Dynamic compression property of polyvinyl alcohol (PVA)/engineered fiber reinforced cementitious composite (ECC) with different length-diameter ratios
-
摘要: 基于杆径为50 mm的分离式霍普金森压杆装置(SHPB)研究了不同长径比和不同聚乙烯醇(PVA)纤维体积掺量的高延性纤维增强水泥基复合材料(PVA/ECC)在4种应变率下的动态压缩性能。结果表明:长径比较大(l/D>1.0)的PVA/ECC试件冲击压缩后更易产生方向性明显的滑移破坏,其应力-应变曲线平台期的长度明显缩短,且曲线所包围的面积也明显减小;PVA/ECC的动态峰值应力、峰值应变和冲击韧性均随长径比增加而降低,存在一定的尺寸效应,且应变率越高、PVA纤维体积掺量越小,长径比的影响更明显;长径比较大的PVA/ECC试件其应变率效应有所减弱但PVA纤维的强化效应有所提升,尤其是对冲击韧性的影响程度最显著。
-
关键词:
- 高延性纤维增强水泥基复合材料 /
- 聚乙烯醇 /
- 分离式霍普金森压杆 (SHPB) /
- 长径比 /
- 动态压缩性能
Abstract: The dynamic compression properties of engineered fiber reinforced cementitious composite (PVA/ECC) with different length-diameter ratio and different polyvinyl alcohol (PVA) fiber contents by volume subjected to four different strain rates were investigated by using a 50 mm diameter split Hopkinson pressure bar (SHPB). The results show that PVA/ECC specimens with larger length-diameter ratio (l/D>1.0) are more prone to directional slip failure after impact compression damage. Furthermore, the length of plateau period of stress-strain curve is obviously shortened and the area surrounded by the curve is also significantly reduced. The dynamic peak stress, peak strain and impact toughness of PVA/ECC decrease significantly with the increase of length-diameter ratio, which reveals the existence of a certain size effect, and that the higher the strain rate or the smaller PVA fiber contents by volume is the more obvious the influence of length-diameter ratio will be. The strain rate effect of PVA/ECC specimens with larger length-diameter ratio may become not obvious, but the strengthening effect of PVA fiber become more obvious, which effect is the most significant on impact toughness. -
表 1 聚乙烯醇(PVA)纤维性能
Table 1. Properties of polyvinyl alcohol (PVA) fiber
Length-diameter ratio Length
/mmElasticity modulus
/GPaUltimate strain
/%Tensile strength
/MPaDensity
/(g·cm−3)3000 12 42.8 7.0 1620 1.2 表 2 PVA/高延性纤维增强水泥基复合材料(ECC)试件拉伸试验结果[11]
Table 2. PVA/engineered fiber reinforced cementitious composite (ECC) specimen tensile test results[11]
Fiber volume content/vol% Ultimate tensile strain εtu/% Tensile strength ftu/MPa 1.0 1.64 3.64 1.5 2.81 4.16 2.0 3.21 4.44 表 3 PVA/ECC试件动态冲击压缩试验结果
Table 3. Test results of PVA/ECC specimens under dynamic compression
Specimen l/D Strain rate/s−1 Fiber volume content/vol% fcd /MPa εp/10−6 WT/(MJ·m−3) 1.0%PVA/ECC(0.5)-50 0.5 50 1.0 56.31 10275 1.04 1.5%PVA/ECC(0.5)-50 1.5 59.52 10980 1.15 2.0%PVA/ECC(0.5)-50 2.0 65.64 12280 1.21 1.0%PVA/ECC(0.5)-75 75 1.0 62.67 11340 1.21 1.5%PVA/ECC(0.5)-75 1.5 66.85 12148 1.57 2.0%PVA/ECC(0.5)-75 2.0 74.34 14050 1.72 1.0%PVA/ECC(0.5)-100 100 1.0 70.25 12705 1.74 1.5%PVA/ECC(0.5)-100 1.5 75.29 13640 2.05 2.0%PVA/ECC(0.5)-100 2.0 84.68 15203 2.38 1.0%PVA/ECC(0.5)-125 125 1.0 79.04 14070 2.50 1.5%PVA/ECC(0.5)-125 1.5 85.58 15460 2.75 2.0%PVA/ECC(0.5)-125 2.0 95.18 17013 3.21 1.0%PVA/ECC(0.6)-50 0.6 50 1.0 53.29 9165 0.82 1.5%PVA/ECC(0.6)-50 1.5 57.66 9810 0.99 2.0%PVA/ECC(0.6)-50 2.0 63.26 11100 1.06 1.0%PVA/ECC(0.6)-75 75 1.0 58.35 10120 1.05 1.5%PVA/ECC(0.6)-75 1.5 62.79 10730 1.37 2.0%PVA/ECC(0.6)-75 2.0 70.46 12640 1.47 1.0%PVA/ECC(0.6)-100 100 1.0 65.00 11150 1.44 1.5%PVA/ECC(0.6)-100 1.5 70.31 12030 1.74 2.0%PVA/ECC(0.6)-100 2.0 79.81 13750 2.04 1.0%PVA/ECC(0.6)-125 125 1.0 72.75 12190 1.91 1.5%PVA/ECC(0.6)-125 1.5 79.70 13374 2.31 2.0%PVA/ECC(0.6)-125 2.0 89.67 15360 2.74 1.0%PVA/ECC(0.8)-50 0.8 50 1.0 50.48 7631 0.59 1.5%PVA/ECC(0.8)-50 1.5 54.56 8319 0.74 2.0%PVA/ECC(0.8)-50 2.0 60.96 9460 0.81 1.0%PVA/ECC(0.8)-75 75 1.0 54.21 8471 0.75 1.5%PVA/ECC(0.8)-75 1.5 58.82 9147 0.85 2.0%PVA/ECC(0.8)-75 2.0 66.77 10728 1.19 1.0%PVA/ECC(0.8)-100 100 1.0 59.43 9357 1.00 1.5%PVA/ECC(0.8)-100 1.5 65.29 10040 1.30 2.0%PVA/ECC(0.8)-100 2.0 75.20 11560 1.64 1.0%PVA/ECC(0.8)-125 125 1.0 66.57 10336 1.32 1.5%PVA/ECC(0.8)-125 1.5 73.97 11520 1.67 2.0%PVA/ECC(0.8)-125 2.0 84.10 13580 2.05 1.0%PVA/ECC(1.0)-50 1.0 50 1.0 47.56 6724 0.44 1.5%PVA/ECC(1.0)-50 1.5 51.81 7400 0.52 2.0%PVA/ECC(1.0)-50 2.0 58.91 8655 0.66 1.0%PVA/ECC(1.0)-75 75 1.0 49.93 7280 0.49 1.5%PVA/ECC(1.0)-75 1.5 54.69 7909 0.70 2.0%PVA/ECC(1.0)-75 2.0 62.86 9580 0.85 1.0%PVA/ECC(1.0)-100 100 1.0 53.96 8081 0.65 1.5%PVA/ECC(1.0)-100 1.5 60.46 8770 0.92 2.0%PVA/ECC(1.0)-100 2.0 70.63 10470 1.25 1.0%PVA/ECC(1.0)-125 125 1.0 60.51 8810 0.91 1.5%PVA/ECC(1.0)-125 1.5 68.18 9778 1.17 2.0%PVA/ECC(1.0)-125 2.0 78.73 11187 1.64 1.0%PVA/ECC(1.3)-50 1.3 50 1.0 45.70 5805 0.31 1.5%PVA/ECC(1.3)-50 1.5 50.25 6368 0.40 2.0%PVA/ECC(1.3)-50 2.0 57.35 7418 0.50 1.0%PVA/ECC(1.3)-75 75 1.0 47.68 6329 0.35 1.5%PVA/ECC(1.3)-75 1.5 52.70 6833 0.52 2.0%PVA/ECC(1.3)-75 2.0 61.08 8090 0.67 1.0%PVA/ECC(1.3)-100 100 1.0 50.98 6868 0.48 1.5%PVA/ECC(1.3)-100 1.5 58.21 7536 0.74 2.0%PVA/ECC(1.3)-100 2.0 68.49 8990 0.98 1.0%PVA/ECC(1.3)-125 125 1.0 57.24 7552 0.63 1.5%PVA/ECC(1.3)-125 1.5 65.27 8325 0.88 2.0%PVA/ECC(1.3)-125 2.0 76.25 9560 1.21 1.0%PVA/ECC(1.5)-50 1.5 50 1.0 43.75 4911 0.24 1.5%PVA/ECC(1.5)-50 1.5 48.38 5336 0.35 2.0%PVA/ECC(1.5)-50 2.0 56.10 6705 0.46 1.0%PVA/ECC(1.5)-75 75 1.0 45.49 5250 0.30 1.5%PVA/ECC(1.5)-75 1.5 50.68 5770 0.43 2.0%PVA/ECC(1.5)-75 2.0 59.25 7100 0.59 1.0%PVA/ECC(1.5)-100 100 1.0 48.43 5740 0.40 1.5%PVA/ECC(1.5)-100 1.5 55.72 6305 0.61 2.0%PVA/ECC(1.5)-100 2.0 66.40 7680 0.85 1.0%PVA/ECC(1.5)-125 125 1.0 53.88 6317 0.48 1.5%PVA/ECC(1.5)-125 1.5 62.43 7034 0.75 2.0%PVA/ECC(1.5)-125 2.0 73.70 8560 1.08 Notes: 1.0%PVA/ECC(0.5)-50—Length-diameter ratio of PVA/ECC specimen is 0.5, the design strain rate is 50 s−1, and the fiber content by volume of PVA/ECC specimen is 1.0vol%. fcd—Dynamic peak stress of PVA/ECC; εp—Dynamic peak strain of PVA/ECC; WT—Impact toughness of PVA/ECC. -
[1] YOO D Y, BANTHIA N. Impact resistance of fiber-reinforced concrete-A review[J]. Cement and Concrete Composites, 2019, 104: 103389. [2] ZHOU J J, PAN J L, LEUNG C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J]. Journal of Materials in Civil Engineering,2015,27(1):4014111. [3] LI V C. Tailoring ECC for special attributes: A review[J]. International Journal of Concrete Structures and Materials,2012,6(3):135-144. doi: 10.1007/s40069-012-0022-z [4] 李亮, 吴文杰, 吴俊, 等. 水泥基复合材料的研究现状及其在动态冲击领域的应用[J]. 建筑结构, 2018, 48(S1):545-554. doi: 10.19701/j.jzjg.2018.s1.123LI Liang, WU Wenjie, WU Jun, et al. Status of engineered cementitious composites andits application under dynamic impact loading[J]. Building Structure,2018,48(S1):545-554(in Chinese). doi: 10.19701/j.jzjg.2018.s1.123 [5] KAI M F, XIAO Y, SHUAI X L, et al. Compressive behavior of engineered cementitious composites under high strain-rate loading[J]. Journal of Materials in Civil Engineering,2017,29(4):04016254. doi: 10.1061/(ASCE)MT.1943-5533.0001781 [6] 徐世烺, 陈超, 李庆华, 等. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9):50-59. doi: 10.6052/j.issn.1000-4750.2018.03.0147XU Shilang, CHEN Chao, LI Qinghua, et al. Numerical simulation on dynamic compressive behavior of ultra-high toughness cementitious-composites[J]. Engineering Mechanics,2019,36(9):50-59(in Chinese). doi: 10.6052/j.issn.1000-4750.2018.03.0147 [7] 李艳, 张文彬, 刘泽军. PVA-ECC动态压缩性能研究[J]. 建筑材料学报, 2020, 23(3):513-520.LI Yan, ZHANG Wenbin, LIU Zejun. Study on dynamic compressive properties of PVA-ECC[J]. Journal of Building Materials,2020,23(3):513-520(in Chinese). [8] GAO S L, HU G H. Experimental study on biaxial dynamic compressive properties of ECC[J]. Materials,2021,14(5):1257. doi: 10.3390/ma14051257 [9] LI Q H, ZHAO X, XU S L, et al. Influence of steel fiber on dynamic compressive behavior of hybrid fiber ultra high toughness cementitious composites at different strain rates[J]. Construction and Building Materials,2016,125:490-500. doi: 10.1016/j.conbuildmat.2016.08.066 [10] YILDIRIM G, KHIAVI F E, ANIL O, et al. Performance of engineered cementitious composites under drop-weight impact: Effect of different mixture parameters[J]. Structural Concrete,2020,21(3):1051-1070. [11] 刘泽军, 王昌野, 李艳, 等. 温度对PVA/ECC动态压缩性能影响[J]. 复合材料学报, 2023, 40(1):355-368. doi: 10.13801/j.cnki.fhclxb.20220322.001LIU Zejun, WANG Changye, LI Yan, et al. Effect of temperature on dynamic compression properties of PVA/ECC[J]. Acta Materiae Compositae Sinica,2023,40(1):355-368(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220322.001 [12] 李庆华, 周宝民, 黄博滔, 等. 超高韧性水泥基复合材料抗压性能的尺寸效应研究[J]. 水利学报, 2015, 46(2):174-182. doi: 10.13243/j.cnki.slxb.2015.02.006LI Qinghua, ZHOU Baomin, HUANG Botao, et al. The size effect of compressive properties of ultra high toughness cementitious composites(UHTCC)[J]. Journal of Hydraulic Engineering,2015,46(2):174-182(in Chinese). doi: 10.13243/j.cnki.slxb.2015.02.006 [13] YU K Q, LI L Z, YU J T, et al. Direct tensile properties of engineered cementitious composites: A review[J]. Construction and Building Materials,2018,165:346-362. doi: 10.1016/j.conbuildmat.2017.12.124 [14] 李艳, 程格格, 刘泽军. 聚乙烯醇纤维增强水泥基复合材料单轴受压强度与变形特性分析[J]. 工业建筑, 2017, 47(4):122-126, 158. doi: 10.13204/j.gyjz201704025LI Yan, CHENG Gege, LIU Zejun. Analysis of strength and deformation properties on PVA-ECC under uniaxial compression[J]. Industrial Construction,2017,47(4):122-126, 158(in Chinese). doi: 10.13204/j.gyjz201704025 [15] 何淅淅, 甘甜. 不同标准下ECC抗压强度与弹性模量的试验研究[J]. 建筑结构, 2018, 48(S1):536-541. doi: 10.19701/j.jzjg.2018.s1.121HE Xixi, GAN Tian. Experimental study on the compressive strengthand modulus of elasticity of ECC according to different standards[J]. Building Structure,2018,48(S1):536-541(in Chinese). doi: 10.19701/j.jzjg.2018.s1.121 [16] NGUYỄN H H, CHOI J I, PARK S E, et al. Autogenous healing of high strength engineered cementitious composites (ECC) using calcium-containing binders[J]. Construction and Building Materials,2020,265:120857. doi: 10.1016/j.conbuildmat.2020.120857 [17] 李可, 金蕾蕾, 刘伟康, 等. 考虑多参数影响的水泥基复合材料单轴抗压性能试验研究[J]. 工业建筑, 2018, 48(2):139-143, 148. doi: 10.13204/j.gyjz201802025LI Ke, JIN Leilei, LIU Weikang, et al. Experimental research on the uniaxial compressive behavior of ECC considering effects of multiple parameters[J]. Industrial Construction,2018,48(2):139-143, 148(in Chinese). doi: 10.13204/j.gyjz201802025 [18] YU K Q, DING Y, ZHANG Y X. Size effects on tensile properties and compressive strength of engineered cementitious composites[J]. Cement and Concrete Composites,2020,113:103691. doi: 10.1016/j.cemconcomp.2020.103691 [19] ERDEM T K. Specimen size effect on the residual properties of engineered cementitious composites subjected to high temperatures[J]. Cement and Concrete Composites,2014,45:1-8. doi: 10.1016/j.cemconcomp.2013.09.019 [20] 于浩. 高延性混凝土基本力学性能与弯曲韧性的尺寸效应研究[D]. 西安: 西安建筑科技大学, 2018.YU Hao. Research on size effect of basic mechanical properties and bending toughness of PVA-ECC[D]. Xi'an: Xi'an University of Architecture and Technology, 2018(in Chinese). [21] 伍勇华, 于浩, 邓明科, 等. 高延性混凝土弯曲性能的尺寸效应[J]. 硅酸盐通报, 2018, 37(4):1167-1173. doi: 10.16552/j.cnki.issn1001-1625.2018.04.007WU Yonghua, YU Hao, DENG Mingke, et al. Size effect of flexural properties of engineered cementitious composite[J]. Bulletin of the Chinese Ceramic Society,2018,37(4):1167-1173(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2018.04.007 [22] 李雨珊, 尹世平, 徐世烺, 等. 工程水泥基复合材料与发泡式聚苯乙烯保温板的界面粘结性能[J]. 复合材料学报, 2022, 39(11):5251-5263. doi: 10.13801/j.cnki.fhclxb.20220215.002LI Yushan, YIN Shiping, XU Shilang, et al. Bonding properties of the interface between engineering cementitious composite and expanded polystyrene insulation board[J]. Acta Materiae Compositae Sinica,2022,39(11):5251-5263(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220215.002 [23] 张盛, 王峥, 张旭龙, 等. 不同尺寸砂岩动态力学性质和应力平衡性的试验研究[J]. 爆炸与冲击, 2022, 42(10):22-38.ZHANG Sheng, WANG Zheng, ZHANG Xulong, et al. Rock dynamic mechanical properties and dynamic stress balance of sandstone specimens with different sizes[J]. Explosion and Shock Waves,2022,42(10):22-38(in Chinese). [24] 谢磊, 李庆华, 徐世烺. 纤维掺量对聚乙烯醇纤维增强水泥基复合材料动态压缩性能的影响[J]. 复合材料学报, 2021, 38(9):3086-3100. doi: 10.13801/j.cnki.fhclxb.20201204.001XIE Lei, LI Qinghua, XU Shilang. Influence of fiber volume fraction on dynamic compressive properties of polyvinyl alcohol fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica,2021,38(9):3086-3100(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201204.001 [25] WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics,1951,18(3):293-297. doi: 10.1115/1.4010337 [26] 李东波, 张鸿驰, 刘春燕, 等. 氧化石墨烯与粉煤灰增强水泥基材料的协同机理及其抗压性能尺寸效应[J]. 应用力学学报, 2021, 38(5):1869-1876. doi: 10.11776/cjam.38.05.B051LI Dongbo, ZHANG Hongchi, LIU Chunyan, et al. Synergistic mechanisms and size effect of cement-based materials enhanced by graphene oxide and fly ash[J]. Chinese Journal of Applied Mechanics,2021,38(5):1869-1876(in Chinese). doi: 10.11776/cjam.38.05.B051 [27] 张盛, 喻炳鑫, 王峰, 等. 不同尺寸含裂缝岩样动态破坏特征的实验研究[J]. 采矿与安全工程学报, 2021, 38(5):1045-1054. doi: 10.13545/j.cnki.jmse.2021.0131ZHANG Sheng, YU Bingxin, WANG Feng, et al. Experimental study on dynamic fracture characteristics of different sizes of rock specimens with a crack[J]. Journal of Mining & Safety Engineering,2021,38(5):1045-1054(in Chinese). doi: 10.13545/j.cnki.jmse.2021.0131 [28] 孟庆彬, 韩立军, 浦海, 等. 应变速率和尺寸效应对岩石能量积聚与耗散影响的试验[J]. 煤炭学报, 2015, 40(10):2386-2398. doi: 10.13225/j.cnki.jccs.2014.1771MENG Qingbin, HAN Lijun, PU Hai, et al. Experimental on the effect of strain rate and size on the energy accumulation and dissipation of rock[J]. Journal of China Coal Society,2015,40(10):2386-2398(in Chinese). doi: 10.13225/j.cnki.jccs.2014.1771 [29] 梁兴文, 邓明科, 杨可家, 等. 混凝土结构基本原理[M]. 第二版. 重庆: 重庆大学出版社, 2017: 22-23.LIANG Xingwen, DENG Mingke, YANG Kejia, et al. Basic principles of concrete structures[M]. 2nd edition. Chongqing: Chongqing University Press, 2017: 22-23(in Chinese). [30] WANG S S, ZHANG M H, QUEK S T. Mechanical behavior of fiber-reinforced high-strength concrete subjected to high strain-rate compressive loading[J]. Construction and Building Materials,2012,31:1-11. doi: 10.1016/j.conbuildmat.2011.12.083 [31] BAŽANT Z P. Size effect in blunt fracture: Concrete, rock, metal[J]. Journal of Engineering Mechanics,1984,110(4):518-535. doi: 10.1061/(ASCE)0733-9399(1984)110:4(518) [32] LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures,2003,40(2):343-360. doi: 10.1016/S0020-7683(02)00526-7 [33] 平琦, 张号, 苏海鹏. 不同长度石灰岩动态压缩力学性质试验研究[J]. 岩石力学与工程学报, 2018, 37(S2):3891-3897. doi: 10.13722/j.cnki.jrme.2018.0646PING Qi, ZHANG Hao, SU Haipeng. Study on dynamic compression mechanical properties of limestone with different lengths[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(S2):3891-3897(in Chinese). doi: 10.13722/j.cnki.jrme.2018.0646 [34] 袁良柱, 苗春贺, 单俊芳, 等. 冲击下混凝土试样应变率效应和惯性效应探讨[J]. 爆炸与冲击, 2022, 42(1):18-30. doi: 10.11883/bzycj-2021-0114YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, et al. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion and Shock Waves,2022,42(1):18-30(in Chinese). doi: 10.11883/bzycj-2021-0114 [35] GUO A F, ZHOU F, DU Y X, et al. Dynamic compressive behavior of CTRC and ECC layered concrete under impact load[J]. KSCE Journal of Civil Engineering,2021,25(11):4374-4385. doi: 10.1007/s12205-021-0188-5