留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金属或杂原子掺杂碳量子点的合成及应用

杨明杰 黄子芮 赵会 高中政

杨明杰, 黄子芮, 赵会, 等. 基于金属或杂原子掺杂碳量子点的合成及应用[J]. 复合材料学报, 2024, 42(0): 1-21.
引用本文: 杨明杰, 黄子芮, 赵会, 等. 基于金属或杂原子掺杂碳量子点的合成及应用[J]. 复合材料学报, 2024, 42(0): 1-21.
YANG Mingjie, HUANG Zirui, ZHAO Hui, et al. Synthesis and application of carbon quantum dots doped with metal or heteroatom[J]. Acta Materiae Compositae Sinica.
Citation: YANG Mingjie, HUANG Zirui, ZHAO Hui, et al. Synthesis and application of carbon quantum dots doped with metal or heteroatom[J]. Acta Materiae Compositae Sinica.

基于金属或杂原子掺杂碳量子点的合成及应用

基金项目: 山东省自然科学基金 (ZR2021QB178, ZR2021QB197);催化材料制备及应用湖北省重点实验室开放基金(202306304)
详细信息
    通讯作者:

    赵会,博士,实验师,硕士生导师,研究方向为金属掺杂凝胶材料的合成及其应用研究 E-mail: zhaohui7592@sdust.edu.cn

    高中政,博士,副教授,硕士生导师,研究方向为金属纳米材料的合成及其在催化、传感领域的应用 E-mail: zzgao20@sdust.edu.cn

  • 中图分类号: TB383.1;TB332

Synthesis and application of carbon quantum dots doped with metal or heteroatom

Funds: The National Natural Science Foundation of Shandong Province (No. ZR2021QB178, No. ZR2021QB197); The Foundation of Hubei Key Laboratory of Processing and Application of Catalytic materials (No. 202306304)
  • 摘要: 碳量子点(CDs)是一类新型的荧光小颗粒碳纳米粒子,其粒径小于10 nm,在生物成像、生物传感和疾病检测等领域有着广泛的应用。CDs具有较小的颗粒尺寸、良好的生物相容性和激发波长依赖的光致发光(PL)、光致电子转移、化学惰性和低毒等特点,是很有前景的纳米生物技术材料。掺杂金属或杂原子的CDs具有制备简单、生物相容性好、性能优良等优点,在生化、生物和生物医学等领域具有极大的优势。本文对金属或杂原子掺杂CDs的研究进展、合成方法和应用进行了综述,并对金属或杂原子掺杂CDs目前面临的挑战和未来的前景进行了讨论。

     

  • 图  1  N-CNDs的制备过程及其在细菌灭活中的应用示意图[34]

    Figure  1.  Diagram of the preparation process of N-CNDs and its application in bacterial inactivation[34]

    图  2  CDs@NC检测D-Pro和D-Ala的机制示意图[35]

    Figure  2.  CDs@NC Schematic diagram of detecting D-Pro and D-Ala[35]

    图  3  通过吹糖方法形成 N-CDs 的示意图[36]

    Figure  3.  A diagram of N-CDs is formed by blowing sugar[36]

    图  4  N-CDs的合成及光催化示意图[37]

    Figure  4.  Synthesis and photocatalysis of N-CDs[37]

    图  5  碳点的合成及添加四环素猝灭效果示意图[43]

    Figure  5.  Carbon point synthesis and quenching effect of adding tetracycline[43]

    图  6  N-CDs和N, S-CDs的合成和应用示意图[44]

    Figure  6.  Schematic illustration of N-CDs and N, S-CDs synthesis and applications[44]

    图  7  P-CDs的制备及其在抗菌药物中的应用示意图[50]

    Figure  7.  Preparation of P-CDs and its application in antimicrobial drugs[50]

    图  8  P-CDs合成的示意图[52]

    Figure  8.  Schematic diagram of P-CDs formation[52]

    图  9  P-CDs与金属离子结合后荧光发射增强和猝灭的示意图[53]

    Figure  9.  Schematic diagram of fluorescence emission enhancement and quenching of P-CDs after binding with metal ions[53]

    图  10  B-CDs形成的示意图;B-CDS作用于Colo 320 CD133+细胞后,caspase3、Ki67、lamin B1、P16、cytochrome C的免疫反应[55]

    Figure  10.  Diagram of B-CDs formation; Immune reaction of caspase3, Ki67, lamin B1, P16, cytochrome C after B-CDS on Colo 320 CD133+ cells[55]

    图  11  苯基硼酸合成B-CDs并测定VB12或PS的示意图[56]

    Figure  11.  Phenylboric acid synthesis of B-CDs and determination of VB12 or PS diagram [56]

    图  12  B, S-CDs的合成过程和应用原理[57]

    Figure  12.  The synthesis process and application principle of B, S-CDs[57]

    图  13  CS@Fe/CDs 纳米酶的合成。(a) CS@Fe/CDs纳米酶的一锅水热法合成示意图;(b) CS@Fe/CDs纳米酶对细菌的类过氧化物酶催化活性示意图;(c)基于CS@Fe/CDs的纳米酶消除细菌生物膜的示意图[58]

    Figure  13.  Synthesis of CS@Fe/CDs nanozyme. (a) Schematic diagram of one-pot hydrothermal synthesis of CS@Fe/CDs nanozyme; (b) Schematic diagram of peroxide-like catalytic activity of CS@Fe/CDs nanozyme against bacteria; (c) Schematic diagram of bacterial biofilm elimination by nanozyme based on CS@Fe/CDs[58]

    图  14  Fe-CD/MOF-808(路线1)降解和检测对氧磷以及Fe-CD@MOF-808(路线2)降解和检测对硫磷的示意图[59]

    Figure  14.  Schematic diagram of Fe-CD/MOF-808 (Route 1) degradation and detection of parathion and Fe-CD@MOF-808 (route 2) degradation and detection of parathion[59]

    图  15  Fe-CDs的合成以及基于Fe-CDs对伤口愈合的应用的示意图[60]

    Figure  15.  Synthesis of Fe-CDs and schematic diagram of application of Fe-CDs to wound healing[60]

    图  16  GOX/MPDA/Fe@CDs用于协同化学动力学-光热对抗感染[61]

    Figure  16.  GOX/MPDA/Fe@CDs for collaborative chemical kinetics - Photothermal fight against infection [61]

    图  17  基于SA Fe-CDs纳米酶检测Pi的比色-荧光双模式传感原理图[62]

    Figure  17.  Colorimetric fluorescence dual-mode sensing diagram for Pi detection based on SA Fe-CDs nanozyme[62]

    图  18  SAFe-N-C纳米酶的合成示意图[63]

    Figure  18.  Schematic diagram of the SAFe-N-C nanozyme synthesis [63]

    图  19  Mo-CDs纳米酶传感平台示意图[64]

    Figure  19.  Schematic diagram of Mo-CDs nanoenzyme sensing platform[64]

    图  20  Co-CDs纳米酶比色测定葡萄糖及抗癌细胞作用的示意图[70]

    Figure  20.  Co-CDs nanase colorimetric determination of glucose and anti-cancer cells schematic diagram[70]

    图  21  Cu-CDs特异性检测TM的示意图[71]

    Figure  21.  Schematic diagram of Cu-CDs specific detection of TM[71]

    图  22  (a) NA-CDs/AuNPs的合成示意图; (b)通过增加Au@HgNPs汞合金的 POD活性对MeHg+进行比色测定;(c)NA-CDs/AuNPs对MeHg+的选择性及其机制[73]

    Figure  22.  (a) Schematic synthesis of NA-CDs/AuNPs; (b) Colorimetric determination of MeHg+ by increasing POD activity of Au@HgNPs amalgam; (c) Selectivity of NA-CDs/AuNPs to MeHg+ and its mechanism[73]

    图  23  DA-CQD@Pd@CpGODN水凝胶介导的原发性治疗肿瘤和远处未治疗肿瘤的催化免疫治疗示意图[76]

    Figure  23.  DA-CQD@Pd@CpGODN Schematic illustration of hydrogel-mediated catalytic immunotherapy of primary treated tumor and distant untreated tumor[76]

    图  24  (a)Pt-CDs的合成;(b) Pt-CDs在消除细胞内ROS中的应用[78]

    Figure  24.  (a) Synthesis of Pt-CDs. (b) Pt-CDs in the elimination of intracellular ROS[78]

    图  25  NCDs/UiO-66 纳米复合材料的制备过程示意图[82]

    Figure  25.  Schematic diagram of preparation process of NCDs/UiO-66 nanocomposites[82]

    图  26  (a) α-Co@NCNF纳米酶的合成示意图;(b)多种生物分子的比色检测[83]

    Figure  26.  (a) Schematic diagram of synthesis of α-Co@NCNF nanase; (b) colorimetric detection of multiple biomolecules[83]

    图  27  基于Fe NZs纳米酶检测α-glu活性及其抑制剂的原理图[84]

    Figure  27.  Schematic diagram of α-glu activity and its inhibitors based on Fe NZs nanoenzyme[84]

    图  28  基于Cu,Cl-CDs的双酶模拟活性的分析平台示意图[85]

    Figure  28.  Schematic diagram of analysis platform for double enzyme simulation activity based on Cu and Cl-CDs[85]

    图  29  Co-CDs的合成示意图[86]

    Figure  29.  Schematic synthesis of Co-CDs[86]

    图  30  Fe/N-CDs的合成、抗生物膜机制及应用示意图[87]

    Figure  30.  Synthesis of Fe/N-CDs nanase, mechanism and application of antibiofilm[87]

  • [1] XU X, RAY R, GU Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737. doi: 10.1021/ja040082h
    [2] LIU J, LI R, YANG B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications[J]. ACS Central Science, 2020, 6(12): 2179-2195. doi: 10.1021/acscentsci.0c01306
    [3] MOMER K, ALHASHIMI B, MOHAMMADI S, et al. Carbon nanodots as sensi-tive and selective nanomaterials in pharmaceutical analysis[J]. Journal of Materials Science, 2022, 57(30): 14217-14245. doi: 10.1007/s10853-022-07531-y
    [4] 吕昀泰. 基于碳量子点的荧光传感平台的构建及在生物酶检测中的应用研究[D]. 吉林大学, 2023.

    LV Juntai. Construction and application of a fluorescence sensing platform for detecting enzymes using carbon quantum dots as fluorescent probes[D]. Changchun: Jilin University, 2023(in Chinese).
    [5] LIU S, ZHAO N, CHENG Z, et al. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase[J]. Nanoscale, 2015, 7(15): 6836-6842. doi: 10.1039/C5NR00070J
    [6] SAMIMI S, ARDESTANI M S, DORKOOSH F A. Preparation of carbon quantum dots-quinic acid for drug delivery of gemcitabine to breast cancer cells[J]. Journal of Drug Delivery Science and Technology, 2021, 61: 102287. doi: 10.1016/j.jddst.2020.102287
    [7] CAI R, XIAO L, LIU M, et al. Recent Advances in Functional Carbon Quantum Dots for Antitumour[J]. International Journal of Nanomedicine, 2021, 16: 7195. doi: 10.2147/IJN.S334012
    [8] YUE K, SANTIAGO G T, ALVAREZ M, et al. Carbon dots: Synthesis, properties and biomedical applications[J]. Journal of Materials Chemistry B, 2021, 9: 6553-6575. doi: 10.1039/D1TB01077H
    [9] 袁迪, 刘志高. 碳量子点的制备与性能及其应用研究进展[J]. 化工新型材料, 2024, 52(1): 54-60.

    YUAN Di, LIU Zhigao. Advances in preparation, properties and applications of carbon quantum dots[J]. New Chemical Materials, 2024, 52(1): 54-60.
    [10] SUN Y, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24): 7756-7757. doi: 10.1021/ja062677d
    [11] ZHENG L, CHI Y, DONG Y, et al. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite[J]. Journal of the American Chemical Society, 2009, 131(13): 4564-4565. doi: 10.1021/ja809073f
    [12] XU X, RAY R, GU Y, et al. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737. doi: 10.1021/ja040082h
    [13] ZHOU J, BOOKER C, LI R, et al. An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs)[J]. Journal of the American Chemical Society, 2007, 129(4): 744-745. doi: 10.1021/ja0669070
    [14] LIU H, YE T, MAO C. Fluorescent Carbon Nanoparticles Derived from Candle Soot[J]. Angewandte Chemie International Edition, 2007, 46: 6473-6475. doi: 10.1002/anie.200701271
    [15] DONG Y, ZHOU N, LIN X, et al. Extraction of Electrochemiluminescent Oxidized Carbon Quantum Dots from Activated Carbon[J]. Chemistry of Materials, 2010, 22(21): 5895-5899. doi: 10.1021/cm1018844
    [16] ZHAI X, ZHANG P, LIU C, et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis[J]. Chemical Communications, 2012, 48: 7955-7957. doi: 10.1039/c2cc33869f
    [17] YANG Y, CUI J, ZHENG M, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chemical Communications, 2012, 48: 380-382. doi: 10.1039/C1CC15678K
    [18] ZHU C, ZHAIA J, DONG S. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction[J]. Chemical Communications, 2012, 48: 9367-9369. doi: 10.1039/c2cc33844k
    [19] LIU S, TIAN J, WANG L, et al. Hydrothermal Treatment of Grass: A Low-Cost, Green Route to Nitrogen-Doped, Carbon-Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label-Free Detection of Cu(II) Ions[J]. Advanced Materials, 2012, 24: 2037-2041. doi: 10.1002/adma.201200164
    [20] SHEN L, LIU J. New development in carbon quantum dots technical applications[J]. Talanta, 2016, 156-157: 245-256. doi: 10.1016/j.talanta.2016.05.028
    [21] YUAN F, LI S, FAN Z, et al. Shining carbon dots: Synthesis and biomedical and optoelectronic applications[J]. Nano Today, 2016, 11(5): 565-586. doi: 10.1016/j.nantod.2016.08.006
    [22] MIRTCHEV P, JHENDERSON E, SOHEILNIA N, et al. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells[J]. Journal of Materials Chemistry, 2012, 22(4): 1265-1269. doi: 10.1039/C1JM14112K
    [23] PAN D, ZHANG J, LI Z, WU M. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots[J]. Advanced Materials, 2010, 22(6): 734-738. doi: 10.1002/adma.200902825
    [24] BBOURLINOS A, TRIVIZAS G, AKARAKAS M, et al. Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties[J]. Carbon, 2015, 83: 173-179. doi: 10.1016/j.carbon.2014.11.032
    [25] SHEN L, ZHANG L, CHEN M, et al. The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging[J]. Carbon, 2013, 55: 343-349. doi: 10.1016/j.carbon.2012.12.074
    [26] LI L, YU B, YOU T. Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (Ⅱ) ions[J]. Biosensors and Bioelectronics, 2015, 74: 263-269. doi: 10.1016/j.bios.2015.06.050
    [27] XU Q, KUANG T, LIU Y, et al. Het-eroatom-doped carbon dots: synthesis, charac-terization, properties, photoluminescence mechanism and biological applications[J]. Journal of Materials Chemistry B, 2016, 4(45): 7204-7219. doi: 10.1039/C6TB02131J
    [28] 孙文颖. 基于荧光碳量子点的生物传感平台的构建及应用研究[D]. 吉林大学, 2022.

    SUN Wenying. Construction and application of biosensing platform based on fluorescent car-bon quantum dots[D]. Changchun: Jilin Uni-versity, 2022(in Chinese).
    [29] GE G, LI L, WANG D, et al. Carbon dots: Synthesis, properties and biomedical applications[J]. Journal of Materials Chemistry B, 2021.
    [30] LI F, LI T, SUN C, et al. Selenium-doped carbon quantum dots for free-radical scavenging[J]. Angewandte Chemie International Edition, 2017, 56(33): 9910-9914. doi: 10.1002/anie.201705989
    [31] WANG C, WU X, LI X, et al. Upconversion fluorescent carbon nanodots enriched with nitrogen for light harvesting[J]. Journal of Materials Chemistry, 2012, 22: 15522-15525. doi: 10.1039/c2jm30935a
    [32] ZHANG Z, YI G, LI P, et al. A minireview on doped carbon dots for photocatalytic and electrocatalytic applications[J]. Nanoscal, 2020, 12: 13899-13906. doi: 10.1039/D0NR03163A
    [33] 王晓鹏, 张韬毅, 陈婧. 掺杂碳点的制备及其应用研究进展[J]. 化学研究, 2019, 1: 13-33.

    WANG Xiaopeng, ZHANG Taoyi, CHEN Jing. Progress in preparation and application of doped carbon dots[J]. Chemical Research, 2019, 1: 13-33.
    [34] WANG H, WANG Q, WANG Q, et al. Metal-free nitrogen-doped carbon nanodots as an artificial nanozyme for enhanced antibacterial activity[J]. Journal of Cleaner Production, 2023, 411: 137337. doi: 10.1016/j.jclepro.2023.137337
    [35] LI Z, LIU W, NI P, et al. Carbon dots confined in N-doped carbon as peroxidase-like nanozyme for detection of gastric cancer relevant D-amino acids[J]. Chemical Engineering Journal, 2022, 428: 131396. doi: 10.1016/j.cej.2021.131396
    [36] LIU S, ZHANG Y, GAO S, et al. A universal sugar-blowing approach to synthesize fluorescent nitrogen-doped carbon nanodots for detection of Hg(II)[J]. Applied Surface Science, 2021, 544: 148725. doi: 10.1016/j.apsusc.2020.148725
    [37] MADRID A, MARTINPARDILLOS A, BONET J, et al. Nitrogen-doped carbon nanodots deposited on titania nanoparticles: Unconventional near-infrared active photocatalysts for cancer therapy[J]. Catalysis Today, 2023, 419: 114154. doi: 10.1016/j.cattod.2023.114154
    [38] IKRAM Z, AZMAT E, PERVIAZ M. Degradation Efficiency of Organic Dyes on CQDs As Photocatalysts: A Review[J]. ACS omega, 2024, 9(9): 10017-10029. doi: 10.1021/acsomega.3c09547
    [39] TIAN L, LI Z, WANG P, et al. Carbon quantum dots for advanced electrocatalysis[J]. Journal of Energy Chemistry, 2021, 55: 279-294. doi: 10.1016/j.jechem.2020.06.057
    [40] WU W, ZHAN L, FAN W, et al. Cu-N dopants boost electron transfer and photooxidation reactions of carbon dots[J]. Angew Chem Int Ed Engl, 2015, 54(22): 6540-6544. doi: 10.1002/anie.201501912
    [41] LI H, HE X, KANG Z, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angew Chem Int Ed Engl, 2010, 49: 4430. doi: 10.1002/anie.200906154
    [42] WU W, ZHANG Q, WANG R, et al. Synergies between Unsaturated Zn/Cu Doping Sites in Carbon Dots Provide New Pathways for Photocatalytic Oxidation[J]. ACS Catalysis, 2018, 8(2): 747-753. doi: 10.1021/acscatal.7b03423
    [43] ALHASHIMI B, MOMER K, SRAHMAN H. Inner filter effect (IFE) as a simple and selective sensing platform for detection of tetracycline using milk-based nitrogen-doped carbon nanodots as fluorescence probe[J]. Arabian Journal of Chemistry, 2020, 13(4): 5151-5159. doi: 10.1016/j.arabjc.2020.02.013
    [44] WU M, LI J, WU Y, et al. Design of a Synthetic Strategy to Achieve Enhanced Fluorescent Carbon Dots with Sulfur and Nitrogen Codoping and Its Multifunctional Applications[J]. Small, 2023, 19(42): 2302764. doi: 10.1002/smll.202302764
    [45] WANG W, WU J, XING Y, et al. Solvent-dependent red emissive carbon dots and their applications in sensing and solid-state luminescence[J]. Sensors and Actuators B: Chemical, 2022, 360: 131645. doi: 10.1016/j.snb.2022.131645
    [46] DAI Y, XU W, HONG J, et al. A molecularly imprinted ratiometric fluorescence sensor based on blue/red carbon quantum dots for the visual determination of thiamethoxam[J]. Biosensors and Bioelectronics, 2023, 238: 115559. doi: 10.1016/j.bios.2023.115559
    [47] ZHONG Y, CHEN A, YIN X, et al. Red emission carbon dots for mitoxantrone detection[J]. Sensors and Actuators: B. Chemical, 2023, 382: 133535. doi: 10.1016/j.snb.2023.133535
    [48] WANG X, SUN G, PARIMAL R, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chemical Society Reviews, 2014, 43(20): 7067-7098. doi: 10.1039/C4CS00141A
    [49] 周丹, 刘博, 陈思远, 等. 磷掺杂碳材料的制备、表征及应用进展[J]. 工业催化, 2020, 28(6): 7-11.

    ZHOU Dan, LIU Bo, CHEN Siyuan, et al. Progress in preparation, characterization and application of phosphorus-doped carbon materials[J]. Industrial Catalysis, 2020, 28(6): 7-11.
    [50] JIANG G, FAN J, WAN Y, et al. Enhanced photocatalytic and antimicrobial activities of carbon-dots nanozymes modulated with P-dopingc[J]. Chemical Engineering Journal, 2024, 48: 148216.
    [51] TANG J, CHU B, WANG J, et al. Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of Gram-negative and Gram-positive bacteria[J]. Nature Communications, 2019, 10(1): 4057. doi: 10.1038/s41467-019-12088-7
    [52] KALAIYARASAN G, JOSEPH J, KUMAR P. Phosphorus-Doped Carbon Quantum Dots as Fluorometric Probes for Iron Detection[J]. ACS Omega, 2020, 5(35): 22278-22288. doi: 10.1021/acsomega.0c02627
    [53] MOMER K, QHASSAN A. Chelation-enhanced fluorescence of phosphorus doped carbon nanodots for multi-ion detection[J]. Microchimica Acta, 2017, 184(7): 2063-2071. doi: 10.1007/s00604-017-2196-1
    [54] FU Q, SUN S, LU K, et al. Boron-doped carbon dots: Doping strategies, performance effects, and applications[J]. Chinese Chemical Letters, 2024, 35(7): 109136. doi: 10.1016/j.cclet.2023.109136
    [55] OZKASAPOGLU S, CAGLAYAN M G, AKKURT F, et al. Boron-Doped Carbon Nanodots as a Theranostic Agent for Colon Cancer Stem Cells[J]. ACS Omega, 2023, 8(33): 30285-30293. doi: 10.1021/acsomega.3c03154
    [56] JIA Y, HU Y, LI Y, et al. Boron doped carbon dots as a multifunctional fluorescent probe for sorbate and vitamin B12[J]. Microchimica Acta, 2019, 186(2): 84. doi: 10.1007/s00604-018-3196-5
    [57] OTHMAN H O, HASSAN R O, FAIZULLAH A T. A newly synthesized boronic acid-functionalized sulfur-doped carbon dot chemosensor as a molecular probe for glucose sensingw[J]. Microchemical Journal, 2021, 103: 105919.
    [58] PAN T, CHEN H, GAO X, et al. Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication[J]. Journal of Hazardous Materials, 2022, 435: 128996. doi: 10.1016/j.jhazmat.2022.128996
    [59] MA X, OU Q, YUAN J, et al. Multifunctional Fe-doped carbon dots and metal-organic frameworks nanoreactor for cascade degradation and detection of organophosphorus pesticides[J]. Chemical Engineering Journal, 2023, 464: 142480. doi: 10.1016/j.cej.2023.142480
    [60] LIU Y, XU B, LU M, et al. Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing[J]. Bioactive Materials, 2022, 12: 246-256. doi: 10.1016/j.bioactmat.2021.10.023
    [61] SHEN Y, NIN C, PAN T, et al. A multifunctional cascade nanoreactor based on Fe-driven carbon nanozymes for synergistic photothermal/chemodynamic antibacterial therapy[J]. Acta Biomaterialia, 2023, 168: 580-592. doi: 10.1016/j.actbio.2023.07.006
    [62] LI X, DING S, LYU Z, et al. Single-Atomic Iron Doped Carbon Dots with Both Photoluminescence and Oxidase-Like Activity[J]. Chemical Engineering Journal, 2022, 18(37).
    [63] SONG G, ZHANG Z, FAUCONNIER M, et al. Bimodal single-atom iron nanozyme biosensor for volatile amine and food freshness detection[J]. Nano Today, 2023, 53: 102025. doi: 10.1016/j.nantod.2023.102025
    [64] LU W, GUO Y, ZHANG J, et al. A High Catalytic Activity Nanozyme Based on Cobalt-Doped Carbon Dots for Biosensor and Anticancer Cell Effect[J]. ACS Applied Materials & amp; Interfaces, 2022, 14(51): 57206-57214.
    [65] FAN Y, LI D, XIE X, et al. Flower-like L-Cys-FeNiNPs nanozyme aptasensor for sensitive colorimetric detection of aflatoxin B1[J]. Microchemical Journal, 2024, 197: 109842. doi: 10.1016/j.microc.2023.109842
    [66] ZHANG T, LU N, ZHANG M, et al. Four-in-One Biomimetic Cascade Nanoreactor Based on Pd@CeO2 Functionalized Nitrogen-Doped Porous Carbon/Reduced Graphene Oxide for Colorimetric Sensing[J]. ACS Applied Nano Materials, 2023, 7(1): 756-765.
    [67] ZHU D, LI N, ZHANG M, et al. Hydrolysis enabled specific colorimetric assay of carbosulfan with sensitivity manipulation via metal-doped or metal-free carbon nanozyme[J]. Biosensors and Bioelectronics, 2024, 243: 115786. doi: 10.1016/j.bios.2023.115786
    [68] LIU X, WANG F, XIA C, et al. Copper nanoparticles incorporated nitrogen-rich carbon nitride as laccase-like nanozyme for colorimetric detection of bisphenol a released from microplastics[J]. Microchemical Journal, 2023, 190: 108682. doi: 10.1016/j.microc.2023.108682
    [69] GAO X, CHEN H, QIU H, et al. Portable hydrogel kit driven by bimetallic carbon dots nanozyme for H2O2-self-supplying dual-modal monitoring of atmospheric CH3SH[J]. Journal of Hazardous Materials, 2024, 469: 133871. doi: 10.1016/j.jhazmat.2024.133871
    [70] LU W, GUO Y, YUE Y, et al. Smartphone-assisted colorimetric sensing platform based on molybdenum-doped carbon dots nanozyme for visual monitoring of ampicillin[J]. Chemical Engineering Journal, 2023, 468: 143615. doi: 10.1016/j.cej.2023.143615
    [71] ZHANG M, WANG Y, LI N, et al. Specific detection of fungicide thiophanate-methyl: A smartphone colorimetric sensor based on target-regulated oxidase-like activity of copper-doped carbon nanozyme[J]. Biosensors and Bioelectronics, 2023, 237: 115554. doi: 10.1016/j.bios.2023.115554
    [72] JIAO F, CAI Z. A smartphone-based nanoenzyme-modulated aptasensor using an infrared camera for rapid detection of kanamycin[J]. Chemical Engineering Journal, 2024, 481: 148699. doi: 10.1016/j.cej.2024.148699
    [73] LI Q, LI H, LI K, et al. Specific colorimetric detection of methylmercury based on peroxidase-like activity regulation of carbon dots/Au NPs nanozyme[J]. Journal of Hazardous Materials, 2023, 441: 129919. doi: 10.1016/j.jhazmat.2022.129919
    [74] CHEN Z, ZHANG T, LIU Y, et al. Nanozyme Sensor Based on Au Nanoparticles/N-Doped Porous Carbon Composites for Biosensing[J]. ACS Applied Nano Materials, 2024, 7(4): 3645-3655. doi: 10.1021/acsanm.3c05016
    [75] YU J, CHEN T, WEN X, et al. Highly selective nanozyme-based glucose sensing platform via construction of artificial recognition sites on gold nanospheres[J]. Biosensors and Bioelectronics, 2024, 253: 116169. doi: 10.1016/j.bios.2024.116169
    [76] HE H, FEI Z, GUO T, et al. Bioadhesive injectable hydrogel with phenolic carbon quantum dot supported Pd single atom nanozymes as a localized immunomodulation niche for cancer catalytic immunotherapy[J]. Biomaterials, 2022, 280: 121272. doi: 10.1016/j.biomaterials.2021.121272
    [77] LI D, LAN C, CHU B, et al. FeMo2Ox(OH)y-based mineral hydrogels as a novel POD nanozyme for sensitive and selective detection of aromatic amines contaminants via a colorimetric sensor array[J]. Journal of Hazardous Materials, 2024, 469: 133918. doi: 10.1016/j.jhazmat.2024.133918
    [78] ZHANG Y, GAO W, MA Y, et al. Integrating Pt nanoparticles with carbon nanodots to achieve robust cascade superoxide dismutase-catalase nanozyme for antioxidant therapy[J]. Nano Today, 2023, 49: 101768. doi: 10.1016/j.nantod.2023.101768
    [79] LI X, FU Y, ZHAO S, et al. Metal ions-doped carbon dots: Synthesis, properties, and applications[J]. Chemical Engineering Journal, 2022, 430: 133101. doi: 10.1016/j.cej.2021.133101
    [80] TAMMINAA S K, WAN Y, LI Y, et al. Synthesis of N, Zn-doped carbon dots for the detection of Fe3+ ions and bactericidal activity against Escherichia coli and Staphylococcus aureus[J]. Journal of Photochemistry & Photobiology, B: Biology, 2020, 202: 111734.
    [81] XUE S, ZHANG T, WANG X, et al. Cu, Zn Dopants Boost Electron Transfer of Carbon Dots for Antioxidation[J]. Small, 2021, 17(31): 2102178. doi: 10.1002/smll.202102178
    [82] ZHAO J, GONG J, WEI J, et al. Metal organic framework loaded fluorescent nitrogen-doped carbon nanozyme with light regulating redox ability for detection of ferric ion and glutathione[J]. ournal of Colloid and Interface Science, 2022, 618: 11-21. doi: 10.1016/j.jcis.2022.03.028
    [83] XIA Y, SHI F, LIU R, et al. In Situ Electrospinning MOF-Derived Highly Dispersed α-Cobalt Confined in Nitrogen-Doped Carbon Nanofibers Nanozyme for Biomolecule Monitoring[J]. Analytical Chemistry, 2024, 96(3): 1345-1353. doi: 10.1021/acs.analchem.3c05053
    [84] LV Y , ZHOU C , LI M , et al. A dual-mode sensing system based on carbon quantum dots and Fe nanozymes for the detection of α-glucosidase and its inhibitors[J]. Talanta, 2024, 268: 125328.
    [85] ZHAO N, SONG J, ZHAO L. Metallic deep eutectic solvents-assisted synthesis of Cu, Cl-doped carbon dots as oxidase-like and peroxidase-like nanozyme for colorimetric assay of hydroquinone and H2O2[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129390. doi: 10.1016/j.colsurfa.2022.129390
    [86] SU L, QIN S, CAI Y, et al. Co, N-doped carbon dot nanozymes with acid pH-independence and substrate selectivity for biosensing and bioimaging[J]. Sensors and Actuators B: Chemical, 2022, 353: 131150. doi: 10.1016/j.snb.2021.131150
    [87] CUI F, LI L, WANG D, et al. Fe/N-doped carbon dots-based nanozyme with super peroxidase activity, high biocompatibility and antibiofilm ability for food preservation[J]. Chemical Engineering Journal, 2023, 473: 145291. doi: 10.1016/j.cej.2023.145291
  • 加载中
计量
  • 文章访问数:  237
  • HTML全文浏览量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 修回日期:  2024-06-06
  • 录用日期:  2024-06-14
  • 网络出版日期:  2024-07-05

目录

    /

    返回文章
    返回