留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1D-3D单元耦合模拟穿孔夹芯复合材料中的树脂流动行为

周子维 倪爱清 冯雨薇 王继辉

周子维, 倪爱清, 冯雨薇, 等. 1D-3D单元耦合模拟穿孔夹芯复合材料中的树脂流动行为[J]. 复合材料学报, 2024, 41(12): 6304-6313.
引用本文: 周子维, 倪爱清, 冯雨薇, 等. 1D-3D单元耦合模拟穿孔夹芯复合材料中的树脂流动行为[J]. 复合材料学报, 2024, 41(12): 6304-6313.
ZHOU Ziwei, NI Aiqing, FENG Yuwei, et al. 1D-3D cell coupling simulation of resin flow behavior in perforated sandwich composite materials[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6304-6313.
Citation: ZHOU Ziwei, NI Aiqing, FENG Yuwei, et al. 1D-3D cell coupling simulation of resin flow behavior in perforated sandwich composite materials[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6304-6313.

1D-3D单元耦合模拟穿孔夹芯复合材料中的树脂流动行为

详细信息
    通讯作者:

    王继辉,博士,教授,博士生导师,研究方向为树脂基复合材料力学 E-mail: jhwang@whut.edu.cn

  • 中图分类号: TB332

1D-3D cell coupling simulation of resin flow behavior in perforated sandwich composite materials

  • 摘要: 真空辅助树脂灌注工艺(VARI)作为一种高性能、低成本的制造技术,已广泛应用于大型复合材料零部件的制造。穿孔夹芯复合材料具有比强度比模量高、承载能力强等特点,然而,为了准确模拟穿孔夹芯复合材料中树脂的充模过程,需要对芯材内每个孔洞的树脂流动行为进行三维数值计算,尤其是对于大厚度构件而言需要大量的开发成本和生产周期。为了降低仿真计算复杂性和时间成本,本文提出了一种全新的3D-1D有限单元耦合计算方法,利用自开发ANSYS Fluent UDF子程序模拟树脂在芯材孔洞中的流动,避免了对数量巨大的孔洞进行物理建模,成功优化了穿孔夹芯复合材料真空灌注过程的模型构建和仿真计算过程,并通过实尺度的灌注实验验证了仿真模拟的可行性。研究结果表明,数值仿真与实验测得的灌注时间基本吻合,能够较为准确地模拟穿孔夹芯结构成型过程中树脂的流动。

     

  • 图  1  芯材孔洞截面分析

    Figure  1.  Cross section analysis of core material holes

    图  2  仿真计算流程图

    Figure  2.  Flow chart description of the simulation

    图  3  单孔模型A

    Figure  3.  Single hole model A

    图  4  网格独立性测试

    Figure  4.  Grid independence testing

    图  5  芯材孔洞入口和出口端的树脂流量

    Figure  5.  Resin flow at inlet and outlet of core perforation

    图  6  单孔模型B

    Figure  6.  Single hole model B

    图  7  单孔模型A与B的数值结果

    Figure  7.  Numerical results of single hole models A and B

    图  8  穿孔夹芯复合材料3D模型

    Figure  8.  3D model of perforated sandwich composite material

    图  9  实验装置示意图

    Figure  9.  Schematic of experimental setup

    图  10  穿孔泡沫夹芯复合材料树脂流动前沿位置对比

    Figure  10.  Comparison of resin flow front position of perforated foam sandwich composite

    图  11  40 s、201 s和702 s穿孔泡沫夹芯复合材料上表面树脂流动情况对比

    Figure  11.  Comparison of resin flow on top surface of perforated foam sandwich composite between simulation and experiment at 40 s, 201 s, 702 s

    图  12  460 s、620 s和970 s穿孔泡沫夹芯复合材料下表面树脂流动情况对比

    Figure  12.  Comparison of resin flow on bottom surface of perforated foam sandwich composite between simulation and experiment at 460 s, 620 s, 970 s

    表  1  材料参数测试结果

    Table  1.   Test results of material parameters

    Material Symbol Value
    Inlet pressure/Pa $ {P}_{\mathrm{i}\mathrm{n}} $ 0
    Outlet pressure/Pa $ {P}_{\mathrm{o}\mathrm{u}\mathrm{t}} $ 101325
    Resin viscosity/Pa·s $ {\mu }_{\mathrm{r}} $ 0.25
    Resin density/(kg·m−3) $ {\rho }_{\mathrm{r}} $ 1100
    Silicone oil viscosity/MPa·s $ {\mu }_{\mathrm{s}} $ 78.4
    Silicone oil density/(kg·m−3) $ {\rho }_{\mathrm{s}} $ 963
    Fiber volume fraction/vol% $ {V}_{\mathrm{f}} $ 41.1
    Permeability/(10−11m2) $ {\mathit{K}}_{\mathit{x}} $ 3.41
    $ {\mathit{K}}_{\mathit{y}} $ 3.77
    $ {\mathit{K}}_{\mathit{z}} $ 0.2908
    Notes: Kx, Ky−In-plan permeability; $ {\mathit{K}}_{{\textit{z}}} $− Permeability in thickness direction.
    下载: 导出CSV

    表  2  不同单元尺寸网格划分方案

    Table  2.   Meshing scheme of different element sizes

    Scheme Upper and lower fiber
    panels size/mm
    Core
    size/mm
    Element/104
    a 0.1 0.1 97.2143
    b 0.25 0.1 62.4066
    c 0.5 0.25 46.4243
    d 1 0.5 23.4103
    e 1 1 7.8904
    下载: 导出CSV
  • [1] Irfan S, Siddiqui F. A review of recent advancements in finite element formulation for sandwich plates[J]. Chinese Journal of Aeronautics, 2019, 32(4): 785-798. doi: 10.1016/j.cja.2018.11.011
    [2] Patekar V, Kale K. State of the art review on mechanical properties of sandwich composite structures[J]. Polymer Composites, 2022, 43(9): 5820-5830. doi: 10.1002/pc.26989
    [3] Galos J, Das R, Sutcliffe M P, et al. Review of balsa core sandwich composite structures[J]. Materials & Design, 2022: 111013.
    [4] Yang B, Jin T, Bi F, et al. Modeling the resin flow and numerical simulation of the filling stage for vacuum-assisted resin infusion process[J]. Journal of Reinforced Plastics and Composites, 2014, 33(21): 1976-1992. doi: 10.1177/0731684414551039
    [5] Gada L A , C. N G S, Akhsin M M . Defect characteristics of unidirectional glass fiber reinforced epoxy manufactured via vacuum assisted resin infusion[J]. Materials Today: Proceedings, 2022, 66 (P5): 2796-2800.
    [6] Vilà J, González C, LLorca J. Fabric compaction and infiltration during vacuum-assisted resin infusion with and without distribution medium[J]. Journal of Composite Materials, 2017, 51(5): 687-703. doi: 10.1177/0021998316649783
    [7] Robinson M J, Kosmatka J B. Analysis of the post-filling phase of the vacuum-assisted resin transfer molding process[J]. Journal of Composite Materials, 2014, 48(13): 1547-1559. doi: 10.1177/0021998313488150
    [8] Park C H. Numerical simulation of flow processes in composites manufacturing [M]. Advances in Composites Manufacturing and Process Design. Woodhead Publishing, 2015: 317-378.
    [9] 施赫荣, 王继辉, 倪爱清等. 穿孔泡沫夹芯复合材料灌注工艺仿真与方案优选[J]. 复合材料学报, 2023, 40(2): 782-793.

    SHI Herong, WANG Jihui, NI Aiqing, et al. Perforated foam sandwich composite grouting process simulation and scheme optimization[J]. Journal of Composite Materials, 2023, 40(2): 782-793(in Chinese).
    [10] Shah M, Chaudhary V. Flow modeling and simulation study of vacuum assisted resin transfer molding (VARTM) process: A review[C]. IOP conference series: materials science and engineering. IOP Publishing, 2020, 872(1): 012087.
    [11] Song Y S, Youn J R. Flow advancement through multi-layered preform with sandwich structure[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(4): 1082-1088. doi: 10.1016/j.compositesa.2006.04.009
    [12] Chao Y, Hailiang W, Xueming R, et al. Experimental and Numerical Study on the Permeation Behavior of Foam-core Sandwich Panels in LCM[J]. Fibers and Polymers, 2021, 22(9).
    [13] Chao Y, Yishen L, Xia S, et al. Resin Flow Analysis for the Foam Core Sandwich Spoiler by Vacuum-Assisted Resin Injection Process[J]. Materials, 2022, 15(15): 5279-5279. doi: 10.3390/ma15155279
    [14] Falaschetti M P, Rondina F, Zavatta N, et al. Material characterization for reliable resin transfer molding process simulation[J]. Applied Sciences, 2020, 10(5): 1814. doi: 10.3390/app10051814
    [15] Yan C, Wu H, Ren X, et al. Experimental and Numerical Study on the Permeation Behavior of Foam-core Sandwich Panels in LCM[J]. Fibers and Polymers, 2021, 22(9): 2612-2625. doi: 10.1007/s12221-021-0310-9
    [16] Jhan Y T, Lee Y J, Chung C H. Experimental and numerical investigation of the VARTM process with a sandwich structure[J]. Journal of composite materials, 2012, 46(12): 1417-1430. doi: 10.1177/0021998311418703
    [17] 王科, 赖家美, 鄢冬冬, 等. 缝合泡沫夹芯结构复合材料VARTM工艺树脂充填模拟及验证[J]. 高分子材料科学与工程, 2015, 31(11): 124-129.

    WANG Ke, LAI Jiamei, YAN Dongdong, et al. Simulation and verification of resin filling of stitched foam sandwich structure composite VARTM process[J]. Polymer Materials Science and Engineering, 2015, 31 (11): 124-129 28(in Chinese).
    [18] Poodts E, Minak G, Dolcini E, et al. FE analysis and production experience of a sandwich structure component manufactured by means of vacuum assisted resin infusion process[J]. Composites Part B, 2013, 53.
    [19] Al Ali A, Arhore E, Ghasemnejad H, et al. Experimental and numerical investigation of multi-layered honeycomb sandwich composites for impact mechanics applications[J]. Results in Engineering, 2024: 101817.
    [20] Jordaan H, Stephan Heyns P, Hoseinzadeh S. Numerical development of a coupled one-dimensional/three-dimensional computational fluid dynamics method for thermal analysis with flow maldistribution[J]. Journal of Thermal Science and Engineering Applications, 2021, 13(4): 041017. doi: 10.1115/1.4049040
    [21] Koekemoer O C, du Toit C G, Niemand P F. Investigation into different 1D/3D co-simulation methodologies applied to a natural circulation loop[J]. Nuclear Engineering and Design, 2022, 390: 111698. doi: 10.1016/j.nucengdes.2022.111698
    [22] Zhao H, Zheng Y, Chen X, et al. A one-dimensional code of the passive residual heat removal system for the modular high temperature gas-cooled reactor[J]. Progress in Nuclear Energy, 2019, 110: 374-383. doi: 10.1016/j.pnucene.2018.10.019
    [23] Xiyuan C, Jianzhong Y, Tianpeng Y U, et al. A Coupled 1D/3D Co-Simulation Approach in Simulating Aircraft Cabin Temperature Field[J]. International Journal of Simulation--Systems, Science & Technology, 2016, 17(40): 11.1-11.7.
    [24] Pate S B, Solomon I S M, Dundulis G, et al. Applications of the FEM to pipe whip analysis using coupled modelling technique[J]. Nuclear Engineering and Design, 2024, 418: 112941. doi: 10.1016/j.nucengdes.2024.112941
    [25] Zhang P, Cheng Y, Xue S, et al. 1D-3D coupled simulation method of hydraulic transients in ultra-long hydraulic systems based on OpenFOAM[J]. Engineering Applications of Computational Fluid Mechanics, 2023, 17(1): 2229889. doi: 10.1080/19942060.2023.2229889
    [26] Yang B, Jin T, Bi F, et al. Modeling the resin flow and numerical simulation of the filling stage for vacuum-assisted resin infusion process[J]. Journal of Reinforced Plastics and Composites, 2014, 33(21): 1976-1992. doi: 10.1177/0731684414551039
    [27] Yang B, Jin T, Li J, et al. Simulating the resin flow and stress distributions on mold tools during compression resin transfer molding[J]. Journal of Reinforced Plastics and Composites, 2014, 33(14): 1316-1331. doi: 10.1177/0731684414528831
    [28] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of computational physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
    [29] Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of computational physics, 1992, 100(2): 335-354. doi: 10.1016/0021-9991(92)90240-Y
    [30] Průša V. On the influence of boundary condition on stability of Hagen–Poiseuille flow[J]. Computers & Mathematics with Applications, 2009, 57(5): 763-771.
    [31] 曹鹏军. 基于CT图像的织物渗透率预测及扩张段工艺仿真[D]. 武汉理工大学, 2022.

    CAO Pengjun. Prediction of Fabric Permeability and Simulation of Expansion Section Process Based on CT Images [D]. Wuhan University of Technology, 2022(in Chinese).
    [32] 张浩, 李书欣, 王继辉等. 基于新型测试装置的网孔板层开孔率对纤维厚度方向渗透率的影响[J]. 复合材料学报, 2020, 37(5): 1175-1183.

    ZHANG Hao, LI Shuxin, WANG Jihui, et al. Influence of ratio of hole area for mesh plate layer on through-thickness permeability based on a new designed test bench[J]. Journal of Composite Materials, 2020, 37(5): 1175-1183(in Chinese).
    [33] Sun X, Li S, Lee L J. Mold filling analysis in vacuum-assisted resin transfer molding. Part I: SCRIMP based on a high-permeable medium[J]. Polymer Composites, 1998, 19(6): 807-817. doi: 10.1002/pc.10155
    [34] 戴福洪, 张博明, 杜善义等. RTM工艺注模过程模拟的有限元/控制体积方法和流动分析网络技术比较[J]. 复合材料学报, 2004, 21(2): 92-98. doi: 10.3321/j.issn:1000-3851.2004.02.017

    DAI Fuhong, ZHANG Boming, DU Shanyi, et al. Comparison of finite element/control volume method and flow analysis network technology for injection molding process simulation of RTM process[J]. Journal of Composite Materials, 2004, 21(2): 92-98(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.02.017
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  85
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 修回日期:  2024-02-29
  • 录用日期:  2024-03-03
  • 网络出版日期:  2024-04-01
  • 刊出日期:  2024-12-15

目录

    /

    返回文章
    返回