留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻璃纤维增强复合材料管约束装配式混凝土桥墩抗震性能

叶晗晖 茅鸣 布占宇

叶晗晖, 茅鸣, 布占宇. 玻璃纤维增强复合材料管约束装配式混凝土桥墩抗震性能[J]. 复合材料学报, 2024, 43(0): 1-15.
引用本文: 叶晗晖, 茅鸣, 布占宇. 玻璃纤维增强复合材料管约束装配式混凝土桥墩抗震性能[J]. 复合材料学报, 2024, 43(0): 1-15.
YE Hanhui, MAO Ming, BU Zhanyu. Seismic performance of glass fiber reinforced polymer tube confined prefabricated concrete pier[J]. Acta Materiae Compositae Sinica.
Citation: YE Hanhui, MAO Ming, BU Zhanyu. Seismic performance of glass fiber reinforced polymer tube confined prefabricated concrete pier[J]. Acta Materiae Compositae Sinica.

玻璃纤维增强复合材料管约束装配式混凝土桥墩抗震性能

基金项目: 宁波市交通运输科技计划(202207);浙江省基础公益研究计划(LGG22E080007);国家自然科学基金(51878606)
详细信息
    通讯作者:

    布占宇,博士,教授,博士生导师,研究方向为桥梁设计理论 E-mail: buzhanyu@nbu.edu.cn

  • 中图分类号: TB332

Seismic performance of glass fiber reinforced polymer tube confined prefabricated concrete pier

Funds: Transportation Science and Technology Project of Ningbo City (202207); Zhejiang Province Basic Public Welfare Research Project (LGG22E080007); National Natural Science Foundation of China (51878606)
  • 摘要: 为提高装配式混凝土桥墩在地震作用下的结构性能,设计并制作了2个不同厚度的玻璃纤维增强复合材料(GFRP)管约束桥墩(SPCG1, SPCG2)和1个无约束对比桥墩(SPC),柱与承台采用灌浆套筒进行预制拼装连接。拟静力试验结果表明,GFRP管约束有效改善了墩柱塑性铰区的破坏,提升了装配式混凝土桥墩的抗震性能。相比SPC,SPCG1和SPCG2的极限位移分别提高了23.2%和30.9%,延性系数分别提高了16.7%和54.6%,在7%漂移率下的剩余承载力分别提高了103.3%和90.4%,残余位移分别降低了21.4%和32.0%。建议的该类预制拼装桥墩的损伤量化区间和定性描述可为相关实际工程应用提供参考。

     

  • 图  1  装配式混凝土桥墩制作过程

    Figure  1.  Fabrication process of prefabricated concrete pier

    图  2  GFRP管约束装配式混凝土桥墩基本构造 (单位:mm)

    Figure  2.  Basic structure of GFRP tube confined prefabricated concrete pier (Unit: mm)

    图  3  拟静力试验

    Figure  3.  Pseudo-static test

    图  4  位移加载制度

    Figure  4.  Displacement loading system

    图  5  测点布置及编号

    Figure  5.  Measuring point layout and numbering

    图  6  墩柱破坏形态

    Figure  6.  Failure pattern of pier column

    图  7  混凝土和连接钢筋应变

    Figure  7.  Strain of concrete and connecting steel bars

    图  8  GFRP管环向应变

    Figure  8.  Circumferential strain of GFRP tube

    图  9  双曲率柱的加载变形

    Figure  9.  Loading deformation of double curvature column

    $ F $—Horizontal force; $ N $—Axial force; $ \Delta $—Displacement; $ \alpha $—The angle between the axial force and the vertical direction; $ \text{e} $—Eccentricity; $ H $—Column height; $ {L}_{1} $—Bent cap height; $ {L}_{2} $—Cap height

    图  10  GFRP管约束装配式墩柱曲率

    Figure  10.  GFRP tubes confined prefabricated piers column curvature

    图  11  GFRP管约束装配式桥墩的滞回曲线和骨架曲线

    Figure  11.  Hysteretic curve and skeleton curve of prefabricated piers confined by GFRP tubes

    图  12  GFRP管约束装配式桥墩的骨架曲线对比

    Figure  12.  Comparison of skeleton curves of prefabricated piers confined by GFRP tubes

    图  13  SPCG1偏心距变化

    Figure  13.  Eccentricity variation of SPCG1

    图  14  GFRP管约束装配式桥墩的刚度及其退化

    Figure  14.  Stiffness and degradation of prefabricated piers confined by GFRP tubes

    图  15  GFRP管约束装配式桥墩的累积滞回耗能和等效粘滞阻尼比

    Figure  15.  Cumulative hysteretic energy dissipation and equivalent viscous damping ratio of GFRP tubes confined prefabricated piers

    图  16  GFRP管约束装配式桥墩的残余位移对比

    Figure  16.  Comparison of residual displacement of prefabricated piers confined by GFRP tubes

    图  17  GFRP管约束装配式桥墩的损伤指数

    Figure  17.  Damage index of prefabricated piers confined by GFRP tubes

    表  1  混凝土和灌浆料立方体试块的抗压强度

    Table  1.   Compressive strength of concrete and grout cubes

    Number $ P $/kN $ {f}_{\mathrm{c}\mathrm{c}} $/MPa $ {f}_{\mathrm{c}\mathrm{c},\mathrm{a}} $/MPa $ {f}_{\mathrm{g}\mathrm{c}} $/MPa $ {f}_{\mathrm{g}\mathrm{c},\mathrm{a}} $/MPa
    C1 1004 44.6 41.6
    C2 914 40.6
    C3 893 39.7
    G1 1006 100.6 104.5
    G2 1012 101.2
    G3 1014 101.4
    G4 1074 107.4
    G5 1036 103.6
    G6 1128 112.8
    Notes: $ P $is the failure load; $ {f}_{\mathrm{c}\mathrm{c}} $ is the compressive strength of concrete cube specimen; $ {f}_{\mathrm{c}\mathrm{c},\mathrm{a}} $ is the average compressive strength of this group of concrete specimens; $ {f}_{\mathrm{g}\mathrm{c}} $ is the compressive strength of grout cube specimen; $ {f}_{\mathrm{g}\mathrm{c},\mathrm{a}} $ is the average compressive strength of this group of grout specimens.
    下载: 导出CSV

    表  2  混凝土配合比

    Table  2.   Concrete mix proportion

    Cement
    [PO42.5]
    Flyash[F-Ⅲ] Mineral
    powder [S95]
    Sand Water Rubble
    [10-25 mm]
    Rubble
    [5-10 mm]
    Water
    reducer
    Unit weight
    Proportioning
    dosage/(kg·m−3)
    241 134 66 748 163 826 207 4.2 2389.2
    Mix proportion 1 1.696 0.370 1.873 0.469 0.010 -
    下载: 导出CSV

    表  3  GFRP管约束装配式桥墩的变形和承载性能

    Table  3.   Deformation and load-bearing performance of GFRP tubes confined prefabricated piers

    Specimen Direction $ {F}_{\mathrm{y}} $/kN $ {\Delta }_{\mathrm{y}} $/mm $ {F}_{\mathrm{p}} $/kN $ {\Delta }_{\mathrm{p}} $/mm $ {F}_{\mathrm{u}} $/kN $ {\Delta }_{\mathrm{u}} $/mm $ {\mu }_{\mathrm{m}} $
    SPC Positive 185.4 34.6 205.5 71.5 174.7 92.2 2.67
    Negative 177.8 30.8 198.9 59.5 169.1 91.8 2.98
    Mean value 181.6 32.7 202.2 65.5 171.9 92.0 2.82
    SPCG1 Positive 134.2 25.5 168.9 40.0 143.6 95.7 3.75
    Negative 224.0 46.3 269.3 99.6 228.9 130.9 2.82
    Mean value 179.1 35.9 219.1 69.8 186.3 113.3 3.29
    SPCG2 Positive 145.2 22.4 196.8 49.9 167.3 118.7 5.29
    Negative 172.9 35.7 220.1 79.4 187.1 122.1 3.42
    Mean value 159.0 29.0 186.3 64.7 177.2 120.4 4.36
    Notes:$ {F}_{\mathrm{y}} $—Yield force; $ {F}_{\mathrm{p}} $—Peak force; $ {\Delta }_{\mathrm{p}} $—Peak displacement; $ {F}_{\mathrm{u}} $—Ultimate force.
    下载: 导出CSV

    表  4  本文装配式桥墩的损伤指数区间和状态描述

    Table  4.   Damage index interval and state description of prefabricated piers in this paper

    Quantization interval Description of damage phenomena of prefabricated pier
    Unconfined prefabricated pier Prefabricated pier confined by GFRP tube
    $ 0\leqslant D\leqslant 0.1 $ The structure is basically intact; drift ration is less than 0.75%
    $ 0.1 < D\leqslant 0.25 $ Concrete cracking; joint opening visible; drift rate is less than 1.5%~2% GFRP tube basically no damage; joint opening degree is small; drift ration is less than 2%
    $ 0.25 < D\leqslant 0.5 $ Concrete develops cross oblique cracks; joint opening degree increases slowly; longitudinal bars yield; drift ration is less than 2.75% The bottom of GFRP tube begins to turn white; joint opening degree increases; longitudinal bars may yield; drift ration is less than 3.5%
    $ 0.5 < D\leqslant 1 $ Concrete spalling in plastic hinge area; joint opening speed is faster; longitudinal bars are buckling; drift ration is less than 4.5% The bottom of GFRP tube is cracked; internal concrete is compressed and expanded; longitudinal bars are buckling; drift ration is less than 5.5%~5.75%
    $ D > 1 $ Longitudinal and stirrup exposed; the structure is at risk of collapse GFRP tube near the joint may suffer local brittle failure; the structure is at risk of collapse
    下载: 导出CSV
  • [1] 王景全, 王震, 高玉峰, 等. 预制桥墩体系抗震性能研究进展: 新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.

    WANG Jingquan, WANG Zhen, GAO Yufeng, et al. Review on aseismic behavior of precast piers: new material, new concept, and new application[J]. Engineering Mechanics, 2019, 36(3): 1-23(in Chinese).
    [2] SHIELD C K. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures[R]. Farminton Hills: American Concrete Institute, 2017.
    [3] 梅葵花, 王凤轩, 孙胜江. 纤维增强复合材料加固混凝土桥梁结构研究进展[J]. 建筑科学与工程学报, 2024, 41(1): 31-51.

    MEI Kuihua, WANG Fengxuan, SUN Shengjiang. Research progress of fiber reinforced polymer in strengthening concrete bridge structure[J]. Journal of Architecture and Civil Engineering, 2024, 41(1): 31-51(in Chinese).
    [4] MONTI G, NISTICò N, SANTINI S. Design of FRP jackets for upgrade of circular bridge piers[J]. Journal of Composites for Construction, 2001, 5(2): 94-101. doi: 10.1061/(ASCE)1090-0268(2001)5:2(94)
    [5] HAROUN M A, ELSANADEDY H M. Behavior of cyclically loaded squat reinforced concrete bridge columns upgraded with advanced composite-material jackets[J]. Journal of Bridge Engineering, 2005, 10(6): 741-748. doi: 10.1061/(ASCE)1084-0702(2005)10:6(741)
    [6] 黄镜渟, 高鹏, 周安, 等. 纤维增强树脂复合材料布约束不同强度混凝土配筋柱抗震性能[J]. 复合材料学报, 2022, 39(11): 5625-5636.

    HUANG Jingting, GAO Peng, ZHOU An, et al. Seismic performance of FRP-confined reinforced concrete columns with different concrete strength[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5625-5636(in Chinese).
    [7] ELGAWADY M, ENDESHAW M, MCLEAN D, et al. Retrofitting of rectangular columns with deficient lap splices[J]. Journal of Composites for Construction, 2010, 14(1): 22-35. doi: 10.1061/(ASCE)CC.1943-5614.0000047
    [8] SEIBLE F, PRIESTLEY M J N, HEGEMIER G A, et al. Seismic retrofit of RC columns with continuous carbon fiber jackets[J]. Journal of Composites for Construction, 1997, 1(2): 52-62. doi: 10.1061/(ASCE)1090-0268(1997)1:2(52)
    [9] ZHU Z Y, AHMAD I , MIRMIRAN A. Seismic performance of concrete-filled FRP tube columns for bridge substructure[J]. Journal of Bridge Engineering, 2006, 11(3): 359-370.
    [10] SADEGHIAN P, FAM A. Closed-form model and parametric study on connection of concrete-filled FRP tubes to concrete footings by direct embedment[J]. Journal of Engineering Mechanics, 2011, 137(5): 346-354. doi: 10.1061/(ASCE)EM.1943-7889.0000231
    [11] SADEGHIAN P, LAI Y C, FAM A. Testing and modeling of a new moment connection of concrete-filled FRP tubes to footings under monotonic and cyclic loadings[J]. Journal of Composites for Construction, 2011, 15(4): 653-662. doi: 10.1061/(ASCE)CC.1943-5614.0000198
    [12] ELGAWADY M, BOOKER A J, DAWOOD H M. Seismic behavior of posttensioned concrete-filled fiber tubes[J]. Journal of Composites for Construction, 2010, 14(5): 616-628. doi: 10.1061/(ASCE)CC.1943-5614.0000107
    [13] ELGAWADY M A, SHA’LAN A. Seismic behavior of self-centering precast segmental bridge bents[J]. Journal of Bridge Engineering, 2011, 16(3): 328-339. doi: 10.1061/(ASCE)BE.1943-5592.0000174
    [14] MOUSTAFA A, ELGAWADY M A. Shaking table testing of segmental hollow-core FRP-concrete-steel bridge columns[J]. Journal of Bridge Engineering, 2018, 23(5): 04018020. doi: 10.1061/(ASCE)BE.1943-5592.0001238
    [15] 张紫林. 灌浆GFRP套管约束预制节段桥墩抗震性能研究[D]. 徐州: 中国矿业大学, 2022.

    ZHANG Zilin. Seismic performance of precast segmental piers confined by grouted GFRP tubes[D]. Xuzhou: China University of Mining & Technology, 2022(in Chinese).
    [16] 尹超. 节段拼装式BFRP管材约束混凝土墩柱拟静力试验及数值分析研究[D]. 成都: 西南交通大学, 2020.

    YIN Chao. Quasi-static test and numerical analysis of segmental concrete-filled BFRP tube[D]. Chengdu: Southwest Jiaotong University, 2020(in Chinese).
    [17] 魏红一, 肖纬, 王志强, 等. 采用套筒连接的预制桥墩抗震性能试验研究[J]. 同济大学学报(自然科学版), 2016, 44(7): 1010-1016. doi: 10.11908/j.issn.0253-74x.2016.07.005

    WEI Hongyi, XIAO Wei, WANG Zhiqiang, et al. Experimental study on seismic performance of precast bridge pier with grouted splice sleeve[J]. Journal of Tongji University (Natural Science), 2016, 44(7): 1010-1016(in Chinese). doi: 10.11908/j.issn.0253-74x.2016.07.005
    [18] 徐文靖, 马骉, 黄虹, 等. 套筒连接的预制拼装桥墩抗震性能研究[J]. 工程力学, 2020, 37(10): 93-104. doi: 10.6052/j.issn.1000-4750.2019.11.0667

    XU Wenjing, MA Biao, HUANG Hong, et al. The seismic performance of precast bridge piers with grouted sleeves[J]. Engineering Mechanics, 2020, 37(10): 93-104(in Chinese). doi: 10.6052/j.issn.1000-4750.2019.11.0667
    [19] HABER Z B, SAIIDI M S, SANDERS D H. Seismic performance of precast columns with mechanically spliced column-footing connections[J]. ACI Structural Journal, 2014, 111(3): 639-650.
    [20] HABER Z B, MACKIE K R, AL-JELAWY H M. Testing and analysis of precast columns with grouted sleeve connections and shifted plastic hinging[J]. Journal of Bridge Engineering, 2017, 22(10): 04017078. doi: 10.1061/(ASCE)BE.1943-5592.0001105
    [21] 张凯迪, 贾俊峰, 程寿山, 等. 等同现浇预制装配桥墩抗震性能研究综述[J]. 北京工业大学学报, 2022, 48(12): 1248-1259. doi: 10.11936/bjutxb2021100009

    ZHANG Kaidi, JIA Junfeng, CHENG Shoushan, et al. Seismic performance of emulative cast-in-place precast bridge columns-state of the art review[J]. Journal of Beijing University of Technology, 2022, 48(12): 1248-1259(in Chinese). doi: 10.11936/bjutxb2021100009
    [22] 叶晗晖, 徐声亮, 茅鸣, 等. 纤维缠绕GFRP管约束混凝土的轴压性能与设计模型[J]. 复合材料学报, 2024, 41(8): 4246-4258.

    YE Hanhui, XU Shengliang, MAO Ming, et al. Axial compressive performance and design model of fiber wound GFRP tube confined concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4246-4258(in Chinese).
    [23] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People’ Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
    [24] 中华人民共和国住房和城乡建设部. 建筑抗震试验规程: JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People’ Republic of China. Specification for seismic test of buildings: JGJ/T 101—2015[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
    [25] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(3): 36-46. doi: 10.6052/j.issn.1000-4750.2016.03.0192

    FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3): 36-46(in Chinese). doi: 10.6052/j.issn.1000-4750.2016.03.0192
    [26] American National Standards Institute. Seismic evaluation and retrofit of existing buildings: ASCE/SEI 41-17[S]. Reston, Virginia: American Society of Civil Engineers, 2017.
    [27] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能试验研究[J]. 振动与冲击, 2017, 36(18): 131-139.

    CHEN Rong, LEI Junqing. Experimental investigations on the seismic behaviors of RC bridge piers under variable axial loads[J]. Journal of Vibration and Shock, 2017, 36(18): 131-139(in Chinese).
    [28] 顾祥林, 蔡茂, 林峰. 地震作用下钢筋混凝土柱受力性能研究[J]. 工程力学, 2010, 27(11): 160-165+190.

    GU Xianglin, CAI Mao, LIN Feng. Study on behavior of RC columns subjected to earthquake[J]. Engineering Mechanics, 2010, 27(11): 160-165+190(in Chinese).
    [29] HEWES J T, PRIESTLEY M J N. Seismic design and performance of precast concrete segmental bridge columns[R]. La Jolla, California: University of California, San Diego, 2001.
    [30] BU Z Y, GUO J, ZHENG R Y, et al. Cyclic performance and simplified pushover analyses of precast segmental concrete bridge columns with circular section[J]. Earthquake Engineering and Engineering Vibration, 2016, 15(2): 297-312. doi: 10.1007/s11803-016-0323-3
    [31] PARK Y J, ANG A H S. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering, 1985, 111(4): 722-739. doi: 10.1061/(ASCE)0733-9445(1985)111:4(722)
    [32] PARK Y J, ANG A H S, WEN Y K Seismic damage analysis of reinforced concrete buildings[J]. Journal of Structural Engineering, 1985, 111(4): 740-757.
    [33] 梁金宝, 许维炳, 陈彦江, 等. 基于变形-能量双参数模型的8度区装配式混凝土桥墩抗震性能评估[J]. 工程抗震与加固改造, 2021, 43(2): 14-23.

    LIANG Jinbao, XU Weibing, CHEN Yanjiang, et al. Seismic performance of prefabricated concrete piers for high intensity area and its evaluation method based on deformation-energy parameters model[J]. Earthquake Resistant Engineering and Retrofitting, 2021, 43(2): 14-23(in Chinese).
    [34] 王东升, 冯启民, 王国新. 考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J]. 土木工程学报, 2004, 37(11): 41-49.

    WANG Dongsheng , FENG Qimin, WANG Guoxin. A modified Park-Ang seismic damage model considering low-cycle fatigue life[J]. China Civil Engineering Journal, 2004, 37(11): 41-49(in Chinese).
    [35] 付国, 刘伯权, 邢国华. 基于有效耗能的改进Park-Ang双参数损伤模型及其计算研究[J]. 工程力学, 2013, 30(7): 84-90. doi: 10.6052/j.issn.1000-4750.2012.01.0051

    FU Guo, LIU Boquan, XING Guohua. The research and calculation on modified Park-Ang double parameter seismic damage model based on energy dissipation[J]. Engineering Mechanics, 2013, 30(7): 84-90(in Chinese). doi: 10.6052/j.issn.1000-4750.2012.01.0051
    [36] HOSE Y, SILVA P, SEIBLE F. Development of a performance evaluation database for concrete bridge components and systems under simulated seismic loads[J]. Earthquake Spectra, 2000, 16(2): 413-442. doi: 10.1193/1.1586119
    [37] 布占宇, 叶晗晖, 葛胜良, 等. 直接基于位移的预制拼装墩柱抗震设计[J]. 中国公路学报, 2018, 31(12): 250-257. doi: 10.3969/j.issn.1001-7372.2018.12.025

    BU Zhanyu, YE Hanhui, GE Shengliang, et al. Seismic resistant design of precast segmental columns using direct displacement based design method[J]. China Journal of Highway and Transport, 2018, 31(12): 250-257(in Chinese). doi: 10.3969/j.issn.1001-7372.2018.12.025
    [38] 胡志坚, 闫明辉, 周知, 等. 预制拼装桥墩地震易损性分析[J]. 土木工程学报, 2022, 55(1): 89-99+108.

    HU Zhijian, YAN Minghui, ZHOU Zhi, et al. Seismic vulnerability analysis of precast segmental bridge piers[J]. China Civil Engineering Journal, 2022, 55(1): 89-99+108(in Chinese).
  • 加载中
计量
  • 文章访问数:  51
  • HTML全文浏览量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-27
  • 修回日期:  2024-09-18
  • 录用日期:  2024-10-08
  • 网络出版日期:  2024-10-21

目录

    /

    返回文章
    返回