留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯醇/氧掺杂氮化碳复合纳米纤维膜的制备及其光催化性能

栾静敏 宋婷婷 孙海峰 拜雪梅 于建香

栾静敏, 宋婷婷, 孙海峰, 等. 聚乙烯醇/氧掺杂氮化碳复合纳米纤维膜的制备及其光催化性能[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 栾静敏, 宋婷婷, 孙海峰, 等. 聚乙烯醇/氧掺杂氮化碳复合纳米纤维膜的制备及其光催化性能[J]. 复合材料学报, 2024, 42(0): 1-13.
LUAN Jingmin, SONG Tingting, SUN Haifeng, et al. Preparation and photocatalytic performance of polyvinyl alcohol /oxygen-doped carbon nitride composite nanofiber films[J]. Acta Materiae Compositae Sinica.
Citation: LUAN Jingmin, SONG Tingting, SUN Haifeng, et al. Preparation and photocatalytic performance of polyvinyl alcohol /oxygen-doped carbon nitride composite nanofiber films[J]. Acta Materiae Compositae Sinica.

聚乙烯醇/氧掺杂氮化碳复合纳米纤维膜的制备及其光催化性能

详细信息
    通讯作者:

    于建香,博士,副教授,硕士生生导师,研究方向为纳米高分子材料 E-mail: yujianxiang@bipt.edu.cn

  • 中图分类号: TB34;TB332

Preparation and photocatalytic performance of polyvinyl alcohol /oxygen-doped carbon nitride composite nanofiber films

  • 摘要: 大量有机污染物对水循环造成严重污染,同时耐药细菌对人类健康构成严重威胁。光催化纳米材料已成为抗菌领域的研究热点。本文通过尿素和甲酸热聚合法烧制成氧掺杂氮化碳(O-CN),优选比例的O-CN与聚乙烯醇(PVA)溶液混合,通过静电纺丝技术成功制备了聚乙烯醇/氧掺杂氮化碳(PVA/O-CN)复合纳米纤维膜。对O-CN和PVA/O-CN复合膜进行形貌和结构表征以及光催化抑菌和有机污染物去除性能的分析。结果表明,O原子部分代替CN中三-三嗪环结构中N的位置,O-CN的可见光吸收能力和电子-空穴对分离率较CN有所提高, PVA/O-CN-0.6复合纳米纤维膜对大肠杆菌和金黄色葡萄球菌有较好的抑制作用,抑菌率可达96%和93.7%。另外,PVA/O-CN-0.6复合纳米纤维膜对染料具有良好的去除性能,PVA/O-CN-0.6在4 h内对亚甲基蓝(MB)的去除率达到了97.7%。此外,该膜具有良好的热稳定性和优异的力学性能,在水净化及抑菌领域具有很大的应用潜力。

     

  • 图  1  氧掺杂氮化碳(O-CN)和聚乙烯醇/氧掺杂氮化碳(PVA/O-CN)的制备流程图

    Figure  1.  Preparation Processing diagram of oxygen-doped carbon nitride (O-CN) and polyvinyl alcohol/oxygen-doped carbon nitride (PVA/O-CN)

    图  2  O-CN-0.6的(A)SEM和(a)TEM图像;O-CN-8的(B)SEM和(b)TEM图像;O-CN-16的(C)SEM和(c)TEM图像

    Figure  2.  SEM(A) and TEM(a) images of O-CN-0.6; SEM(B) and TEM(b) images of O-CN-8; SEM(C) and TEM(c) images of O-CN-16

    图  3  CN和O-CN的(a)XRD和(b)FT-IR图谱

    Figure  3.  (a) XRD patterns and (b) FT-IR spectra of the prepared CN and O-CN

    图  4  O-CN-0.6的(a)XPS全光谱和(b-d)高分辨率光谱

    Figure  4.  (a) XPS full spectrum and high-resolution spectrum(b-d) of O-CN-0.6

    图  5  CN和O-CN的(a)荧光光谱;(b)紫外可见光谱;(c)Tauc绘制曲线

    Figure  5.  CN and O-CN of (a) Fluorescence spectra; (b)UV-vis spectra; (c) Tauc plots

    图  6  复合纳米纤维膜的SEM图像和直径分布((a/f)PVA,(b/g)PVA/O-CN-0.6,(c/h)PVA/O-CN-4,(d/i)PVA/O-CN-8,(e/j)PVA/O-CN-16)

    Figure  6.  SEM images and diameter distributions ((a/f)PVA、(b/g)PVA/O-CN-0.6、(c/h) PVA/O-CN-4、(d/i)PVA/O-CN-8、(e/j)PVA/O-CN-16) of composite nanofiber membrane

    图  7  纳米纤维膜断裂时的应变和应力

    Figure  7.  Strain and stress at break of nanofibrous

    图  8  (a)CN和O-CN去除MB效率图;(b)PVA和PVA/O-CN去除MB效率图;(c)O-CN-0.6和PVA/O-CN-0.6去除MB的循环使用效果

    Figure  8.  (a) MB removal rate diagram of CN and O-CN; (b) MB removal rate diagram of PVA and PVA/O-CN; (c) reusability study results of O-CN-16 and PVA/O-CN-0.6

    图  9  光照下CN(A/F)、O-CN(B~E/G~J)、PVA/CN(A/G)、PVA/O-CN(B~E/h~k)和PVA(F/l)对大肠杆菌和金黄色葡萄球菌的抑菌圈结果

    Figure  9.  Inhibitory zone results CN(A/F)、O-CN(B~E/G~J)、PVA/CN (a/g)、PVA/O-CN(b~e/h~k) and PVA(f/l) under illumination against E.coli and S.aureus

    图  10  光照下CN(A/F)、O-CN(B~E/G~J)、PVA/CN(A/G)、PVA/O-CN(B~E/h~k)和PVA(F/l)对大肠杆菌和金黄色葡萄球菌的平板计数结果

    Figure  10.  Plate count results of CN(A/F)、O-CN(B~E/G~J)、PVA/CN (a/g)、PVA/O-CN(b~e/h~k) and PVA(f/l) under illumination against E.coli and S.aureus

    图  11  不同纳米片和纳米纤维对大肠杆菌和金黄色葡萄球菌的抑菌性能

    Figure  11.  Antibacterial properties of different nanosheets and nanofibers against E.coli and S.aureus

    图  12  在黑暗和可见光(λ≥420 nm)照射下O-CN-0.6和PVA/O-CN-0.6中(a)DMPO捕获$ \text{·}\text{OH} $,(b)TEMP捕获$ \text{1}\text{O}\text{2} $和(c)DMPO捕获$ {\text{·O}}_{\text{2}}^{{-}} $的ESR光谱

    Figure  12.  ESR spectra of (a) $ \text{·}\text{OH} $ trapping by DMPO, (b) $ \text{1}\text{O}\text{2} $ trapping by TEMP and (c) $ {\text{·O}}_{\text{2}}^{{-}} $ trapping by DMPO for O-CN-0.6 and PVA/O-CN-0.6 in the dark and under visible-light (λ≥420 nm) irradiation

    表  1  CN和O-CN-0.6的原子百分比

    Table  1.   Atomic percentage of CN and O-CN-0.6

    Element CN O-CN-0.6
    C 1s 42.13% 42.77%
    N 1s 55.13% 53.55%
    O 1s 2.74% 3.69%
    下载: 导出CSV
  • [1] ZHANG J, WANG J, XU H H, et al. The effective photocatalysis and antibacterial properties of AgBr/AgVO3 composites under visible-light[J]. RSC Advances, 2019, 9(63): 37109-37118. doi: 10.1039/C9RA06810D
    [2] ZHAO H B, XING Z P, SU S, et al. Recent advances in metal organic frame photocatalysts for environment and energy applications[J]. Applied Materials Today, 2020, 21: 100821. doi: 10.1016/j.apmt.2020.100821
    [3] HASIJA V, RAIZADA P, SUDHAIK A, et al. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review[J]. Applied Materials Today, 2019, 15: 494-524. doi: 10.1016/j.apmt.2019.04.003
    [4] AMELIA S R, ROHMATULLOH Y, SANUSI, et al. One pot synthesis and performance of N- and (Mg, B, N)-doped ZnO for photocatalytic and antibacterial applications: Experimental and theoretical investigations[J]. Ceramics International, 2024, 50(7, Part A): 11216-11235.
    [5] REGMI A, BASNET Y, BHATTARAI S, GAUTAM S K. Cadmium Sulfide Nanoparticles: Synthesis, Characterization, and Antimicrobial Study[J]. Journal of Nanomaterials, 2023, 2023: 7.
    [6] REN F, LI Y, ZHANG M, et al. Photocatalytic inactivation mechanism of nano-BiPO4 against Vibrio parahaemolyticus and its application in abalone[J]. Food Research International, 2024, 177: 113806. doi: 10.1016/j.foodres.2023.113806
    [7] HUY B T, NHI P T, VY N T T, et al. Design of novel p–n heterojunction ZnBi2O4-ZnS photocatalysts with impressive photocatalytic and antibacterial activities under visible light[J]. Environmental Science and Pollution Research, 2022, 29(56): 84471-84486. doi: 10.1007/s11356-022-21810-w
    [8] DAS M, SETHY C, KUNDU C N, et al. Synergetic reinforcing effect of graphene oxide and nanosilver on carboxymethyl cellulose/sodium alginate nanocomposite films: Assessment of physicochemical and antibacterial properties[J]. International Journal of Biological Macromolecules, 2023, 239: 124185. doi: 10.1016/j.ijbiomac.2023.124185
    [9] INDUJA M, SIVAPRAKASH K, GOMATHI P P. et al. Facile green synthesis and antimicrobial performance of Cu2O nanospheres decorated g-C3N4 nanocomposite[J]. Materials Research Bulletin, 2019, 112: 331-335. doi: 10.1016/j.materresbull.2018.12.030
    [10] THURSTON J H, HUNTER N M, WAYMENT L J. et al. Urea-derived graphitic carbon nitride (u-g-C3N4) films with highly enhanced antimicrobial and sporicidal activity[J]. Journal of Colloid and Interface Science, 2017, 505: 910-918. doi: 10.1016/j.jcis.2017.06.089
    [11] ORCUTT E K, VARAPRAGASAM S J, PETERSON Z C, et al. Ultrafast Charge Injection in Silver-Modified Graphitic Carbon Nitride[J]. ACS Applied Materials & Interfaces, 2023, 15(12): 15478-15485.
    [12] LV C Y, LI W, LIN Q W, et al. Efficient photocatalytic hydrogen evolution: a novel multi-modified carbon nitride based on physical adsorption[J]. Journal of Materials Chemistry A, 2023, 11(38): 20701-20711. doi: 10.1039/D3TA04906J
    [13] LI F, ZHANG D N, XIANG Q J. Nanosheet-assembled hierarchical flower-like g-C3N4 for enhanced photocatalytic CO2 reduction activity[J]. Chemical Communications, 2020, 56(16): 2443-2446. doi: 10.1039/C9CC08793A
    [14] ZHANG R Y, ZHANG A L, YANG Y, et al. Surface modification to control the secondary pollution of photocatalytic nitric oxide removal over monolithic protonated g-C3N4/graphene oxide aerogel[J]. Journal of Hazardous Materials, 2020, 397: 122822. doi: 10.1016/j.jhazmat.2020.122822
    [15] LU L L, XU X X, AN K L, et al. Coordination Polymer Derived NiS@g-C3N4 Composite Photocatalyst for Sulfur Vacancy and Photothermal Effect Synergistic Enhanced H2 Production[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11869-11876.
    [16] WANG Y, WANG X C, ANTONIETTI M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry[J]. Angewandte Chemie International Edition, 2012, 51(1): 68-89. doi: 10.1002/anie.201101182
    [17] STOLBOV S, ZULUAGA S. Sulfur doping effects on the electronic and geometric structures of graphitic carbon nitride photocatalyst: insights from first principles[J]. Journal of Physics: Condensed Matter, 2013, 25(8): 085507. doi: 10.1088/0953-8984/25/8/085507
    [18] ZHANG Z Z, SUN Q M, JI R, et al. Boosted photogenerated charge carrier separation by synergy of oxygen and phosphorus co-doping of graphitic carbon nitride for efficient 2-chlorophenol photocatalytic degradation[J]. Chemical Engineering Journal, 2023, 471: 144388. doi: 10.1016/j.cej.2023.144388
    [19] ZHAO H B, ZHANG Y. Sulfur-doped carbon nitride with carbon vacancies: Enhanced photocatalytic activity for degradation of tetracycline hydrochloride[J]. Diamond and Related Materials, 2023, 139: 110239. doi: 10.1016/j.diamond.2023.110239
    [20] CHEN L, NING S B, LIANG L, et al. Potassium doped and nitrogen defect modified graphitic carbon nitride for boosted photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(30): 14044-14052. doi: 10.1016/j.ijhydene.2022.02.147
    [21] ZHAO D M, WANG Y Q, DONG C L, et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting[J]. Nature Energy, 2021, 6(4): 388-397. doi: 10.1038/s41560-021-00795-9
    [22] LEI L, FAN H Q, JIA Y X, et al. Cyanuric Acid-Assisted Synthesis of Hierarchical Amorphous Carbon Nitride Assembled by Ultrathin Oxygen-Doped Nanosheets for Excellent Photocatalytic Hydrogen Generation[J]. ACS Applied Materials & Interfaces, 2024, 16(12): 14809-14821.
    [23] GHAFFAR R A, ZAHID H M, HAMMOND N, et al. Synthesis of Highly Active Doped Graphitic Carbon Nitride using Acid-Functionalized Precursors for Efficient Adsorption and Photodegradation of Endocrine-Disrupting Compounds[J]. ChemistrySelect, 2022, 32(7): e202201909.
    [24] ZENG Y X, LIU X, LIU C B, et al. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity[J]. Applied Catalysis B-environmental, 2018, 224: 1-9. doi: 10.1016/j.apcatb.2017.10.042
    [25] 温家奇. 氧掺杂多孔氮化碳的制备及其光催化制氢性能研究[D]. 郑州: 郑州大学, 2022.
    [26] XU X Q, WANG S, HU T, et al. Fabrication of Mn/O co-doped g-C3N4: Excellent charge separation and transfer for enhancing photocatalytic activity under visible light irradiation[J]. Dyes and Pigments, 2020, 175: 108107. doi: 10.1016/j.dyepig.2019.108107
    [27] LI F, ZHU P, WANG S M, et al. One-pot construction of Cu and O co-doped porous g-C3N4 with enhanced photocatalytic performance towards the degradation of levofloxacin[J]. RSC Advances, 2019, 9(36): 20633-20642. doi: 10.1039/C9RA02411E
    [28] IQBAL S, BAHADUR A, ANWER S, et al. Designing novel morphologies of l-cysteine surface capped 2D covellite (CuS) nanoplates to study the effect of CuS morphologies on dye degradation rate under visible light[J]. CrystEngComm, 2020, 22(24): 4162-4173. doi: 10.1039/D0CE00421A
    [29] XING Q F, ZANG M, XU X Q, et al. Rapid photocatalytic inactivation of E. coli by polyethyleneimine grafted O-doped g-C3N4: Synergetic effects of the boosted reactive oxygen species production and adhesion performance[J]. Applied Surface Science, 2022, 573: 151496. doi: 10.1016/j.apsusc.2021.151496
    [30] YANG Y Y, GUO W T, ZHAI Y P, et al. Oxygen-doped and nitrogen vacancy co-modified carbon nitride for the efficient visible light photocatalytic hydrogen evolution[J]. New Journal of Chemistry, 2020, 44(38): 16320-16328. doi: 10.1039/D0NJ03695A
    [31] HU B, GUO F S, LI S R, et al. Facile fabrication of oxygen-doped carbon nitride with enhanced visible-light photocatalytic degradation of methyl mercaptan[J]. Research on Chemical Intermediates, 2022, 48(6): 2295-2311. doi: 10.1007/s11164-022-04712-x
    [32] JINGUJI K, WATANABE M, MORITA R, et al. Visible light driven hydrogen peroxide production by oxygen and phosphorus co-doped CoP-C3N4 photocatalyst[J]. Catalysis Today, 2024, 426: 114400. doi: 10.1016/j.cattod.2023.114400
    [33] SONG X H, ZHANG X Y, LI X, et al. Enhanced light utilization efficiency and fast charge transfer for excellent CO2 photoreduction activity by constructing defect structures in carbon nitride[J]. Journal of Colloid and Interface Science, 2020, 578: 574-583. doi: 10.1016/j.jcis.2020.06.035
    [34] WANG L Q, LI R Y, ZHANG Y M, et al. Tetracycline degradation mechanism of peroxymonosulfate activated by oxygen-doped carbon nitride[J]. RSC Advances, 2023, 13(10): 6368-6377. doi: 10.1039/D3RA00345K
    [35] MAJIDI M, GIVIANRAD M H, SABER-TEHRANI M. et al. A novel method to synthesis of oxygen doped graphitic carbon nitride with outstanding photocatalytic efficiency for the degradation organic pollutants[J]. Diamond and Related Materials, 2023, 139: 110431. doi: 10.1016/j.diamond.2023.110431
    [36] FENG T, ZHANG J, YU F H, et al. Broad-bandgap porous graphitic carbon nitride with nitrogen vacancies and oxygen doping for efficient visible-light photocatalytic degradation of antibiotics[J]. Environmental Pollution, 2023, 335: 122268. doi: 10.1016/j.envpol.2023.122268
    [37] WEN D, SU Y R, FANG J Y, et al. Synergistically boosted photocatalytic production of hydrogen peroxide via protonation and oxygen doping on graphitic carbon nitride[J]. Nano Energy, 2023, 117: 108917. doi: 10.1016/j.nanoen.2023.108917
    [38] FENG C Y, TANG L, DENG Y C, et al. Synthesis of Leaf-Vein-Like g-C3N4 with Tunable Band Structures and Charge Transfer Properties for Selective Photocatalytic H2O2 Evolution[J]. Advanced Functional Materials, 2020, 30(39): 2001922. doi: 10.1002/adfm.202001922
    [39] YU P, ZHOU X Q, YAN Y C, et al. Enhanced visible-light-driven photocatalytic disinfection using AgBr-modified g-C3N4 composite and its mechanism[J]. Colloids and Surfaces B: Biointerfaces, 2019, 179: 170-179. doi: 10.1016/j.colsurfb.2019.03.074
    [40] ZHANG H H, HAN X X, YU H J, et al. Enhanced photocatalytic performance of boron and phosphorous co-doped graphitic carbon nitride nanosheets for removal of organic pollutants[J]. Separation and Purification Technology, 2019, 226: 128-137. doi: 10.1016/j.seppur.2019.05.066
    [41] ABD EL-AZIZ A M, EL-MAGHRABY A, TAHA N A. Comparison between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn2+ ions from wastewater[J]. Arabian Journal of Chemistry, 2017, 10(8): 1052-1060. doi: 10.1016/j.arabjc.2016.09.025
    [42] TARI E, UGRASKAN V, YAZICI O. Enhanced mechanical, thermal and optical properties of poly (vinyl alcohol)/functionalized-graphitic carbon nitride composites[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2023, 32(5): 464-470.
    [43] WANG Y M, CAI H Y, QIAN F F, et al. Facile one-step synthesis of onion-like carbon modified ultrathin g-C3N4 2D nanosheets with enhanced visible-light photocatalytic performance[J]. Journal of Colloid and Interface Science, 2019, 533: 47-58. doi: 10.1016/j.jcis.2018.08.039
    [44] LIU D, TIAN R, WANG J, et al. Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrode under visible light irradiation. Chemosphere 2017, 185: 574-581.
    [45] NAMBIAR A P, PILLAI R, VADIKKEETTIL Y, et al. Glutaraldehyde-crosslinked poly(vinyl alcohol)/halloysite composite films as adsorbent for methylene blue in water[J]. Materials Chemistry and Physics, 2022, 291: 126752. doi: 10.1016/j.matchemphys.2022.126752
    [46] ZIDAN H M, EL-GHAMAZ N A, ABDELGHANY A M. et al. Photodegradation of methylene blue with PVA/PVP blend under UV light irradiation[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 199: 220-227. doi: 10.1016/j.saa.2018.03.057
    [47] JASEELA P K, GARVASIS J, JOSEPH A. Selective adsorption of methylene blue (MB) dye from aqueous mixture of MB and methyl orange (MO) using mesoporous titania (TiO2) – poly vinyl alcohol (PVA) nanocomposite[J]. Journal of Molecular Liquids, 2019, 286: 110908. doi: 10.1016/j.molliq.2019.110908
    [48] ALGHASHAM H A. Development of wound healing scaffolds based on polymeric blends of polyvinyl alcohol and hyaluronic acid doped with super antibacterials of silver phosphate with magnesium vanadate[J]. New Journal of Chemistry, 2024, 48: 4529-4538. doi: 10.1039/D3NJ03842D
    [49] KONG X Y, LIU X M, ZHENG Y F, et al. Graphitic carbon nitride-based materials for photocatalytic antibacterial application[J]. Materials Science and Engineering: R: Reports, 2021, 145: 100610. doi: 10.1016/j.mser.2021.100610
    [50] HE D Y, ZHANG Z C, XING Y, et al. Black phosphorus/graphitic carbon nitride: A metal-free photocatalyst for “green” photocatalytic bacterial inactivation under visible light[J]. Chemical Engineering Journal, 2020, 384: 123258. doi: 10.1016/j.cej.2019.123258
    [51] ZHANG L L, ZHANG L F, XU J G. Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge. )[J]. Scientific Reports, 2020, 10(1): 8876. doi: 10.1038/s41598-020-65802-7
    [52] HAO W, WANG W, LIU C, et al. Synthesis of Ag@CeO2@Ti3C2 heterojunction and its photocatalytic bacteriostatic properties[J]. Materials Letters, 2022, 308: 131202. doi: 10.1016/j.matlet.2021.131202
    [53] NEMATI D, ASHJARI M, RASHEDI H, et al. PVA based nanofiber containing cellulose modified with graphitic carbon nitride/nettles/trachyspermum accelerates wound healing[J]. Biotechnology Progress, 2021, 37(6): e3200. doi: 10.1002/btpr.3200
    [54] SHE P, LI J, BAO H G, et al. Green synthesis of Ag nanoparticles decorated phosphorus doped g-C3N4 with enhanced visible-light-driven bactericidal activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384: 112028. doi: 10.1016/j.jphotochem.2019.112028
    [55] IQBAL S, BAHADUR A, AlI S, et al. Critical role of the heterojunction interface of silver decorated ZnO nanocomposite with sulfurized graphitic carbon nitride heterostructure materials for photocatalytic applications[J]. Journal of Alloys and Compounds, 2021, 858: 158338. doi: 10.1016/j.jallcom.2020.158338
    [56] ZHANG D, LIU Y, LIU Z G. et al[J]. Advances in Antibacterial Functionalized Coatings on Mg and Its Alloys for Medical Use—A Review[J/OL]. Coatings, 2020, 10(9): 828
    [57] LIU X, ZHAO Y X, YANG X F, et al. Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance[J]. Applied Catalysis B: Environmental, 2020, 275: 119144. doi: 10.1016/j.apcatb.2020.119144
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 修回日期:  2024-06-25
  • 录用日期:  2024-06-28
  • 网络出版日期:  2024-07-24

目录

    /

    返回文章
    返回