Mn1.6O4含量的PVC锂离子筛膜的SEM图

    Figure  5.  SEM images of PVC lithium ion sieve membranes of different Li1.6Mn1.6O4 contents

    图  6  聚甲基丙烯酸甲酯(PMMA)添加量对PVC锂离子筛膜吸附性能的影响

    Figure  6.  Relation between Li+ adsorptive capacity and the content of polymethyl methacrylate (PMMA)

    图  7  PMMA含量对膜拉力和断裂伸长率的影响

    Figure  7.  Tensile force and elongation at break of membranes with different PMMA contents

    图  8  不同PMMA添加量的PVC锂离子筛膜接触角测试

    Figure  8.  Contact angle measurement of PVC lithium ion sieve membranes with different PMMA conten

    图  9  不同PMMA含量的PVC锂离子筛膜的SEM图

    Figure  9.  SEM images of PVC lithium ion sieve membranes of different PMMA contents

    图  10  聚乙烯吡咯烷酮(PVPk30)添加量对 PVC 锂离子筛膜吸附性能的影响

    Figure  10.  Relation between Li+ adsorptive capacity and the content of polyvinylpyrrolidone (PVPk30)

    图  11  PVPk30含量对膜拉力和断裂伸长率的影响

    Figure  11.  Tensile force and elongation at break of membranes with different PVPk30 contents

    图  12  不同PVPk30含量PVC锂离子筛膜的SEM表面和断面图

    Figure  12.  SEM images of the surface and section in PVC lithium ion sieve membranes of different PVPk30 contents

    图  13  Li1.6Mn1.6O4粉体及PVC离子筛膜的红外光谱曲线

    a: PVC; b: LMO-PVC; c: LMO-PVC 解吸后; d: HMO-PVC吸附后

    Figure  13.  FTIR spectras of Li1.6Mn1.6O4 and PVC lithium ion sieve membrane

    a:PVC; b:LMO-PVC; c:LMO-PVC after desorption; d:LMO-PVC after adsorption

    图  14  不同Li1.6Mn1.6O4添加量的PVC锂离子筛膜的XRD图

    Figure  14.  XRD patterns of PVC lithium ion sieve membrane with different Li1.6Mn1.6O4 contents

    图  15  PVC锂离子筛膜吸附容量

    Figure  15.  Adsorption capacity of PVC lithium ion sieve membrane

    图  16  PVC锂离子筛膜锂解吸率及锰溶损率

    Figure  16.  Extraction of Li+ and dissolution loss rate of Mn2+ from PVC lithium ion sieve membrane

    图  17  PVC锂离子筛膜循环过程的锰溶损率及锂吸附量

    Figure  17.  Dissolution loss rate of Mn2+ and lithium adsorption capacity of PVC lithium ion sieve membrane in the cycling process

    图  18  锂离子筛膜吸附锂的动力学曲线

    (a)伪一级动力学曲线 (b)伪二级动力学曲线

    Figure  18.  Kinetics of Li+ adsorption by PVC lithium ion sieve membrane

    Q—Li+ adsorption capacity at equilibrium; Qt—Li+ adsorption capacity at time t (a)Pseudo-first-order kinetics model (b) Pseudo-second-order kinetics model

    图  19  等温吸附拟合曲线

    (a)Langmuir 拟合曲线 (b)Freundlich 拟合曲线

    Figure  19.  Adsorption isotherm of Li+ adsorption by PVC lithium ion sieve membrane

    Q—Li+ adsorption capacity at equilibrium; Ce—equilibrium Li+ concentration in brine (a)Langmuir isotherm (b)Freundlich isotherm

    表  1  青海昆特依盐湖卤水水质成分

    Table  1.   The components of the Qinghai Kunty salt lake brine

    Metal ionLi+Mg2+Ca2+K+Na+Mn2+Cd2+Cr3+Cu2+Fe2+Mg2+/Li+
    Initial concentration / (g·L−1)0.1510.520.0723.635.390.00340.00690.00240.0170
    下载: 导出CSV

    表  2  不同PVPk30 添加量的PVC锂离子筛膜的膜通量参数

    Table  2.   Membrane flux performance of PVC lithium ion sieve membrane with different PVPk30 contents

    PVPk30 contents0%1%2%3%4%
    Brine flux
    /(L·m2·h−1)
    228.06311.20488.83593.78669.69
    下载: 导出CSV

    表  3  锂离子筛膜从卤水中分离锂离子的性能

    Table  3.   Performance of PVC lithium ion sieve membrane the separation of Li+ from other cations in brine

    CationsC0/(mg·L−1)Ce/(mg·L−1)Q/(mg·m−2)Q/(mmol·m−2)Kd/(L·m−2)$\alpha_M^{L i} $CF/(L·m−2)
    Li+128.9889.221335.78192.4514.9721.0010.356
    Mg2+10155.3210054.913373.78138.810.33544.690.332
    K+3820.163804.65521.1413.330.137109.280.136
    Na+4370.874336.581152.1450.090.26656.290.264
    Ca2+7271-----
    Notes: C0 and Ce are the initial and equilibrium Li+ concentrations in brine, respectively; Q is the Li+ adsorption capacity; Kd is the distribution coefficient; α is the separation factor; CF is the concentration factor.
    下载: 导出CSV
  • [1] LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources,2013,226:272-288. doi: 10.1016/j.jpowsour.2012.10.060
    [2] LIU G, ZHAO Z W, GHAHREMAN A. Novel approaches for lithium extraction from salt-lake brines: a review[J]. Hydrometallurgy,2019,187:81-100. doi: 10.1016/j.hydromet.2019.05.005
    [3] KESLER S E, GRUBER P W, MEDINA P A, et al. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews,2012,48:55-69. doi: 10.1016/j.oregeorev.2012.05.006
    [4] RYU T, RYU J C, SHIN J, et al. Recovery of lithium by an electrostatic field-assisted desorption process[J]. Industrial and Engineering Chemistry Research,2013,52(38):13738-13742. doi: 10.1021/ie401977s
    [5] TABELIN C B, DALLAS J, CASANOVA S, et al. Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives[J]. Minerals Engineering,2021,163(1/2/3/4):106743.
    [6] WANG L, MA W, LIU R, et al. Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor[J]. Solid State Iomcs,2006,177:1422-1428.
    [7] WENG D, DUAN H Y, HOU Y C, et al. Introduction of manganese based lithium-ion Sieve-A review[J]. Progress in Natural Science:Materials International,2020,30:139-152. doi: 10.1016/j.pnsc.2020.01.017
    [8] 漆贵财. 锂离子筛复合材料的制备及性能研究[D]. 中国科学院大学, 2019.

    QI G C. Synthesis of lithium ion sieve composites and research of the properties[D]. University of Chinese Academy of Sciences, 2019(in Chinese).
    [9] SUN D S, MENG M J, YIN Y J, et al. Highly selective, regenerated ion-sieve microfiltration porous membrane for targeted separation of Li+[J]. Journal of Porous Materials,2016,23(6):1411-1419. doi: 10.1007/s10934-016-0201-4
    [10] SARABAIA H, GUPTA H, KULAHRESTHA V. Single step synthesis of a magnesium doped lithium manganese oxide ion sieve nanomaterial and a SPES/ion sieve composite membrane for the separation of lithium[J]. Rsc Advance,2016,6(108):106980-106989. doi: 10.1039/C6RA14230C
    [11] YU Z J, LIU X Y, ZHAO F B, etal. Fabrication of a low-cost nano-SiO2/PVC composite ultrafiltration membrane and its antifouling performance[J]. Journal of Applied Polymer Science,2015,132(1/2):467-470.
    [12] ARYANTI P T P, YUSTIANA R, PURMAMA R E D, et al. Performance and characterization of PEG400 modified PVC ultrafiltration membrane[J]. Membrane Water Treatment,2015,6(5):379-392. doi: 10.12989/mwt.2015.6.5.379
    [13] BODZEK M, KONIECZNY K. The influence of molecular mass of poly (vinyl chloride) on the structure and transport characteristics of ultrafiltration membranes[J]. Journal of Membrane Science,1991,61:131-156. doi: 10.1016/0376-7388(91)80011-T
    [14] 邢丹敏, 武冠英, 胡家俊. 改性聚氯乙烯超滤膜的研究(I)-等离子体改性膜结构和性能的研究[J]. 膜科学与技术, 1996, 16(1):49-55.

    XING D M, WU G Y, HU J J. Study on the modified PVC UF membrane(I)-study on the structure and performance of the membrane treatmented by O2-plasma[J]. Membrane Science and Technology,1996,16(1):49-55(in Chinese).
    [15] 高以烜, 马炳伦, 李佩衍, 等. 聚氯乙烯超滤膜及其稳定性[J]. 水处理技术, 1988, 14(5):278-283. doi: 10.16796/j.cnki.1000-3770.1988.05.005

    GAO Y X, MA B L, LI P Y, et al. PVC ultrafiltration membrane and its stability[J]. Technology of Water Treatment,1988,14(5):278-283(in Chinese). doi: 10.16796/j.cnki.1000-3770.1988.05.005
    [16] 任松洁, 林伟青. 聚氯乙烯超滤膜的改性研究进展[J]. 广州化工, 2018, 46(18):34-36. doi: 10.3969/j.issn.1001-9677.2018.18.015

    REN S J, LIN W Q. Research progress on modification of PVC ultrafiltration membranes[J]. Guangzhou Chemical Industry,2018,46(18):34-36(in Chinese). doi: 10.3969/j.issn.1001-9677.2018.18.015
    [17] 郝慧博, 邱广明. PVC/PU共混超滤膜制备及其对多糖的分离[D]. 内蒙古: 内蒙古工业大学, 2010.

    HAO H B, QIU G M. Preparation of PVC/PU blend ultrafiltration membrane and separation of the Astragalus[D]. Inner Mongolia: Inner Mongolia University of Technology, 2010(in Chinese).
    [18] 马兴法, 魏丽萍, 吴崇光, 等. PVC/CEVA共混体系相容性研究[J]. 高分子材料科学与工程, 1996, 12(2):136-138. doi: 10.16865/j.cnki.1000-7555.1996.02.029

    MA X F, WEI L P, WU C G, et al. Study on compatibility of PVC/CEVA blends[J]. Polymeric Materials Science and Engineering,1996,12(2):136-138(in Chinese). doi: 10.16865/j.cnki.1000-7555.1996.02.029
    [19] DAS G, BANERJEE A N. Role of methods of blending on polymer-polymer compatibility[J]. Journal of Applied Polymer Science,1996,61:1473-1478. doi: 10.1002/(SICI)1097-4628(19960829)61:9<1473::AID-APP6>3.0.CO;2-G
    [20] BODZEK M, KONIECZNY K. Ultrafiltration membranes made of vinyl chloride-vinyl acetate copolymer[J]. Journal of Membrane Science,1993,76(2/3):269-279.
    [21] 谭欣, 张唏晨, 王同生. 分离乙醇和水的聚氯乙烯光化学接枝膜的接枝方法研究[J]. 膜科学与技术, 1992, 12(4):41-46.

    TAN X, ZHANG X C, WANG T S. The PVC photochemical grafting membrane separating ethanol and water[J]. Membrane Science and Technology,1992,12(4):41-46(in Chinese).
    [22] 李系蕴, 张振家, 乔向利. PVC/PES相容性及对共混超滤膜性能的影响[J]. 环境科学与技术, 2006, 29(7):28-30. doi: 10.3969/j.issn.1003-6504.2006.07.012

    LI X Y, ZHANG Z J, QIAO X L. Compatibility properties of PVC/PES and its impact on Co-blend ultrafiltration membrane[J]. Environmental Science and Technology,2006,29(7):28-30(in Chinese). doi: 10.3969/j.issn.1003-6504.2006.07.012
    [23] RAHIMPOUR A, MADAENI S S, TAHERI A H, et al. Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes[J]. Journal of Membrane Science,2008(313):158-169.
    [24] PENG Y L, SUI Y. Compatibility research on PVC/PVB blended membranes[J]. Desalination,2006,196(1/2/3):13-21.
    [25] 隋燕, 彭跃莲, ‚钱英等. 聚氯乙烯共混超滤膜研究[J]. 膜科学与技术, 2005, 25(3):30-33. doi: 10.3969/j.issn.1007-8924.2005.03.008

    SUI Y, PENG Y L, QIAN Y, et al. Compatibility research of PVC/PVB blend membrane[J]. Membrane Science and Technology,2005,25(3):30-33(in Chinese). doi: 10.3969/j.issn.1007-8924.2005.03.008
    [26] 丁马太, 余乃梅, 何旭敏, 等. PVC/PAN共混超滤膜的研究, Ⅱ. 铸膜液组成对膜结构与性能的影响[J]. 水处理技术, 1991, 17(5):295-299.

    DING M T, YU N M, HE X M, et al. Studies on PVC/PAN blend UF membrane Ⅱ. The effect of the polymer-concentration of casting solution on the performance and the structure of PVC/PAN blend UF membrane[J]. Technology of Water Treatment,1991,17(5):295-299(in Chinese).
    [27] 丁马太, 何旭敏, 丁俊琪, 等. 聚氯乙烯/聚丙烯腈共混超滤膜的研究, Ⅲ. 制膜工艺条件对共混超滤膜结构与性能的影响[J]. 水处理技术, 1992, 18(3):155-161.

    DING M T, HE X M, DING J Q, et al. Studies on PVC/PAN blended UF membrane Ⅲ. The effect of technological conditions for membrane-making on the performance and the structure of PVC/PAN blended UF membrane[J]. Technology of Water Treatment,1992,18(3):155-161(in Chinese).
    [28] ULUTAN S, BALKÖSE D. Diffusivit, solubility and permeability of water vapor in flexible PVC/silica composite membranes[J]. Journal of Membrane Science,1996,115(2):217-224. doi: 10.1016/0376-7388(96)00030-0
    [29] 李浩, 陈建波, 刘湛红, 等. 用正交设计研究PVDF/PVC/PMMA共混中空纤维膜[J]. 膜科学与技术, 2007, 27(6):32-36. doi: 10.3969/j.issn.1007-8924.2007.06.008

    LI H, CHEN J B, LIU Z H, et al. Investigation of PVDF/PVC/PMMA blend hollow fiber membrane by orthogonal design[J]. Membrane Science and Technology,2007,27(6):32-36(in Chinese). doi: 10.3969/j.issn.1007-8924.2007.06.008
    [30] 戎静, 奚旦立, 李运清. 聚偏氟乙烯/聚氯乙烯/聚甲基丙烯酸甲酯共混多孔中空纤维膜的制备与性能测试[J]. 工业用水与废水, 2008, 39(5):65-68. doi: 10.3969/j.issn.1009-2455.2008.05.018

    RONG J, XI D L, LI Y Q. Preparation of PVDF/PVC/PMMA blend porous hollow fiber membrane and performance testing thereof[J]. Industrial Water and Waste Water,2008,39(5):65-68(in Chinese). doi: 10.3969/j.issn.1009-2455.2008.05.018
    [31] UMENO A, MIYAI Y, TAKAGI N, et al. Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater, Industrial and Engineering Chemistry Research, 2002(41): 4281-4287.
    [32] ZHU G R, WANG P, QI P F, et al. Adsorption and desorption properties of Li+ on PVC-H1.6Mn1.6O4 lithium ion-sieve membrane[J]. Chemical Engineering Journal,2014,235:340-348. doi: 10.1016/j.cej.2013.09.068
    [33] 王盼. 锂离子筛膜的制备及其吸附性能研究[D]. 中国海洋大学, 2013.

    WANG P. Peparation and adsorption properties of lithium ion sieve membrane[D]. Ocean University of China, 2013(in Chinese).
    [34] PARK M J, NISOLA G M, BELTRAN A B, et al, Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate[J]. Chemical Engineering Journal, 2014(254): 73-81.
    [35] NISOLA G M, LIMJUCO L A, VIVAS E L, et al. Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation[J]. Chemical Engineering Journal,2015(280):536-548.
    [36] TAN I A W, HAMEED B H, AHMAD A L. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon[J]. Chemical Engineering Journal,2007,127(1-3):111-119. doi: 10.1016/j.cej.2006.09.010
    [37] CHEN J H, LIU Q L, HU S R, et a1. Adsorption mechanism of Cu(II) ions from aqueous solution by glutaraldehyde crosslinked humic acid-immobilized sodiumalginate porous membrane adsorbent[J]. Chemical Engineering Journal,2011,173(2):511-519. doi: 10.1016/j.cej.2011.08.023
    [38] EASTOE J, DALTON J S. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface[J]. Advances in Colloid and Interface Science,2000,85(2/3):103-144.
    [39] AN L Y, HUANG X J, ZHAO X Y, et al. Preparation of ammonium tungstophosphate-calcium alginate composite adsorbent and its adsorption properties of rubidium[J]. Advanced Materials Research,2013,652:2524-2528.
    [40] 郑凤, 黄征青. 聚偏氟乙烯有机-无机超滤膜性能影响因素的研究进展[J]. 化学与生物工程, 2010, 27(6):17-20. doi: 10.3969/j.issn.1672-5425.2010.06.005

    ZHENG F, HUANG Z Q. Study of impact factors of performance for polyvinylidene fluoride organic-inorganic ultrafiltration membtanes[J]. Chemistry and Bioengineering,2010,27(6):17-20(in Chinese). doi: 10.3969/j.issn.1672-5425.2010.06.005
    [41] 赵晨阳, 孙本惠. PVC/PMMA合金微滤膜的研制[J]. 中国塑料, 2001, 15(2):46-49. doi: 10.3321/j.issn:1001-9278.2001.02.013

    ZHAO C Y, SUN B H. Preparation of PVC/PMMA alloy microfiltration membrane[J]. China Plastics,2001,15(2):46-49(in Chinese). doi: 10.3321/j.issn:1001-9278.2001.02.013
    [42] SINGH Y P, SINGH R P. Compatibility studies on solutions of polymer blends by viscometric and ultrasonic techniques[J]. European Polymer Journal,1983,19(6):535-541. doi: 10.1016/0014-3057(83)90206-9
    [43] 胡亮平, 贺高红, 赵薇, 等. PVP添加剂对聚醚酰亚胺超滤膜的影响[J]. 膜科学与技术, 2008, 28(5):110-113. doi: 10.3969/j.issn.1007-8924.2008.05.022

    HU L P, HE G H, ZHAO W, et al. Effect of polyvinylpyrrolidone on the morphology and properties of polyetherimide ultra-filtration membranes[J]. Membrane Science and Technology,2008,28(5):110-113(in Chinese). doi: 10.3969/j.issn.1007-8924.2008.05.022
    [44] 蒋炜, 江成璋. 聚乙烯吡咯烷酮添加剂对聚醚砜制膜体系的影响[J]. 水处理技术, 1996, 22(2):63-67. doi: 10.16796/j.cnki.1000-3770.1996.02.001

    JIANG W, JIANG C Z. Influence of PVP additive on polyethersulfone casting system[J]. Technology of Water Treatment,1996,22(2):63-67(in Chinese). doi: 10.16796/j.cnki.1000-3770.1996.02.001
    [45] 石西昌, 余亮良, 陈白珍, 等. 锂锰氧化物离子筛结构和掺杂研究进展[J]. 中国锰业, 2009, 27(3):17-20. doi: 10.3969/j.issn.1002-4336.2009.03.004

    SHI X C, YU L L, CHEN B Z, et al. Research progress on structure and doping of lithium manganese oxide ion-sieve[J]. China’s Manganese Industry,2009,27(3):17-20(in Chinese). doi: 10.3969/j.issn.1002-4336.2009.03.004
    [46] SHANNON R D, PREWITT C T. Effective ionic radii in oxides and fluorides[J]. Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry,1969,25(5):925-946. doi: 10.1107/S0567740869003220
    [47] ROSSEINSKY D R. Electrode potentials and hydration energies. Theories and correlations[J]. Chemical Reviews,1965,65(4):467-490. doi: 10.1021/cr60236a004
  • 加载中
计量
  • 文章访问数:  203
  • HTML全文浏览量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 修回日期:  2022-11-06
  • 录用日期:  2022-11-12
  • 网络出版日期:  2022-11-29

目录

    /

    返回文章
    返回