留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镍铁水滑石/聚S,S-二氧-二苯并噻吩复合材料的合成及其光催化产氢性能

罗旌崧 付清瑶 刘玉祥 汪锋

罗旌崧, 付清瑶, 刘玉祥, 等. 镍铁水滑石/聚S,S-二氧-二苯并噻吩复合材料的合成及其光催化产氢性能[J]. 复合材料学报, 2022, 39(12): 5768-5777. doi: 10.13801/j.cnki.fhclxb.20211207.001
引用本文: 罗旌崧, 付清瑶, 刘玉祥, 等. 镍铁水滑石/聚S,S-二氧-二苯并噻吩复合材料的合成及其光催化产氢性能[J]. 复合材料学报, 2022, 39(12): 5768-5777. doi: 10.13801/j.cnki.fhclxb.20211207.001
LUO Jingsong, FU Qingyao, LIU Yuxiang, et al. Synthesis and photocatalytic hydrogen production performance of nickel-iron hydrotalcite/poly(dibenzothiophene-S,S-dioxide)composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5768-5777. doi: 10.13801/j.cnki.fhclxb.20211207.001
Citation: LUO Jingsong, FU Qingyao, LIU Yuxiang, et al. Synthesis and photocatalytic hydrogen production performance of nickel-iron hydrotalcite/poly(dibenzothiophene-S,S-dioxide)composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5768-5777. doi: 10.13801/j.cnki.fhclxb.20211207.001

镍铁水滑石/聚S,S-二氧-二苯并噻吩复合材料的合成及其光催化产氢性能

doi: 10.13801/j.cnki.fhclxb.20211207.001
基金项目: 湖北省教育厅重点项目(D20181505);光电化学材料与器件教育部重点实验室(江汉大学)(JDGD-202003)
详细信息
    通讯作者:

    汪锋,博士,教授,博士生导师,研究方向为光催化材料 E-mail: psfwang@wit.edu.cn

  • 中图分类号: O644.1

Synthesis and photocatalytic hydrogen production performance of nickel-iron hydrotalcite/poly(dibenzothiophene-S,S-dioxide)composites

  • 摘要: 镍铁水滑石(LDH)(Ni7Fe1)易于合成、来源丰富、价格低廉,是目前催化体系中性能优良的催化剂之一,可望用于替代成本高昂的贵金属催化剂。采用原位聚合法将二维层状结构的Ni7Fe1与聚S,S-二氧-二苯并噻吩(PDBTSO)复合,制备了无机/有机复合材料Ni7Fe1/PDBTSO,并验证了其光催化性能。实验得到:复合材料15-Ni7Fe1/PDBTSO相较于添加3wt% Pt助催化剂PDBTSO的光催化产氢效率提高了22.6%,其产氢效率达到36.8 mmol·g−1·h−1且具有良好的循环稳定性,表明Ni7Fe1为替代光催化制氢反应中贵金属助催化剂理想的候选材料之一。结合XRD、FTIR、TEM和XPS等手段进一步讨论了复合材料光催化产氢的机制。Ni7Fe1/PDBTSO高效的光催化制氢性能及低成本的制备方法为光催化制氢领域提供了新的思路。

     

  • 图  1  Ni7Fe1/聚S,S-二氧-二苯并噻吩(PDBTSO)的合成路线

    Figure  1.  Synthetic route for Ni7Fe1/poly(dibenzothiophene-S,S-dioxide) (PDBTSO)

    DMF—Dimethyl formamide

    图  2  Ni7Fe1、PDBTSO和Ni7Fe1/PDBTSO的XRD图谱

    Figure  2.  XRD patterns of Ni7Fe1, PDBTSO and Ni7Fe1/PDBTSO

    In X-Ni7Fe1/PDBTSO, X—Mass fraction of Ni7Fe1 in Ni7Fe1/PDBTSO

    图  3  Ni7Fe1、PDBTSO和Ni7Fe1/PDBTSO的FTIR图谱

    Figure  3.  FTIR spectra of Ni7Fe1, PDBTSO and Ni7Fe1/PDBTSO

    图  4  Ni7Fe1 (a)、PDBTSO (b)和15-Ni7Fe1/PDBTSO (c)的SEM图像;(d) 15-Ni7Fe1/PDBTSO的EDX图谱;((e)~(i)) C、O、S、Ni和Fe元素分布图

    Figure  4.  SEM images of PDBTSO (a), Ni7Fe1 (b) and 15-Ni7Fe1/PDBTSO(c); (d) EDX image of a single 15-Ni7Fe1/PDBTSO and multi-elemental image of C (e), O (f), S (g), Ni (h), Fe (i) elemental maps

    图  5  Ni7Fe1 (a)、15-Ni7Fe1/PDBTSO (b)的TEM图像;Ni7Fe1 (c) 和15-Ni7Fe1/PDBTSO (d) 的HRTEM图像

    Figure  5.  TEM images of Ni7Fe1 (a) and15-Ni7Fe1/PDBTSO (b); HRTEM images of Ni7Fe1 (c) and15-Ni7Fe1/PDBTSO (d)

    d—Distance between two parallel crystal planes

    图  6  (a) 15-Ni7Fe1/PDBTSO的XPS全谱图; C1s (b)、O1s (c)、S2p (d)、Ni2p (e)、Fe2p (f)的XPS谱图

    Figure  6.  (a) XPS spectra of 15-Ni7Fe1/PDBTSO and comparison results of the deconvoluted XPS spectra of Ni7Fe1, PDBTSO and 15-Ni7Fe1/PDBTSO for C1s (b), O1s (c), S2p (d), Ni2p (e), Fe2p (f)

    图  7  Ni7Fe1,PDBTSO和Ni7Fe1/PDBTSO紫外-可见光固体紫外漫反射吸收光谱图

    Figure  7.  UV-DRS of Ni7Fe1, PDBTSO and Ni7Fe1/PDBTSO

    图  8  Ni7Fe1/PDBTSO (a)、PDBTSO添加3wt%Pt助催化剂和15-Ni7Fe1/PDBTSO (b) 的光催化产氢性能;(c) 15-Ni7Fe1/PDBTSO光催化制氢稳定性测试;光催化反应前后15-Ni7Fe1/PDBTSO的XRD图谱 (d)、FTIR图谱 (e) 和UV-DRS图谱(f)

    Figure  8.  Hydrogen evolution reactions of Ni7Fe1/PDBTSO (a), PDBTSO with 3wt%Pt and 15-Ni7Fe1/PDBTSO (b); (c) Stability test of 15-Ni7Fe1/PDBTSO photocatalytic reaction; XRD patterns (d), FTIR spectra (e) and UV-DRS spectra (f) of 15-Ni7Fe1/PDBTSO before and after photocatalytic reaction

    图  9  PDBTSO和15-Ni7Fe1/PDBTSO的稳态荧光光谱图 (a) 和荧光寿命图 (b);(c) Ni7Fe1、PDBTSO和15-Ni7Fe1/PDBTSO的EIS图谱;(d) PDBTSO和15-Ni7Fe1/PDBTSO的光电流响应图谱

    Figure  9.  Photoluminescence spectroscopy spectra (a) and time-resolved PL spectra (b) of PDBTSO and 15-Ni7Fe1/PDBTSO; (c) EIS spectra of Ni7Fe1, PDBTSO and 15-Ni7Fe1/PDBTSO; (d) Photoelectrode transient photocurrent response image of PDBTSO and 15-Ni7Fe1/PDBTSO

    图  10  (a) Ni7Fe1和PDBTSO的伏安(CV)曲线; (b) Ni7Fe1/PDBTSO的产氢机制图

    Figure  10.  (a) Current-vlotage (CV) curves of Ni7Fe1 and PDBTSO; (b) Proposed mechanism for photocatalytic hydrogen evolution at the Ni7Fe1/PDBTSO composite

    CB—Conduction band; VB—Valence band; Eg—Optical band gaps; TEOA—Triethanolamine; LUMO—Lowest unoccupied molecular orbital; HOMO—Highest occupied molecular orbital

    表  1  PDBTSO和15-Ni7Fe1/PDBTSO荧光寿命

    Table  1.   Fitted decay time of the PDBTSO and 15-Ni7Fe1/PDBTSO

    Sampleτ1/nsRel/%τ2/nsRel/%τ3/nsRel/%τ/ns
    PDBTSO0.29143.680.76731.622.94624.700.502
    15-Ni7Fe1/PDBTSO0.46853.542.12237.308.2529.160.751
    Notes: τ1, τ2, τ3—Fitted fluorescence lifetime value; τ—Average lifetime; Rel—Related function.
    下载: 导出CSV

    表  2  Ni7Fe1和PDBTSO的光化学性能

    Table  2.   Optical and electrochemical properties for the PDBTSO and Ni7Fe1

    SampleReduction potential/eVOxidation potential/eVELUMO(CB)/eVEHOMO(VB)/eVEga/eVEgb/eV
    PDBTSO−1.151.51−3.35−6.012.662.55
    Ni7Fe1−0.651.60−3.86−6.112.252.20
    Notes: ELUMO(CB)—Conduction band potential; EHOMO(VB)—Valence band potential; Ega—Band gaps calculated from ELUMO(CB)-EHOMO(VB); Egb—Optical band gaps; Egb=1240/λ.
    下载: 导出CSV
  • [1] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials,2009,8(1):76-80. doi: 10.1038/nmat2317
    [2] CHENG C, WANG X C, LIN Y Y, et al. The effect of molecular structure and fluorination on the properties of pyrene-benzothiadiazole-based conjugated polymers for visible-light-driven hydrogen evolution[J]. Polymer Chemistry,2018,9(35):4468-4475. doi: 10.1039/C8PY00722E
    [3] LIU L J, KOCHMAN M A, XU Y J, et al. Acetylene-linked conjugated polymers for sacrificial photocatalytic hydrogen evolution from water[J]. Journal of Materials Chemistry A,2021,9(32):17242-17248. doi: 10.1039/D1TA04288B
    [4] DAI C H, LIU B. Conjugated polymers for visible-light-driven photocatalysis[J]. Energy & Environmental Science,2020,13(1):24-52.
    [5] WANG Z J, YANG X Y, YANG T J, et al. Dibenzothiophene dioxide based conjugated microporous polymers for visible-light-driven hydrogen production[J]. ACS Catalysis,2018,8(9):8590-8596. doi: 10.1021/acscatal.8b02607
    [6] FU J W, YU J G, JIANG C J, et al. g-C3N4-based heterostructured photocatalysts[J]. Advanced Energy Materials,2018,8(3):1701503. doi: 10.1002/aenm.201701503
    [7] YANG C, MA B C, ZHANG L Z, et al. Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis[J]. Angewandte Chemie International Edition,2016,128(32):9348-9352.
    [8] DAMAS G, MARCHIORI C F N, ARAUJO C M. On the design of donor–acceptor conjugated polymers for photocatalytic hydrogen evolution reaction: First-principles theory-based assessment[J]. The Journal of Physical Chemistry C,2018,122(47):26876-26888. doi: 10.1021/acs.jpcc.8b09408
    [9] 王晓爽, 李育珍, 易思远, 等. Bi2MoS2O4改性g-C3N4光催化降解罗丹明B[J]. 复合材料学报, 2022, 39(8):3845-3851.

    WANG Xiaoshuang, LI Yuzhen, YI Siyuan, et al. Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B[J]. Acta Materiae Compositae Sinica,2022,39(8):3845-3851(in Chinese).
    [10] 胡新军, 胡勇, 谢文玲, 等. ZnS/还原氧化石墨烯复合材料的制备及光催化性能[J]. 复合材料学报, 2019, 36(1):207-212. doi: 10.13801/j.cnki.fhclxb.20180509.001

    HU Xinjun, HUong, XIE Wenling, et al. Preparation and photocatalytic properties of ZnS/reduced graphene oxide composite[J]. Acta Materiae Compositae Sinica,2019,36(1):207-212(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180509.001
    [11] 黄有鹏, 吴福礼, 李兵, 等. WO3/g-C3N4复合光催化剂制备及其可见光催化性能[J]. 复合材料学报, 2021, 38(12):4287-4294. doi: 10.13801/j.cnki.fhclxb.20210303.001

    HUANG Youpeng, WU Fuli, LI Bing, et al. Preparation and visible light catalytic performance of WO3/g-C3N4 composite photocatalyst[J]. Acta Materiae Compositae Sinica,2021,38(12):4287-4294(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210303.001
    [12] ZHANG X, SHEN F, HU Z C, et al. Biomass nanomicelles assist conjugated polymers/Pt cocatalysts to achieve high photocatalytic hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering,2019,7(4):4128-4135.
    [13] SUN D R, LIU W J, FU Y H, et al. Noble metals can have different effects on photocatalysis over metal–organic frameworks (MOFs): A case study on M/NH2-MIL-125(Ti) (M=Pt and Au)[J]. Chemistry-A European Journal,2014,20(16):4780-4788. doi: 10.1002/chem.201304067
    [14] LIU J Z, LI Y H, ZHOU X D, et al. Positively charged Pt-based cocatalysts: An orientation for achieving efficient photocatalytic water splitting[J]. Journal of Materials Chemistry A,2020,8(1):17-26. doi: 10.1039/C9TA10568A
    [15] XIAO N, LI S, LI X, et al. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen[J]. Chinese Journal of Catalysis,2020,41(4):642-671. doi: 10.1016/S1872-2067(19)63469-8
    [16] LI X G, BI W T, ZHANG L, et al. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution[J]. Advanced Materials,2016,28(12):2427-2431. doi: 10.1002/adma.201505281
    [17] MENG X Y, YANG Y S, CHEN L F, et al. A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts[J]. ACS Catalysis,2019,9(5):4226-4235. doi: 10.1021/acscatal.9b00238
    [18] GAO Z, LIU F Q, WANG L, et al. Hierarchical Ni2P@NiFeAlOx nanosheet arrays as bifunctional catalysts for superior overall water splitting[J]. Inorganic Chemistry,2019,58(5):3247-3255. doi: 10.1021/acs.inorgchem.8b03327
    [19] GAO Y, DOU L G, ZHANG S, et al. Coupling bimetallic Ni-Fe catalysts and nanosecond pulsed plasma for synergistic low-temperature CO2 methanation[J]. Chemical Engineering Journal,2021,420:127693. doi: 10.1016/j.cej.2020.127693
    [20] NAYAK S, MOHAPATRA L, PARIDA K. Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction[J]. Journal of Materials Chemistry A,2015,3(36):18622-18635. doi: 10.1039/C5TA05002B
    [21] NAYAK S, PARIDA K M. Deciphering Z-scheme charge transfer dynamics in heterostructure NiFe-LDH/N-rGO/g-C3N4 nanocomposite for photocatalytic pollutant removal and water splitting reactions[J]. Scientific Reports,2019,9(1):2458. doi: 10.1038/s41598-019-39009-4
    [22] SAHOO D P, PATNAIK S, PARIDA K. Construction of a Z-scheme dictated WO3-X/Ag/ZnCr LDH synergistically visible light-induced photocatalyst towards tetracycline degradation and H2 evolution[J]. ACS Omega,2019,4(12):14721-14741. doi: 10.1021/acsomega.9b01146
    [23] SPRICK R S, BONILLO B, CLOWES R, et al. Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts[J]. Angewandte Chemie-International Edition,2016,55(5):1792-1796. doi: 10.1002/anie.201510542
    [24] DAI C H, XU S D, LIU W, et al. Dibenzothiophene-S, S-dioxide-based conjugated polymers: Highly efficient photocatalyts for hydrogen production from water under visible light[J]. Small,2018,14(34):1801839. doi: 10.1002/smll.201801839
    [25] SACHS M, SPRICK R S, PEARCE D, et al. Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution[J]. Nature Communications,2018,9(1):4968. doi: 10.1038/s41467-018-07420-6
    [26] SHU G, LI Y D, WANG Z, et al. Poly(dibenzothiophene-S, S-dioxide) with visible light-induced hydrogen evolution rate up to 44.2 mmol·h−1·g−1 promoted by K2HPO4[J]. Applied Catalysis B: Environmental,2020,261:118230. doi: 10.1016/j.apcatb.2019.118230
    [27] XU K L, CHEN G M, SHEN J Q, et al. Exfoliation and dispersion of micrometer-sized LDH particles in poly(ethylene terephthalate) and their nanocomposite thermal stability[J]. Applied Clay Science,2013,75-76:114-119. doi: 10.1016/j.clay.2013.02.004
    [28] SAIAH F B D, SU B L, BETTAHAR N. Nickel-iron layered double hydroxide (LDH): Textural properties upon hydrothermal treatments and application on dye sorption[J]. Journal of Hazardous Materials,2009,165(1):206-217.
    [29] XU Q L, ZHANG L Y, YU J G, et al. Direct Z-scheme photocatalysts: Principles, synthesis, and applications[J]. Materials Today,2018,21(10):1042-1063. doi: 10.1016/j.mattod.2018.04.008
    [30] ZHANG X Z, XIAO J, HOU M, et al. Robust visible/near-infrared light driven hydrogen generation over Z-scheme conjugated polymer/CdS hybrid[J]. Applied Catalysis B: Environmental,2018,224:871-876. doi: 10.1016/j.apcatb.2017.11.038
    [31] MOHAPATRA L, PARIDA K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts[J]. Journal of Materials Chemistry A,2016,4(28):10744-10766. doi: 10.1039/C6TA01668E
    [32] WANG Z, LI C, DOMEN K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting[J]. Chemical Society Reviews,2019,48(7):2109-2125. doi: 10.1039/C8CS00542G
    [33] SHU G, WANG Y, LI Y D, et al. A high performance and low cost poly(dibenzothiophene-S, S-dioxide)@TiO2 compo-site with hydrogen evolution rate up to 51.5 mmol·h−1·g−1[J]. Journal of Materials Chemistry A,2020,8(35):18292-18301. doi: 10.1039/D0TA06159J
    [34] WAGEH S, AL-GHAMDI A A, JAFER R, et al. A new heterojunction in photocatalysis: S-scheme heterojunction[J]. Chinese Journal of Catalysis,2021,42(5):667-669. doi: 10.1016/S1872-2067(20)63705-6
    [35] XU Q, ZHANG L, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chemistry,2020,6(7):1543-1559. doi: 10.1016/j.chempr.2020.06.010
    [36] ZHEN L, DAN J, WANG Z H. ZnO/CdSe-diethylenetriamine nanocomposite as a step-scheme photocatalyst for photocatalytic hydrogen evolution[J]. Applied Surface Science,2020,529:147071. doi: 10.1016/j.apsusc.2020.147071
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1032
  • HTML全文浏览量:  480
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2021-11-09
  • 录用日期:  2021-11-26
  • 网络出版日期:  2021-12-08
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回