留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气动载荷下Al-GF/PP面板-三维中空夹层复合材料的强度特性

林艳艳 郭兴豪 吴灿 李华冠 项俊贤 陈熹 陶杰

林艳艳, 郭兴豪, 吴灿, 等. 气动载荷下Al-GF/PP面板-三维中空夹层复合材料的强度特性[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 林艳艳, 郭兴豪, 吴灿, 等. 气动载荷下Al-GF/PP面板-三维中空夹层复合材料的强度特性[J]. 复合材料学报, 2024, 42(0): 1-13.
LIN Yanyan, GUO Xinghao, WU Can, et al. Strength characterization of 3 D hollow sandwich composite with Al-GF/PP faceplate under aerodynamic load[J]. Acta Materiae Compositae Sinica.
Citation: LIN Yanyan, GUO Xinghao, WU Can, et al. Strength characterization of 3 D hollow sandwich composite with Al-GF/PP faceplate under aerodynamic load[J]. Acta Materiae Compositae Sinica.

气动载荷下Al-GF/PP面板-三维中空夹层复合材料的强度特性

基金项目: 国家自然科学基金(52305374;52175327);江苏省高等学校基础科学研究项目(23KJB430020;22KJA430006);南京工程学院校级科研基金项目(YKJ202226);中国科协青年人才托举工程(2021QNRC001)
详细信息
    通讯作者:

    李华冠,博士,教授,硕士生导师,研究方向为超混杂复合材料及夹层结构设计制造技术 E-mail: lihuaguan@njit.edu.cn

  • 中图分类号: TB332;TQ327.1

Strength characterization of 3 D hollow sandwich composite with Al-GF/PP faceplate under aerodynamic load

Funds: National Natural Science Foundation of China (52305374; 52175327); Natural Science Foundation of the Jiangsu Higher Education Institution of China (23KJB430020; 22KJA430006);University Research Foundation of Nanjing Institute of Technology (YKJ202226); Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)
  • 摘要: 随着高速列车的不断提速,特别是在通过隧道或会车时,气动载荷对蒙皮结构的强度特性提出了更高的要求。热塑性铝合金-玻纤/聚丙烯(Aluminum-Glass fiber/Polypropylene, Al-GF/PP)面板-三维中空夹层复合材料是一种以纤维金属层板为面板、三维中空复合复合材料为芯材的三明治夹层材料,具有轻质高强、隔音隔热等优势,可用于高速列车车门、裙板等蒙皮结构。通过比较不同高度(10~25 mm)的三维中空复合材料在平压、侧压及弯曲性能上的表现发现,随着厚度增加,其力学性能呈下降趋势,较厚的三维中空复合材料芯材弯矩较大,结构稳定性低。对Al-GF/PP面板-三维中空夹层复合材料进行了4 kPa、5 kPa、6 kPa、7 kPa的气动载荷测试。结果表明,当“8”形纤维受到垂直于面板方向的作用力时,纬向承担了主要载荷,这有助于减小纤维在加载方向上的位移量。芯材与上面板连接处承受的载荷应力最大,位移主要出现于结构的受载侧,最大位移值分别为1.80 μm、2.26 μm、2.72 μm和3.19 μm,该数量级的气动载荷不会导致试样出现宏观的变形失效。

     

  • 图  1  Al-GF/PP面板-三维中空复合材料的制备工艺流程

    Figure  1.  Preparation process of 3 D hollow sandwich composite with Al-GF/PP faceplate

    图  2  Al-GF/PP面板-三维中空复合材料真空导流工艺

    Figure  2.  Vacuum diversion technology of 3 D hollow sandwich composite with Al-GF/PP faceplate

    图  3  固化工艺对Al-GF/PP面板-三维中空复合材料力学性能的影响:(a) 弯曲性能;(b) 平压性能

    Figure  3.  Effect of curing process on mechanical properties of 3 D hollow sandwich composite with Al-GF/PP faceplate: (a) Flexural properties; (b) Flatwise compressive properties

    图  4  Al-GF/PP面板-三维中空复合材料试样

    Figure  4.  3 D hollow sandwich composite with Al-GF/PP faceplate specimens

    图  5  Al-GF/PP面板-三维中空复合材料典型平压载荷-位移曲线(a)和典型失效形式(b)

    Figure  5.  Typical flatwise compressive load-displacement curve (a) and typical failure modes (b) of 3 D hollow sandwich composite with Al-GF/PP faceplate

    图  6  Al-GF/PP面板-三维中空复合材料弯曲(a)和侧压(b)实验结果

    Figure  6.  Typical flexural (a) and edgewise compressive (b) results of 3 D hollow sandwich composite with Al-GF/PP faceplate

    图  7  厚度对Al-GF/PP面板-三维中空复合材料力学性能的影响

    Figure  7.  Effect of thickness on mechanical properties of 3 D hollow sandwich composite with Al-GF/PP faceplate

    图  8  Al-GF/PP面板-三维中空复合材料模型参数

    Figure  8.  Model parameter of 3 D hollow sandwich composite with Al-GF/PP faceplate

    图  9  Al-GF/PP面板-三维中空复合材料平压实验应力云图(a)及芯层失效过程(b)

    Figure  9.  Stress nephogram of 3 D hollow sandwich composite with Al-GF/PP faceplate in flatwise compressive (a) and failure process of core layer (b)

    图  10  气动载荷下Al-GF/PP面板-三维中空夹层复合材料的强度分析:(a) 模型;(b) 在施压后的位移云图

    Figure  10.  Strength analysis of 3 D hollow sandwich composite with Al-GF/PP faceplate based on aerodynamic effects: (a) Finite element model;(b) Displacement cloud image after pressure

    图  11  “8”形纤维在压向的位移情况:(a) “8”形纤维代表点示意图;(b) 4 kPa各点压向位移;(c) 5 kPa各点压向位移;(d) 6 kPa各点压向位移;(e) 7 kPa各点压向位移

    Figure  11.  Displacement of the “8” shape fiber in the pressure direction: (a) Schematic diagram of “8” shaped fibers representing points; (b) 4 kPa pressure displacement at each point; (c) 5 kPa pressure displacement at each point; (d) 6 kPa pressure displacement at each point; (e) 7 kPa pressure displacement at each point

    图  12  “8”形纤维在不同压力下的应力(S11, S22, S12)

    Figure  12.  Stress of “8” shaped fibers under different pressures (S11, S22, S12)

    图  13  Al-GF/PP面板-三维中空夹层复合材料的铺层结构及制备工艺

    Figure  13.  Layup and preparation process of 3 D hollow sandwich composite with Al-GF/PP faceplate

    图  14  Al-GF/PP面板-三维中空夹层复合材料试样(a); 实验安装示意图(b)

    Figure  14.  Strength experiment of 3 D hollow sandwich composite with Al-GF/PP faceplate (a); experimental installation diagram (b)

    图  15  对Al-GF/PP面板-三维中空夹层复合材料A面施加前(a); 施加4 kPa (b); 施加6 kPa (c); 施加后(d)

    Figure  15.  A side of 3 D hollow sandwich composite with Al-GF/PP faceplate before application (a); Apply 4 kPa (b); Apply 6 kPa (c); After application (d)

    图  16  对Al-GF/PP面板-三维中空夹层复合材料B面施加前(a); 施加4 kPa (b); 施加6 kPa (c); 施加后(d)

    Figure  16.  B side of 3 D hollow sandwich composite with Al-GF/PP faceplate before application (a); Apply 4 kPa (b); Apply 6 kPa (c); After application (d)

    图  17  经过气动载荷试验后Al-GF/PP面板-三维中空夹层复合材料超声C扫结果

    Figure  17.  Ultrasonic C-scan results of 3 D hollow sandwich composite with Al-GF/PP faceplate after aerodynamic load

    表  1  Al-GF/PP面板-三维中空复合材料的物理参数

    Table  1.   Physical parameter of 3 D hollow sandwich composite with Al-GF/PP faceplate

    Weave thickness/mm Actual thickness/mm surface density/
    (kg·m−2)
    10 8.5 2.1
    15 12.4 2.2
    20 17.6 2.9
    25 23.3 3.0
    下载: 导出CSV

    表  2  Al-GF/PP面板-三维中空复合材料有限元建模参数

    Table  2.   FEM parameters of 3D hollow sandwich composite with Al-GF/PP faceplate

    Hight h/mm Faceplate thickness hf/mm Curve equation (the bundle
    diameter of fiber is 0.5 mm)
    8.5 0.5 $ x=0.8 \sin (360 t) $
    $ y=1.76(1-t) $
    $ {\textit{z}}=10 t $
    下载: 导出CSV

    表  3  Al-GF/PP面板-三维中空复合材料有限元参数

    Table  3.   FEM parameters of 3 D hollow sandwich composite with Al-GF/PP faceplate

    Parameters Faceplate Core
    ρ/(g·cm−3) 1.4 E-9 2.1 E-9
    E1/MPa 11230 16560
    E2/MPa 14670 4750
    v12 0.151 0.334
    G12/MPa 1660 1730
    G13/MPa 4780 2120
    G23/MPa 4780 2120
    下载: 导出CSV
  • [1] ÖNDER A, ROBINSON M. Investigating the feasibility of a new testing method for GFRP/polymer foam sandwich composites used in railway passenger vehicles[J]. Composite Structures, 2020, 233: 111576. doi: 10.1016/j.compstruct.2019.111576
    [2] LI X, WU Z, YANG J, et al. Experimental study on transient pressure induced by high-speed train passing through an underground station with adjoining tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 224: 104984. doi: 10.1016/j.jweia.2022.104984
    [3] WANG H, SHAO J, ZHANG W, et al. Three-point bending response and energy absorption of novel sandwich beams with combined reentrant double-arrow auxetic honeycomb cores[J]. Composite Structures, 2023, 326: 117606. doi: 10.1016/j.compstruct.2023.117606
    [4] 陶杰, 李华冠, 潘蕾, 等. 纤维金属层板的研究与发展趋势[J]. 南京航空航天大学学报, 2015, 7(5): 626-636.

    TAO Jie, LI Huaguan, PAN Lei, et al. Research and development trend of fiber metal laminates[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 7(5): 626-636 (in Chinese).
    [5] 马威, 管海陆, 张晓琼, 等. 碳纤维/不锈钢极薄带纤维金属层板制备工艺及其弯曲性能[J]. 复合材料学报, 2024, 41(2): 1047-1057.

    MA Wei, GUAN Hailu, ZHANG Xiaoqiong, et al. Preparation process and bending properties of carbon fiber/stainless steel ultra-thin strip fiber metal laminates[J]. Chinese Journal of Composite Materials, 2024, 41(2): 1047-1057 (in Chinese).
    [6] 亓昌, 付利荣, 刘海涛, 等. 热塑性纤维金属层板抗冲击性能研究与优化[J]. 重庆理工大学学报(自然科学), 2023, 37(4): 115-122.

    QI Chang, FU Lirong, LIU Haitao, et al. Research and optimization of impact resistance of thermoplastic fiber metal laminates[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(4): 115-122 (in Chinese).
    [7] ZHOU H, ZHENG C, LU A, et al. An experimental study of the effects of degrees of confinement on the response of thermoplastic fibre-metal laminates subjected to blast loading[J]. Thin-walled structures, 2023, 192: 111125. doi: 10.1016/j.tws.2023.111125
    [8] LIN Y Y, LI H G, ZHANG Z W, et al. Low-velocity impact resistance of Al/GF/PP laminates with different interface performance[J]. Polymers, 2021, 13(24): 4416. doi: 10.3390/polym13244416
    [9] PENG J, CAI D, ZHANG N, et al. Experimental investigation on mechanical behavior of 3D integrated woven spacer composites under quasi-static indentation and compression after indentation: Effect of indenter shapes[J]. Thin-walled Structures, 2023, 182: 110213. doi: 10.1016/j.tws.2022.110213
    [10] LIN Y Y, LI H G, KUANG N, et al. Experimental and numerical research on flexural behavior of fiber metal laminate sandwich composite structures with 3D woven hollow integrated core[J]. Journal of Sandwich Structures & Materials, 2022, 24: 1790-1807.
    [11] TIAN H. Review of research on high-speed railway aerodynamics in China[J]. Transportation Safety and Environment, 2019, 1: 1-21. doi: 10.1093/tse/tdz014
    [12] CHEN Y, WU Q. Study on unsteady aerodynamic characteristics of two trains passing by each other in the open air[J]. Journal of Vibroengineering, 2018, 20(2): 1161-1178. doi: 10.21595/jve.2018.18695
    [13] XIONG X, ZHU L, ZHANG J, et al. Field measurements of the interior and exterior aerodynamic pressure induced by a metro train passing through a tunnel[J]. Sustainable Cities and Society, 2020, 53: 101928. doi: 10.1016/j.scs.2019.101928
    [14] SAKUMA Y, PAIDOUSSIS M, PRICE S. Effect of boundary layer development on the dynamics of trains and train-like articulated systems travelling in confined fluid[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 126: 38-47. doi: 10.1016/j.jweia.2013.12.008
    [15] 张忆宁. 动车组碳纤维增强复合材料设备舱强度研究[D]. 北京: 北京交通大学, 2020.

    ZHANG Yining. Research on strength of carbon fiber reinforced composite equipment compartment of EMU [D]. Beijing: Beijing Jiaotong University, 2020 (in Chinese).
    [16] 王英学, 高波, 任文强. 高速铁路隧道缓冲结构气动载荷与结构应力特性分析[J]. 力学学报, 2017, 49(1): 48-54.

    WANG Yingxue, GAO Bo, REN Wenqiang. Aerodynamic load and structure stress analysis on hood of high-speed railway tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 48-54 (in Chinese).
    [17] HAN S, ZHANG J, XIONG X, et al. Influence of high-speed maglev train speed on tunnel aerodynamic effects[J]. Building and Environment, 2022, 223: 109460. doi: 10.1016/j.buildenv.2022.109460
    [18] 仇亚萍, 沈真, 陈海军, 等. 高速磁悬浮列车用碳纤维复合材料裙板的设计与分析[J]. 复合材料科学与工程, 2021, 2: 95-101.

    QIU Yaping, SHEN Zhen, CHEN Haijun, et al. Design and analysis of carbon fiber composite skirt plate for high-speed maglev Train[J]. Composite Science and Engineering, 2021, 2: 95-101 (in Chinese).
    [19] 徐世南, 张继业, 李田, 等. 高速列车过隧道时底板压力分析[J]. 计算机辅助工程, 2015, 24(4): 28-38.

    XU Shinan, ZHANG Jiye, LI Tian, et al. Analysis of floor pressure of high-speed train passing through tunnel[J]. Computer Aided Engineering, 2015, 24(4): 28-38 (in Chinese).
    [20] 梅元贵, 李绵辉, 郭瑞. 高速铁路隧道内列车交会压力波气动载荷分布特性[J]. 中国铁道科学, 2019, 40(6): 60-67.

    MEI Yuangui, LI Mianhui, GUO Rui. Aerodynamic load distribution characteristics of pressure wave when trains passing each other in high-speed railway tunnel[J]. China Railway Science, 2019, 40(6): 60-67 (in Chinese).
    [21] 中国国家标准化管理委员会. 夹层结构或芯子平压性能试验方法: GB/T 1453-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flat compressive properties of sandwich structures or cores: GB/T 1453-2005 [S]. Beijing: China Standards Press, 2005 (in Chinese).
    [22] 中国国家标准化管理委员会. 夹层结构侧压强度试验方法: GB/T 1454-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for edgewise compressive strength of sandwich structures: GB/T 1454-2005 [S]. Beijing: China Standards Press, 2005 (in Chinese).
    [23] 中国国家标准化管理委员会. 夹层结构弯曲性能试验方法: GB/T 1456-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flexural properties of sandwich structures: GB/T 1456-2005 [S]. Beijing: China Standards Press, 2005 (in Chinese).
    [24] 中国国家标准化管理委员会. 硬质泡沫塑料弯曲性能的测定第2部分: 弯曲强度和表观弯 曲弹性模量的测定: GB/T 8812.2-2007 [S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People’s Republic of China. Determination of flexural properties of rigid cellular plastics second parts: Determination of flexural strength and apparent flexural modulus of elasticity: GB/T 8812.2-2007 [S]. Beijing: China Standards Press, 2007 (in Chinese).
    [25] QI Z, TAN Y, LI G, et al. Effects of hyperbranched polyamide functionalized graphene oxide on curing behavior and mechanical properties of epoxy composites[J]. Polymer Testing, 2018, 71: 145-155. doi: 10.1016/j.polymertesting.2018.08.029
    [26] SADIGHI M, HOSSEINI S A. Finite element simulation and experimental study on mechanical behavior of 3D woven glass fiber composite sandwich panels[J]. Composites Part B:Engineering, 2013, 55: 158-166. doi: 10.1016/j.compositesb.2013.06.030
    [27] AMOOYI DIZAJI R, YAZDANI M, ALIFHOLIZADEH E, et al. Effect of 3D-woven glass fabric and nanoparticles incorporation on impact energy absorption of GLARE composites[J]. Polymer Composite, 2018, 39(10): 3528-3536. doi: 10.1002/pc.24373
    [28] 李华冠, 丁颖, 章月, 等. 玻璃纤维立体织物增强环氧树脂泡沫夹层复合材料的制备及力学性能[J]. 复合材料学报, 2023, 40(1): 601-612.

    LI Huaguan, DING Yin, ZHANG Yue, et al. Preparation and mechanical properties of glass fiber stereoscopic fabric reinforced epoxy resin foam sandwich composite[J]. Journal of Composite Materials, 2023, 40(1): 601-612 (in Chinese).
    [29] CAO Y, QING Y, LI Y, et al. 3D integrated hollow lightweight E-glass fiber reinforced epoxy composites with excellent electromagnetic wave absorption and thermal insulation[J]. Composites Science and Technology, 2023, 235: 109967. doi: 10.1016/j.compscitech.2023.109967
    [30] 王狄辉, 周光明, 刘畅, 等. 整体中空夹层复合材料平压性能的实验[J]. 工程塑料应用, 2016, 44(10): 90-93.

    WANG Dihui, ZHOU Guangming, LIU Chang, et al. Experimental study on flat compression properties of monolithic hollow sandwich composites[J]. Application of Engineering Plastics, 2016, 44(10): 90-93 (in Chinese).
    [31] ZHANG J, JIANG G. Parametric modeling of three-dimensional geometry of warp-knitted loop based on variation of process parameters[J]. The Journal of the Textile Institute, 2018, 1: 2-5.
    [32] 钟志珊. 整体中空夹层复合材料力学性能研究[D]. 南京: 南京航空航天大学, 2007.

    ZHONG Zhishan. Investigation on mechanical property of hollow integrated sandwich composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese).
    [33] WU T, ZHANG C, GUO X. Dynamic responses of monopile offshore wind turbines in cold sea regions: Ice and aerodynamic loads with soil-structure interaction[J]. Ocean Engineering, 2024, 292: 116536. doi: 10.1016/j.oceaneng.2023.116536
    [34] TANG J, ZHOU Z, CHEN H, et al. Research on the lightweight design of GFRP fabric pultrusion panels for railway vehicle[J]. Composite Structures, 2022, 286: 115221. doi: 10.1016/j.compstruct.2022.115221
    [35] LIU C, ZHANG Y, HESLEHURST R. Impact resistance and bonding capability of sandwich panels with fibre-metal laminate skins and aluminium foam core[J]. Journal of Adhesion Science and Technology, 2014, 28(24): 2378-2392. doi: 10.1080/01694243.2014.967744
    [36] LIN Y Y, LI H G, WANG Q L T, et al. Effect of plasma surface treatment of aluminum alloy sheet on the properties of Al/GF/PP laminates[J]. Applied Surface Science, 2020, 507: 145062. doi: 10.1016/j.apsusc.2019.145062
  • 加载中
计量
  • 文章访问数:  48
  • HTML全文浏览量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 修回日期:  2024-02-20
  • 录用日期:  2024-02-24
  • 网络出版日期:  2024-04-12

目录

    /

    返回文章
    返回