留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N-g-C3N4/CoS2复合材料的制备及其光催化产氢性能

陈建军 周诗园 黄雨晨 尤红歌 郑添祥 李永宇

陈建军, 周诗园, 黄雨晨, 等. N-g-C3N4/CoS2复合材料的制备及其光催化产氢性能[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 陈建军, 周诗园, 黄雨晨, 等. N-g-C3N4/CoS2复合材料的制备及其光催化产氢性能[J]. 复合材料学报, 2024, 42(0): 1-9.
CHEN Jianjun, ZHOU Shiyuan, HUANG Yuchen, et al. Preparation and photocatalytic hydrogen production performance of N-g-C3N4/CoS2 composites[J]. Acta Materiae Compositae Sinica.
Citation: CHEN Jianjun, ZHOU Shiyuan, HUANG Yuchen, et al. Preparation and photocatalytic hydrogen production performance of N-g-C3N4/CoS2 composites[J]. Acta Materiae Compositae Sinica.

N-g-C3N4/CoS2复合材料的制备及其光催化产氢性能

基金项目: 河南省高等学校重点科研项目(No. 22B430032);国家级大学生创新创业训练计划项目(No. 202312949005)
详细信息
    通讯作者:

    陈建军,博士,副教授,研究方向为新型光催化材料制备及性能 E-mail: jianjunch82612@163.com

    李永宇,博士,副教授,硕士生导师,研究方向为光电催化材料制备及性能 E-mail: zzsylyy@163.com

  • 中图分类号: TB333

Preparation and photocatalytic hydrogen production performance of N-g-C3N4/CoS2 composites

Funds: Key Research Project of Henan Higher Education Institution (No. 22B430032); National College Student Innovation and Entrepreneurship Training Program Project (No. 202312949005)
  • 摘要: 氮化碳(CN)是目前最具发展前景的非金属催化剂之一,但由于其特殊的电子结构导致分子内载流子分离效率较差,其光催化活性不理想。为了改善其光催化性能,首先以尿素和柠檬酸为原料,利用高温缩合方法得到N掺杂的g-C3N4(NCN)。然后通过光沉积的方法成功制备了CoS2修饰的NCN光催化复合材料(NCN/CoS2)。CoS2的引入有效增强的氮化碳的光生载流子分离效率。同时N的掺杂有效调控氮化碳的带隙,拓宽了氮化碳的可见光响应范围。光催化产氢结果显示,在可见光照射(λ > 420 nm)下,NCN/10CoS2复合材料具有最佳的光催化产氢性能(73.8 μmol·g−1·h−1),分别为NCN(15.0 μmol·g−1· h−1和CN/10CoS2(7.1 μmol·g−1· h−1)的4.9和10.4倍。

     

  • 图  1  氮化碳(CN)、N掺杂的g-C3N4(NCN)和NCN/CoS2的XRD谱图

    Figure  1.  XRD patterns of carbon nitride (CN)、N-doped g-C3N4(NCN) and NCN/CoS2

    图  2  CN、NCN和NCN/CoS2的FTIR谱图

    Figure  2.  FTIR of CN、NCN and NCN/CoS2

    图  3  CN和NCN/10 CoS2的XPS谱图

    Figure  3.  XPS spectra of CN and NCN/10 CoS2

    图  4  NCN/10 CoS2的TEM图(a~b)和C、N、Co和S的元素分布图(c~g)

    Figure  4.  TEM images of NCN/10 CoS2 (a~b) and the corresponding element mapping for C, N, Co, and S (c~g)

    图  5  NCN和NCN/10 CoS2的(a)吸附-脱附等温线和(b)孔径分布图

    Figure  5.  N2 adsorption-desorption isotherms (a) and pore size distribution curves (b) of NCN and NCN/10 CoS2

    图  6  NCN和NCN/10 CoS2(a)UV-vis漫反射光谱和(b)带隙图

    Figure  6.  UV-Vis diffuse reflection spectrum(a)and band-gap diagram(b)of NCN和NCN/10 CoS2

    图  7  NCN和NCN/10 CoS2的 PL发射谱图

    Figure  7.  PL emission spectra of NCN and NCN/10 CoS2

    图  8  CN、NCN和NCN/10 CoS2的光电流图

    Figure  8.  Transient photocurrent responses of CN, NCN and NCN/10 CoS2

    图  9  样品的光解水制氢性能(a)和NCN/10 CoS2的产氢稳定性测试(b)

    Figure  9.  Hydrogen evolution rate of the samples(a)and stability test of H2 evolution over NCN/10 CoS2(b)

    图  10  NCN的模特-肖特基曲线

    Figure  10.  Mott-Schottky plots of NCN

    图  11  NCN/10 CoS2的光催化机理图

    Figure  11.  The photocatalytic mechanism diagram of NCN/10 CoS2

    表  1  CN和NCN/10CoS2中的C/N原子比

    Table  1.   C/N atomic ratio of CN and NCN/10CoS2

    SamplesC/at%N/at%C/N
    CN42.7757.230.75
    NCN/10 CoS239.0760.830.64
    下载: 导出CSV

    表  2  NCN和NCN/10 CoS2的比表面积和孔体积

    Table  2.   Specific surface areas and pore volumes of the NCN and NCN/10 CoS2

    Samples Surface area/(m2·g−1) Pore volume/(cm3·g−1)
    NCN 61.51 0.23
    NCN/10 CoS2 65.90 0.25
    下载: 导出CSV

    表  3  非贵金属助催化剂修饰氮化碳的产氢性能

    Table  3.   Hydrogen production performance of g-C3N4 modified with non-noble metal catalyst

    Photocatalyst Activity/(μmol·g–1·h–1) Ref.
    NCN/10 CoS2 73.8 This work
    g-C3N4/MoS2 4.0 [27]
    g-C3N4/Fe2N 88.7 [28]
    g-C3N4/NiS 32.0 [29]
    g-C3N4/Co2P 53.3 [30]
    g-C3N4/Ni2P 82.5 [31]
    下载: 导出CSV
  • [1] ZHAO B, ZHONG W, CHEN F, et al. High-crystalline g-C3N4 photo-catalysts: synthesis, structure modulation, and H2-evolution applica-tion[J]. Chinese Journal of Catalysis, 2023, 52: 127-143. doi: 10.1016/S1872-2067(23)64491-2
    [2] BIE C, WANG L, YU J. Challenges for photo-catalytic overall water splitting[J]. Chem, 2022, 8: 1567-1574 doi: 10.1016/j.chempr.2022.04.013
    [3] FU J, Xu Q, Low J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photoca-talyst[J]. Applied Catalysis B: Environment and Energy, 2019, 243: 556-565. doi: 10.1016/j.apcatb.2018.11.011
    [4] LU N, ZHANG M, JING X, et al. Electrospun semiconductor-based nano-heterostructures for photocatalytic energy conversion and environmental remediation: opportunities and challenges[J]. Energy & Environmental Materials, 2023, 6: e12338.
    [5] LU N, JING X, ZHANG M, et al. Effective cascade modulation of charge-carrier kinetics in the well-designed multi-component nanofiber system for highly-efficient photocatalytichydrogen generation[J]. Acta Physico-chimica Sinica, 2023, 39(4): 2207045.
    [6] YU Q, HUANG J, LI A, et al. Engineering semireversed quantum well photocatalysts for highly-efficient solar-to-fuels conversion[J]. Advanced Materials, 2024, 36(16): 2311764. doi: 10.1002/adma.202311764
    [7] JIANG X, HUANG J, BI Z, et al. Plasmonic active “hot spots”-confined photocatalytic CO2 reduction with high selectivity for CH4 production[J]. Advanced Materials, 2022, 34(14): 2109330. doi: 10.1002/adma.202109330
    [8] LIANG X, Xue S, Yang C, et al. The directional crystallization process of poly (triazine imide) single crystals in molten salts[J]. Angewandte Chemie International Edition, 2023, 62(14): e202216434. doi: 10.1002/anie.202216434
    [9] ZHANG G, XU Y, ZHU J, et al. Enhanced phto catalytic H2 production independent of exciton dissociation in crystalline carbon nitride[J]. Applied Catalysis B: Environment and Energy, 2023, 338: 123049. doi: 10.1016/j.apcatb.2023.123049
    [10] LIU M H, WEI C G, ZHOU J M, et al. Fully condensed poly (triazine imide) crystals: extended π-conjugation and structural defects for overall water splitting[J]. Angewandte Chemie International Edition, 2021, 61(2): e202113389.
    [11] YANG M, XIAO W; ZENG Y, et al. Homogeneous carbon/potassium-incorporation strategy for syn-thesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production[J]. Advanced Materials, 2021, 39(33): 2101455.
    [12] CUI L, SONG J, Fang X, et al. Constructing highly uniform onionring-like graphitic carbon nitride for efficient visible-light-driven photocatalytic hydrogen evolution[J]. ACS Nano 2018, 12(6): 5551-555.
    [13] ZHU D, ZHOU Q. Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light[J]. Applied Catalysis B: Environment and Energy, 2021, 281: 119474.8.
    [14] JIANG L B, YUAN X Z, ZENG G M, et al. Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation[J]. Journal of Colloid and Interface Science, 2019, 536: 17-29. doi: 10.1016/j.jcis.2018.10.033
    [15] KAVITHA R, NITHYA M. Noble metal deposited graphitic carbon nitride based heterojunction photocatalysts[J]. Applied Surface Science, 2020, 4: 145142.
    [16] 牛凤延, 何齐升, 武世然, 等. 光沉积Pt复合石墨相氮化碳实现高效光催化产氢[J]. 复合材料学报, 2024, 41(1): 219-226.

    NIU Fengyan, HE Qisheng, WU Shiran, et al. Photodeposition Pt composite graphitic carbon nitride realizes efficient photocatalytic hydrogenproduction[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 219-226(in Chinese).
    [17] XU X, WANG S, GUO S, et al. Cobalt phos phor sulfide nanoparticles encapsulated into heteroatom-doped carbon as bifunctional electrocatalyst for Zn-air battery[J]. Advanced Powder Materials, 2022, 1(3): 100027. doi: 10.1016/j.apmate.2021.12.003
    [18] YANG S, GUO X, LIU K, et al. Size effect of CoS2 cocatalyst on photocatalytic hydrogen evolution performance of g-C3N4[J]. Journal of Colloid and Interface Science, 2023, 635: 305-315. doi: 10.1016/j.jcis.2022.12.149
    [19] VINOTH S, RAJAITHA P M. In-situ pyrolytic processed zinc stannate incorporated graphitic carbon nitride nanocomposite for selective and sensitive electrochemical determination of nitrobenzene[J]. Composites Science And Technology, 2020, 195: 08192
    [20] VINOTH S, RAJAITHA P M. Nickel sulfide-incorporated sulfur-doped graphitic carbon nitride nanohybrid interface for non-enzymatic electrochemical sensing of glucose[J]. Nanoscale Advances, 2020, 2: 4242-4250. doi: 10.1039/D0NA00172D
    [21] XIANG Q J, YU J G, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. Journal of Physical Chemistry C, 2011, 115(15): 7355-7363. doi: 10.1021/jp200953k
    [22] YU J G, WANG S H, CHENG B, et al. Noble metal-free Ni(OH)2-g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity[J]. Catalysis Science and Technology, 2013, 3: 1782-1789. doi: 10.1039/c3cy20878h
    [23] DONG G H, ZHANG L Z. Porous structure dependent photoreactivity of graphitic carbon nitride under visible light[J]. Journal of Materials Chemistry A, 2012, 22(3): 1160-1166. doi: 10.1039/C1JM14312C
    [24] ZHANG Y Z, SHI J W, HUANG Z X, et al. Synchronous construction of CoS2 in-situ loading and S doping for g-C3N4: enhanced photocatalytic H2-evolution activity and mechanism insight[J]. Chemical Engineering Journal, 2020, 7: 126435.
    [25] Xu Y F, Sun J L, He Y N, et al. Construction of CoS2 nanoparticles embedded in well-structured carbon nanocubes for high-performance potassium-ion half/full batteries[J]. Science China Chemistry, 2021, 64: 1401-1409. doi: 10.1007/s11426-021-1057-3
    [26] MA J L, LI X Z, JIAO G J, et al. Single-atom zinc catalyst for co-production of hydrogen and fine chemicals over soluble biomass solution[J]. Advance Powder Materials, 2022, 1: 100058. doi: 10.1016/j.apmate.2022.100058
    [27] JIAO Y Y, HUANG Q Z, WANG J S, et al. A novel MoS2 quantum dots (QDs) decorated Z-scheme g-C3N4 nanosheet/N-doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environment and Energy, 2019, 247: 124-132. doi: 10.1016/j.apcatb.2019.01.073
    [28] QI W L, LIU S Q, ZHAO S L, et al. Prussian blue derived Fe2N for efficiently improving photocatalytic hydrogen evolution activity of g-C3N4 nanosheets[J]. Catalysis Science and Technology, 2019, 9: 2571-2577. doi: 10.1039/C9CY00198K
    [29] LU Y T, CHU D M, ZHU M S, et al. Exfoliated carbon nitride nanosheets decorated with NiS as an efficient noble-metal-free visible-light-driven photocatalyst for hydrogen evolution[J]. Physical Chemistry Chemical Physics, 2015, 26(17): 17355-17361
    [30] ZENG D Q, ONG W J, CHEN Y Z, et al. Co2P nanorods as an efficient cocatalyst decorated porous g-C3N4 nanosheets for photocatalytic hydrogen production under visible light irradiation[J]. Particle and Particle Systems Characterization, 2018, 35(1): 1700251 doi: 10.1002/ppsc.201700251
    [31] YE P, LIU X L, IOCOZZIA J, et al. A highly sta ble non-noble metal Ni2P co-catalyst for increased H2 generation by g-C3N4 under visible light irradiation[J]. Journal of Materials Chemistry A, 2017, 18(5): 8493-8498.
  • 加载中
计量
  • 文章访问数:  35
  • HTML全文浏览量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-24
  • 修回日期:  2024-05-26
  • 录用日期:  2024-05-31
  • 网络出版日期:  2024-06-21

目录

    /

    返回文章
    返回